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Rheological properties of supramolecular polymers (SMPs) depend on their equilibrium structure including
the size, the number, and the topology of aggregates. A polymer with a hydrogen bonding (H-bonding)
motif at both ends is one widely used precursor to build SMPs. Due to the complex interplay between chain
stiffness, H-bonding interaction, polarity along a chain, and polymer conformational entropy, it is difficult to
theoretically predict the structure of SMPs. In this work we investigate thermodynamics of SMPs with H-bonding
ends in a wide range of densities. A replica exchange stochastic approximation Monte Carlo method with
coarse-grained models for polyethylene and polybuthylene glycols is used. Our simulation shows that SMPs
have two morphological transition lines with increasing temperature, a ring-linear transition, and a linear-free
chain transition. The latter is a thermodynamic transition and turns out to be continuous. Comparing the two
different spacers, we find that ring-linear transition temperatures differ from each other at the constant volume
fraction due to different looping probabilities, which can be calculated from the average polymer size by mean
field. However, the linear-free chain transition temperatures are similar because the entropic penalty to form a
hydrogen bond mainly depends on the probability of finding H-bonding groups in a system, which is the same
for both systems at a given volume fraction.
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I. INTRODUCTION

Polymers functionalized by associating groups which are
able to make a noncovalent bond have a transient morphology
which varies depending on external stimuli, e.g., temperature
and shear stress [1–6]. The material made by such associating
polymers is usually called supramolecular polymer (SMP),
and it shows characteristic rheological properties including
shear thinning and thickening, as well as novel smart functions
like self-healing [7,8].

One widely used motif to achieve the physical association
is the hydrogen bond (H bond) [9–18], due to its association
strength and directionality. Especially, its binding strength is
relatively weak compared to the covalent one, which makes it
reversible at room temperature by thermal fluctuations. Due to
such reversible bonds, the equilibrium morphology of SMPs
can be thermodynamically controlled and its resulting rheol-
ogy can also be manipulated. Together with the H-bonding
moiety, hydrophilicity of the associating group (a sticker),
backbone (a spacer), and solvent play an important role to
determine the mesoscopic structure. Interesting morpholo-
gies affecting a material’s rheology like a flowerlike micelle
[19,20], a film [21], a fibril [15,22], or a gel [19,23] have been
experimentally observed.

Another interesting suggestion about SMP morphologies
in recent studies was the presence of a ring-shaped aggregate.
Bras et al. have recently synthesized a poly(ethylene glycol)
(PEG) functionalized at both ends by ureidopyrimidinone
(UPY) and have found an evidence for the formation of ring

*eunsang.lee@physik.uni-halle.de

aggregates using a small-angle neutron-scattering experiment
[24]. From a physical point of view, two conditions are
necessary for the pure H-bond-based ring formation: The
first is that both spacer and sticker are hydrophilic to pre-
vent phase segregation. The second is that the sticker should
be monofunctional, and it form an H bond with only one
other sticker. The above experiment done with PEG spacers
and UPY stickers [13,14] fulfills both conditions. Because a
formed ring aggregate has no chain end to aggregate with
another precursor, the average molecular weight of aggregates
tends to decrease resulting in fast diffusion of the molecule.
On the other hand, even if the ring aggregates are not per-
manent, relaxation of the resulting material becomes slow by
topological effects of the ring such as ring-linear threading
[25–27], knotting [28], and concatenation of rings which have
been studied for inherent ring polymer systems (or ring-linear
blends). However, there is still a lack of complete understand-
ing for the ring effect on SMPs, and it is highly challenging
to analyze experimental results dealing with different polymer
topologies from a microscopic point of view.

To overcome the difficulty, theoretical [29–32] and numer-
ical studies [33–38] have been done for SMP structure and
dynamics. Equilibrium statistics of bifunctional monomers by
linear polycondensation has been investigated using classi-
cal polymerization theory [29–32] and the concept of living
polymers [33–35] to estimate the fraction of microscopic
rings and their size. However, those works have focused
only on the bifunctional association but have not considered
an effect of polymer conformations and sticker properties.
Recently, researchers have studied the behavior of associating
polymers using molecular dynamics [39–41] and Monte Carlo
simulations [42–44]. Most of them employed a nondirectional
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association potential between stickers such as the Lennard-
Jone potential, which allows branched H bonds. Such systems
are known to form a transient gel whose rheology is com-
pletely different from that of ring-shaped SMPs. More recent
works done by Dormidontova et al. have used a directionally
specific H-bond potential and investigated the equilibrium
statistics of SMPs focusing on the rings [36–38]. They found
a ring-linear transition at a certain density, but a complete pic-
ture of SMP thermodynamics in volume fraction–temperature
(φ-T ) space is still poorly developed, which will be addressed
in this study.

Regarding the thermodynamics of SMP systems, we
have investigated a single-molecule SMP precursor with H-
bonding motifs assuming a dilute concentration regime and
have found that the relative stability of a ring aggregate com-
pared to a linear one nonmonotonically varies as a function
of degree of polymerization [45]. It was also observed that
the ring-linear transition shows phase coexistence regardless
of the order of the transition. In this work, we move our
focus to the SMPs in dilute and semidilute concentrations.
We also study the behavior of different spacer systems, PEG
and poly(butylene glycol) (PBG). We use replica exchange
stochastic approximation Monte Carlo (RESAMC) simulation
to sample a huge configurational space and construct densities
of states (DOS). From the obtained DOS, canonical properties
are calculated to understand the phase behavior and the tran-
sitions involved in a wide range of density and temperature.

This paper is organized as follows. The next section ex-
plains the model and the method we used. Under Results and
Discussion, we explain how to obtain canonical properties
from a DOS and how to define morphologies as well as
the transition temperatures between them. The order of the
transition will be also discussed. Using the obtained transition
temperatures, we draw a φ-T phase diagram for both PEG
and PBG spacer systems and discuss it. Finally, a conclusion
section follows at the end of the paper.

II. MODEL AND COMPUTATIONAL METHODS

Each system in this study includes only one type of SMP
precursor, which is a so-called self-complementary SMP. The
precursor is composed of a polymer backbone with two H-
bonding groups at the ends. Earlier, we developed a coarse-
grained model for the SMP precursors mimicking PEG and
PBG based on their atomistic structure generated from an
all-atom force field [45]. In this model, one monomeric unit
of PEG and PBG is coarse-grained to one spherical bead.
Bonded interactions are composed of bond angle, bond length,
and dihedral angle potentials, determined by Boltzmann in-
version from the distributions obtained for these internal de-
grees of freedom from atomistic simulations. One difference
between coarse-grained PEG and PBG is the chain stiffness,
in that the persistence length of PEG is smaller than of PBG.
Also, a PBG chain has larger spatial size than a PEG chain
of the same degree of polymerization. Due to the hydrophilic
characteristic of H-bonding stickers as well as monomers, we
can coarse-grain the SMP model disregarding the possibility
of phase segregation. The nonbonded interaction thus only
consists of a repulsive Lennard-Jones potential. Even if sol-
vent particles are not explicitly included in this model, this

choice represents our polymers in a good solvent condition.
For simplicity, an H-bonding sticker is also parameterized by
a bead whose bonded and nonbonded interaction parameters
are the same as the PEG bead. Additionally, a phenomenolog-
ical nonbonded interaction potential is employed to describe
the directional H-bonding interactions between sticker beads,
with functional form given by [46]:

Uhb(ri j,�ik, �jl ) = − εhbG(ri j ; Rhb, σR)

× G(�ik r̂i j ; 1, σθ )G(�il r̂i j ; −1, σθ ), (1)

where G(x; m̄, σ ) is a Gaussian function with mean m̄ and
standard deviation σ . ri j and �ik are the distance between two
stickers and the unit vector from a sticker-connected polymer
bead to the ith sticker bead. εhb and Rhb are energy gain and
mean distance between two stickers on forming a hydrogen
bond, respectively. σR and σθ represent standard deviations
for the distance between stickers and the angles between
backbone bonds leading to the stickers. In this equation, the
last two Gaussian functions provide the angle specificity of the
H bond. More details of the H-bonding potential can be found
in our previous work [45] and the original work implementing
Eq. (1) [46]. Parameters are determined based on the chemical
structure of two H-bonded stickers. One advantage of this
potential function is that we can tune the strength and the
functionality of the H bond to change association nature. In
the ground state of the UPY-UPY interaction, four chemical
H bonds are formed. Because the typical H-bond strength in
the gas phase is 15–20 kJ/mol [47], we set εhb = 60 kJ/mol,
which is also consistent with the recent finding from SMP
systems [17,18]. From a rough estimation of the distance
between two sticker beads at the typical H-bond distance, we
set Rhb = 0.5 nm and σR = 0.1. Functionality of the sticker
association depends intricately on the chemical structure of
the sticker. Because the UPY sticker in dilute concentration is
known to be monofunctional due to its bulky size [24], σθ has
to be carefully determined to secure this monofunctionality.
To do so, we calculate the ground-state energy and its con-
figuration when three or four sticker groups, each of which is
composed of connected PEG-UPY beads, come together. We
use stochastic approximation Monte Carlo for this calculation,
which will be discussed shortly.

Figure 1 shows the maximum value of the H-bonding
energy gain when three and four sticker groups come together
in space as a function of σθ . Representative snapshots for
σθ = 0.1 and 0.5 are also presented. With a large value of
σθ , a wide range of angles of two adjacent sticker groups
is allowed, resulting in multifunctional association and a
branching structure. However, as σθ decreases to 0.1, only
one-to-one H bonding is allowed, and the branching structure
is excluded. Therefore, we set σθ = 0.1 to guarantee the
monofunctionality of the sticker.

Using the H-bond parameters described above, we per-
formed simulations for SMP systems. We compared the dif-
ference between SMPs composed of PEG and PBG spacers.
For all SMPs, the number of beads, N , is 8, including sticker
beads at the ends. With a fixed simulation box size L =
6 nm for PEG and L = 9 nm for PBG, different numbers
of polymers M are included from M = 2 to 128, which
corresponds to volume fractions of the coarse-grained beads
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FIG. 1. Ground-state energies of H-bonding groups and their
corresponding conformations as a function of σθ . Black and red
(gray) lines indicate the H-bonding energy gain from three and four
sticker groups coming together in space, respectively. Representative
snapshots at σθ = 0.1 (left) and 0.5 (right) are also shown. In the
snapshots, red and cyan beads represent sticker and spacer beads,
respectively.

from φ = 0.008 to 0.521 for PEG and from 0.003 to 0.203 for
PBG. From molecular dynamics simulations at T = 300 K
with our coarse-grained models, we obtained that the end-
to-end distance at dilute concentration is R = 1.64 nm for
PEG and 2.44 nm for PBG, leading to overlap concentrations
φ∗ = Nσ 3/R3 = 0.20 for PEG and 0.079 for PBG. So our
simulation densities cover the dilute to semidilute regimes.

In this study, a RESAMC is used to sample the con-
figuration randomly traveling across the energy space. The
SAMC method is a flat histogram Monte Carlo method which
constructs the density of energy states [48–52]. The obtained
DOS can be transformed into any ensemble properties, e.g.,
of the canonical ensemble. Using this scheme, we obtain exact
thermodynamic properties even very close to transition points.
However, in order to get a converged DOS, it is necessary to
visit all energies of interest equally which takes prohibitively
long time for a large system. It should be noted that by the
normal flat histogram method without any bias, the probability
of finding a lowest-energy configuration is exp(103) ≈ 10434

times lower than that of a high-energy configuration even if
the microcanonical entropy difference between two energies
is only 103kB, where kB is Boltzmann constant.

A few methods using multiple computing cores have been
proposed to overcome the resource problem, one of which
is replica exchange Wang-Landau (REWL) sampling [53,54].
The basic concept of the REWL is analogous to the conven-
tional replica exchange canonical simulation [55], but instead
of sampling conformations at different temperatures, several
independent random walkers travel in the different energy
windows. Adjacent windows have overlapping energies and
the configurations are exchanged in every few steps of the
Wang-Landau simulation with the following probability:

Pacc(i ↔ j) = min

[
1,

gi(U (X ))

gi(U (Y ))

g j (U (Y ))

g j (U (X ))

]
, (2)

where gi[U (X )] means the DOS of the configurational energy
U of configuration X in the ith energy window. We apply this

method to the SAMC scheme, which is called RESAMC. The
configuration exchange is tried every 103 MC steps (MCS)
and the total simulation time is at least 108 MCS. The number
of windows is 4–28 depending on the system size. After
getting converged DOSs in all energy windows, a complete
DOS is obtained by joining DOSs for which the difference
between d ln g(U )/dU of adjacent windows is smallest. The
bin size of energy in all energy windows is 1 kJ except for
large systems of M = 64 and 128 which have a 2-kJ-wide
energy bin.

Using the DOS in configurational energy space obtained
by RESAMC, we construct the DOS as a function of total
energy g(E ) by using a convolution of g(U ) and the DOS
for the kinetic energy, g(K ) [56]. Here g(K ) is proportional to
the area of a d-dimensional hypersphere of a radius K , where
d = 3Ntot is the number of degrees of freedom for the kinetic
energy, Ntot is the number of particles in a system, leading
to g(K ) = κK3Ntot/2−1 where κ is a prefactor for g(K ). The
relation for g(E ) is therefore

g(E ) = κ

Umax∑
U=Umin

∫ ∞

0
dK g(U )K3Ntot/2−1δ(E − K − U ). (3)

In this equation, Umin and Umax denote the minimum and the
maximum values of configurational energy in the RESAMC
sampling and δ is a Dirac delta function.

III. RESULTS AND DISCUSSIONS

We first show how we construct the DOS as a function
of total energy by RESAMC with an example of a N = 8,
M = 16 PEG system in Fig. 2. All figures afterward are for
the PEG system of N = 8, M = 16, and L = 6.0 nm if no
additional information is given in the caption. One can see
that every random walker makes a round trip from highest- to
lowest-energy windows in roughly 1.5 × 106 MCS Fig. S1 in
the Supplementary Material [57]. We perform the simulation
for 108 MCS which we believe to be long enough for all
walkers to sufficiently travel across all energy windows. As
shown in Fig. 2, all pieces of DOSs join to make a complete
DOS in a wide range of energy. The difference between DOSs

FIG. 2. The combined DOS as well as DOSs in each energy
window for a M = 16 PEG system.
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FIG. 3. Microcanonical inverse temperature as a function of total
(blue, gray) and configurational energies (black) and the micro-
canonical specific heat obtained from the derivative of the inverse
temperature with respect to total energy (green, light gray) for the
M = 16 PEG system. The dashed lines indicate the position of the
maximum of Cv(E ) and the corresponding inverse temperature.

of lowest and highest energies turns out to be more than e1000

for this system, which indicates a huge configurational space
to be sampled within a single energy window.

From the obtained DOS as a function of U in Fig. 2 we ob-
tain the DOS as a function of E , g(E ), using Eq. (3). Figure 3
shows the inverse microcanonical temperatures as a function
of E and U , calculated by T −1(U ) = kB∂ ln g(U )/∂U and
T −1(E ) = kB∂ ln g(E )/∂E . Since the DOS for the energy E
is summed over all g(U ) for possible U smaller than E
multiplied by the DOS of the kinetic energy, E − U , T −1(E )
is smoother than T −1(U ). We calculate the microcanonical
specific heat using the relation Cv(E ) = −T −2∂2 ln g(E )/∂2E
shown by a green line in Fig. 3. The maximum of Cv(E ) is
located at E = 939 kJ which corresponds to T = 560 K from
T −1(E ), and the configurational energy at this temperature
is U ≈ 100 kJ from T −1(U ). Although it is not clearly dis-
tinguished, a small shoulder peak exists around E ≈ 190 kJ,
corresponding to T ≈ 400 K and U ≈ −450 kJ. Noisy peaks
near the ground-state energy are believed to originate from
poor convergence in this energy regime.

Representative simulation snapshots for different config-
urational energies provide an evidence of the nature of the
transitions in Fig. 3. Figure 4(a) shows the very low energy
configuration involving ring-shaped aggregates. Because the
lowest configurational energy is achieved from the complete
formation of H bonds, a free chain end does not exist. g(U ) of
this very low energy configuration is extremely low because
of the looping conformation. Therefore, a ring aggregate is
energetically favorable but entropically unfavorable and dom-
inates at low temperature. A very high energy configuration,
whose snapshot is not drawn in this figure, contains free
polymers without any H bonds. Such a vaporized polymer
configuration is entropically favorable, so it dominates at high
temperature. In between, the configuration of U = −300 kJ in
Fig. 4(b) involves linear-shaped aggregates which emerge in
the middle temperature range.

FIG. 4. Representative snapshots of a M = 16 PEG system for
(a) low energy, U = −800 kJ, and (b) intermediate energy, U =
−300 kJ. Some molecules are not shown for clarity.

It is possible to identify the transitions between different
morphologies using the number of H bonds as a function
of U . Figure 5 shows the ratio of the number of H bonds
to the maximum possible number of H bonds which is M
in a system. For example, the system of M = 16 contains
2M = 32 stickers, which can make at most M = 16 H bonds.
In this work, we define that an H bond is formed if its potential
energy in Eq. (1) is smaller than −1 kJ. Even if this criterion
can later lead to a slight shift of the transition temperature,
such a fixed value of energy gain to define an H bond is neces-
sary because configurations are sampled in energy space. The
effect of this choice will be discussed shortly. The number
of H bonds plotted by a black line in Fig. 5 decreases with
increasing energy. The steepest slope of the decrease is at U ≈
100 kJ, which is consistent with the position of the maximum
Cv(E ) in Fig. 3. This specifically indicates the transition at
E = 939 kJ (or T = 560 K) below which the linear aggregates
dominate and above which any H bond is not formed. We
define this transition as linear-free chain transition, which is
similar to a condensation-evaporation transition. Observing
the number of H bonds participating in the formation of
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FIG. 5. The ratio of the number of H bonds to the maximum
possible number of H bonds for a M = 16 PEG system. Blue (gray),
green (light gray), and black lines indicate the ratio of H bonds
in linear aggregates, ring aggregates, and the sum of these two,
respectively.

ring and linear aggregates separately (blue and green lines
in Fig. 5, respectively), we can find another morphological
transition at U ≈ −450 kJ. At this energy, H-bond fractions
in ring and linear aggregates cross each other pointing out the
conversion between ring and linear aggregates. This config-
urational energy is also consistent with the values observed
from the shoulder peak in Fig. 3, T ≈ 400 K and E ≈ 190 kJ.
Here we can also see that the formation of H-bonds in linear
aggregates mostly contributes to the change of a total H-bonds
decrease at U ≈ 100 kJ.

Canonical averages of observables obtained from g(E )
by Laplace transformation are sometimes more useful to
compare the simulation data with experimental data. We
calculate various canonical functions by using the relation
〈O(T )〉 = ∑

E Ō(E )g(E ) exp(−βE )/Z (T ), where Ō(E ) is a
microcanonical average of an observable, β is inverse temper-
ature, and Z (T ) is the canonical partition function calculated
by Z (T ) = ∑

E g(E ) exp(−βE ). We first show the canonical
specific heat Cv(T ) = (〈E2〉 − 〈E〉2)/T 2 in Figs. 6 and S2.
We also plot Cv(T ) constructed from g(U ) in Fig. S2 of the
Supplemental Material [57]. The two functions have almost
the same shape but different heights due to the contribution
of the kinetic energy. One can also find that the positions of
the maxima are almost the same, T ∗ = 558 K from U and
560 K from E . This small deviation comes from the finite
configuration energy range used in integration of Eq. (3).
T ∗ in Cv(T ) also agrees with the microcanonical transition
temperature in Fig. 3. A shoulder peak at T ≈ 400 K is also
weakly seen as in the microcanonical specific heat.

We also calculate the number of H bonds and its fluctuation
as a function of temperature shown in Fig. 6. As explained, the
system undergoes a transition corresponding to the H-bond
breaking-forming event at the temperature of the maximum
in Cv(T ). The position of this transition is from now on
denoted as T ∗ = T ∗

l . Comparing Cv(T ) and the fluctuation
of H bonds, the transition at T = T ∗

l is due mostly to H
bonds of linear aggregates shown by a blue line. Again,
a little difference between the peak positions of these two

FIG. 6. The fluctuations of the number of H-bonds in linear
(blue, gray) and ring aggregates (green, light gray) as a function of T
together with the specific heat (black) on the right axis for a M = 16
PEG system. The inset shows the fraction of H-bonded stickers out of
the number of stickers in the system, the fractions of bonded stickers
contributing to the formation of ring aggregates (green, light gray)
and of the linear aggregates (blue, gray).

is observed, which is caused by the criterion of definition
for H-bond formation energy (−1 kJ). At low temperature
close to 400 K, a morphological ring-linear transition is also
observed which is explained by the decrease of H bonds in
linear aggregates and the increase of H bonds in rings with
decreasing T . This transition temperature T ∗

r is defined by the
position of a maximum peak of δnhb,r . As expected from the
simulation snapshots, energetically favored but entropically
unfavored ring aggregates dominate at low temperature, but H
bonds in rings start to be broken leading to linear aggregates at
T = T ∗

r . Here, T ∗
r again depends on the criterion for H-bond

formation, −1 kJ because of its definition. However, in our
previous work [45] done for a single SMP precursor, we
found that the nonbonded energy distribution at the ring open-
ing transition temperature is bimodal and two configurations
emerge at around −60 kJ and at above 0 kJ. Therefore, T ∗

r is
not sensitive to the choice of the value of the criterion if the
value is less than 0 kJ. T ∗

r ’s for different values of the criterion
calculated for the M = 4 system as shown in Table S1 in
the Supplementary Material [57] also support the validity of
the argument. The ring-linear transition at a certain density
at a given temperature has been reported in previous studies,
but the morphological behavior as a function of temperature
was only predicted from mean-field theory [36–38]. To our
knowledge, there has not been an explicit observation of the
ring-linear transition temperature at a given density by numer-
ical simulation so far. As the temperature increases further
to T = T ∗

l , a condensation-evaporation transition occurs by
H-bond breaking.

The probability distribution of the aggregate sizes shown
in Fig. 7 helps to understand the thermodynamics of the
transitions defined above. At T = T ∗

r = 392 K, a ring of size
s starts to convert into a linear aggregate of size s. Due to the
interplay between energy gain from H bonds and energetic
penalty by chain stiffness, a single-membered ring is hardly
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FIG. 7. Average number of s-membered linear (left column at
each s) and ring aggregates (right column at each s) at T = T ∗

r =
392 K for a M = 16 PEG system.

observed and a two-membered ring is most probable. Even
larger rings are less probable due to the entropic penalty of
loop formation. Our previous work found that a ring opening
transition temperature of a single PEG of the same model
varies nonmonotonously as the degree of polymerization and
shows a maximum at around N = 16, which has the same
number of monomers as the s = 2 ring aggregate [45]. There-
fore, absence of one-membered rings and the nonmonotonous
size distribution in this work are well consistent with our
previous work. However, over the whole range of aggregate
sizes, odd-membered rings are rare because we have a finite
number of precursors in a system, which restricts the size of
aggregates. For example, in the system involving 16 precur-
sors, since a one-membered ring is strongly forbidden and the
total number of polymers is even, odd-membered rings are
missing. It is also interesting to note that a 10-membered ring
is pronounced at this temperature which is, however, caused
by a finite-size effect. As one can see in the inset of Fig. 7, a
periodic boundary condition allows the aggregates to perco-
late the simulation box, which is defined as a percolating ring.
This percolating ring has the same topology of no chain end
with an actual ring which does not cross over the boundary in
Fig. 4(a) called a nonpercolating ring. A percolating ring has
the same number of H bonds with a nonpercolating ring of
the same size, so it leads to overestimation of the g(U ), which
possibly overestimates T ∗

r as well. The finite-size effect on T ∗
r

will be discussed shortly. At T = T ∗
l = 560 K as shown in

Fig. S3 in the Supplementary Material [57], the distribution
of linear aggregates decays exponentially which was proven
in many previous studies [29–32]. For the ring aggregates,
the one-membered ring is still missing and the two-membered
ring is highly probable. But overall, it also seems to follow an
exponential distribution.

As mentioned above, a finite-size effect exists especially
affecting the ring-linear transition temperature. Figure 8(a)
shows canonical specific heats for the systems of φ = 0.065
for different system size. The system of L = 6.00 nm was
used in the other analyses. We find that the shape of Cv(T )
for the L = 8.01-nm system is almost the same as for the

FIG. 8. (a) Canonical specific heats for the systems of volume
fraction, φ = 0.065 for different system sizes, L = 4.07 (green, light
gray), 6.00 (black), and 8.01 nm (blue, gray). (b) Fluctuations of
the number of H bonds for nonpercolating ring (blue, gray) and
percolating ring (green, light gray) as well as the specific heat (black)
on the right axis as a function of temperature for L = 6.00 nm.

original system. However, the small system of L = 4.07 nm
looks different from the others regarding the position of the
peaks as well as the overall shape. We found that the large
peak at T ≈ 520 K is caused by the highly overestimated T ∗

r .
As shown in Fig. 7, the two-membered ring is most probable
at low temperature. The two-membered linear aggregate has a
contour length of 5.29 nm (2.395 nm for each precursor and
0.5 nm for the H bond) which is larger than the box size of the
small system. Therefore, the number of states of percolating
rings significantly increases resulting in overestimation of
g(U ) and T ∗

r . Therefore, we should use system sizes larger
than at least a contour length of the two-membered ring to
avoid the critical finite-size effect.

As mentioned above, the average energies of percolating
and nonpercolating rings are comparable unless the fraction
of one-membered rings against the energetic penalty of chain
stiffness is significant. The entropic penalties for the two
morphologies, however, come from different origins. For
the nonpercolating ring, the entropic penalty mainly origi-
nates from the loop formation, but for the percolating one it
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FIG. 9. Probability distribution of energies at different tempera-
tures (from left to right as increasing T ) for a M = 16 PEG system.
Here the black curve is the one at the transition temperature. The
inset shows the two-dimensional probability distribution of configu-
rations as a function of nonbonded (En) and bonded energies (Eb).

originates from the probability of finding another sticker in
space, which depends on the sticker density. Due to the differ-
ent entropic costs for the morphology formation, the transition
temperatures could have been different, but the number fluctu-
ation of the H bonds in rings in Fig. 6, shows only one peak. To
understand this behavior, we calculate the number fluctuations
of H bonds in nonpercolating (blue) and percolating rings
(red) in the M = 16, L = 6-nm PEG system as shown in
Fig. 8(b). In this figure, the positions of the peaks for the two
morphologies are almost the same, which indicates that the
effect of percolating rings on T ∗

r is not significant. Even if the
origins of the entropic penalty of forming two morphologies
are different, they are leading to almost the same T ∗

r . There-
fore, we believe that the transition temperatures obtained in
our systems are not affected significantly by the small system
size.

One of the great advantages of the SAMC sampling
method is the possibility of investigating thermodynamic
properties of the system close to the transition point. Here we
study the nature of the phase transition in the SMP system.
From the canonical specific heat in Fig. 6, we can find
one thermodynamic transition, a linear-free chain transition.
This transition has no signature of a first-order transition
from the microcanonical specific heat in Fig. 3, i.e., negative
microcanonical specific heat. We also plot the probability
distribution of energies at different temperatures in Fig. 9
using the relation P(E ) = g(E ) exp(−E/kBT )/Z , where Z
is canonical partition function. In this figure, we can see a
unimodal distribution at T = T ∗

l which indicates a continuous
transition. Our previous work done on a single SMP precursor
has shown that two morphologies can coexist at the transition
temperature for a continuous ring-opening transition of very
long SMP precursors [45]. Such a behavior can be identified
by the two-dimensional (2D) DOS as a function of nonbonded
and bonded energies as shown in the inset of Fig. 9 which
is constructed from the 2D DOS. In this figure, no distinct
coexistence peaks are observed. A bumpy surface on the broad

FIG. 10. T-φ phase diagram for self-complementary SMP sys-
tems of PEG (black) and PBG (blue, gray) spacers. Density is
normalized to volume fraction of monomers, φ. Circles represent
the linear-free chain transition temperature and squares represent the
ring-linear transition. Dashed lines indicate the fitted functions of the
ring-linear transition temperatures with T ∗

r = b1 − b2 ln(φ), where
b1 and b2 are fitting parameters.

distribution is weakly visible caused by the finite number of
precursors in the system, which is expected to disappear in
the thermodynamic limit. Therefore, we can conclude that
this transition is a continuous transition without coexistence
of different configurational energies.

Moving our attention to the density dependence of the
system, we calculate Cv(T ) for systems of different densities
as shown in Fig. S4 in the Supplementary Material [57]. Here
the specific heat is normalized by the number of particles in
the system. In this figure, the position of the main peak in
Cv, defined as T ∗

l , increases with increasing density. Using
the obtained transition temperatures for the different densi-
ties in Figs. 6 and S4, we draw a T -φ phase diagram of
SMPs in Fig. 10. Two different spacer systems, PEG and
PBG, are plotted together and φ is the volume fraction of
the PEG and PBG monomers, respectively. As explained
above, there are a morphological transition between ring-
and linear-dominated morphologies at low temperature and a
thermodynamic transition corresponding to the condensation-
evaporation of chains. The two transition temperatures vary in
opposite ways with increasing φ. Unfortunately, the transition
temperatures can not be interpreted by classical polymeriza-
tion theories [29–32,36], because the theories used chemi-
cal equilibrium constants at a given temperature, which are,
however, temperature dependent. Nevertheless, a tendency
of the transition temperature observed in this work can be
qualitatively understood by the following argument.

We first assume morphological coexistence at the transition
temperatures. Although the transitions involved in this study
have no coexistence of different configurational energies,
there can be the morphological coexistence at the transition
temperatures, because we defined the H bond as a binary and it
determines the morphology of aggregates. Under this assump-
tion, we can now consider the Helmholtz free energy 
F̄ =

Ē − T 
S̄, where Ē and S̄ are the mean energy and entropy
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density per precursor, respectively. The transition temperature
is determined by 
F̄ = 0, and T ∗ = 
Ē/
S̄. Here 
 is
defined as a value of a function at a high-temperature state
minus that at a low-temperature state, for example, 
Ē =
Ē (free-chains) − Ē (linear-dominated) at T = T ∗

l . Assuming
that chain conformational energies of two states are almost the
same, we expect 
Ē ≈ 
Ēhb which is positive and is almost
constant independent of φ for both transitions. An entropy
change is mainly composed of three contributions, transla-
tional entropy 
S̄tr, polymer conformational entropy 
S̄p, and
H-bond forming entropy 
S̄hb. The H-bond forming entropy
can be approximated by 
S̄hb ∼ −kB ln Phb/2, where Phb is a
probability of two stickers forming a hydrogen bond. Here the
only contribution strongly varying with the precursor density
is 
S̄hb for both transitions. For the linear-free chain transition
Phb is proportional to vhbρst, where vhb is an effective volume
of H-bond forming between two stickers and ρst is the number
of stickers in a unit volume. Since vhb is fixed for a given
sticker force field, Phb increases with increasing φ resulting
in decreasing 
S̄hb and 
S̄. Therefore, T ∗

l increases as φ

increases.
For the ring-linear transition temperature, let us assume

that one of the H bonds in a ring aggregate of the average
size 〈s〉 at T = T ∗

r is broken and the ring converts into a linear
aggregate. In this case, Phb ∼ vhb/Ree(〈s〉)3, where Ree(〈s〉) is
the end-to-end distance of a linear aggregate of size 〈s〉. As
φ of the system increases, 〈s〉 also increases which results
in increasing Ree(〈s〉) for self-avoiding walks. Therefore, 
S̄
decreases with increasing φ which leads to the negative slope
of T ∗

r . This behavior is also well consistent with the previous
work which provided a qualitative description of ring-linear
transition temperature as a function of the ratio of association
strength to temperature [36].

Comparing PEG and PBG spacer systems, T ∗
l for the two

systems is almost the same but T ∗
r for PEG is higher than

for PBG at the same φ. The fact that the T ∗
l are almost the

same can be understood by the argument of 
S̄ which is again
depending on Phb. At the same monomer volume fraction the
sticker number densities are also the same for the two cases,
resulting in the same T ∗

l . For T ∗
r , Phb of the two systems

should be compared, which mainly depends on the average
size of the linear aggregates at the transition temperature.
Because the spatial dimension of the PBG aggregates is larger
than of PEG aggregates due to the larger size of the PBG
precursor, the entropic penalty to form PBG ring aggregates
is larger. Therefore, the PEG ring is entropically more stable
than the PBG ring, which leads to the higher T ∗

r of PEG.
The phase diagram as a function of of mass density, ρm, in

Fig. S5 in the Supplementary Material [57] helps to compare
our results to experimental data. Here T ∗

r decreases linearly
with ln ρm, so we could fit T ∗

r with the function, T ∗
r = c1 −

c2 ln ρm, where c1 and c2 are fitting parameters. This extrap-
olation allows to roughly estimate morphologies of meltlike
SMPs at room temperature, T = 300 K, in such a way that
both PEG and PBG SMP melts whose mass density are close
to 1 g/cm3 have a ring-linear transition temperature similar
to 300 K. Because the ring-linear transition is a continuous
morphological transition, the systems are expected to be a
ring-linear mixture at room temperature. Because a PBG bead
is heavier PBG than a PEG bead, the transition temperatures

FIG. 11. Log-log plot of T ∗
l (circle) and T ∗

r (square) for a M =
10 PEG system at φ = 0.040 as a function of εhb. A dashed line
represents a scaling of T ∗ ∼ ε1

hb, and a dotted line represents T =
300 K.

of the PBG system are lower than those of the PEG system at
the same ρm. The same result is obtained also in Fig. 10 for
SMPs of the volume fraction close to unity.

However, the actual association strength of the H bond in
solution, which is still hard to determine in experiments but
is set to εhb = 60 kJ/mol in Eq. (1) in this work, strongly
affects the transition temperature. Therefore, we calculated
the transition temperature as a function of εhb as shown in
Fig. 11. In this figure, both transition temperatures increase
proportionally to ε1

hb, which also supports our assumption

Ē ≈ 
Ēhb. We can also find the range of εhb resulting
in different morphologies at a given temperature. For ex-
ample, the PEG system of φ = 0.040 (ρm = 0.0203 g/cm3)
at T = 300 K has free chain–, linear-, and ring-dominated
morphologies when εhb < 34.7 kJ/mol, 34.7 kJ/mol < εhb <

45.0 kJ/mol, and εhb > 45.0 kJ/mol, respectively. Therefore,
the linear scaling of the transition temperature by the associ-
ation energy not only allows to estimate the morphological
transition temperatures for different associating motifs but
also opens a possibility of synthesizing new materials whose
morphology and rheology are thermodynamically controlled.

IV. CONCLUSIONS

In this paper, equilibrium morphology and phase behavior
of H-bonding SMPs built on PEG and PBG were investigated
in a wide range of temperature and density using RESAMC
simulation. Most importantly, we found two morphological
transitions, a ring-linear and a linear-free chain transitions.
It turned out that the latter is a thermodynamic transition
which is continuous without coexistence of configurational
energies as occurred for a single precursor chain. Through a
finite-size analysis, we found that percolating rings due to the
periodic boundary condition do not significantly influence the
ring-linear transition temperature of the investigated system
size. At room temperature and in the semidilute regime, our
simulation shows ring-dominated morphology both for PEG
and for PBG. Extrapolation of the ring-linear transition tem-
perature allowed a rough estimation of morphology of SMP
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melts, which turned out to be a ring-linear mixture. We also
analyzed a relation between H-bonding interaction strength
and the transition temperatures, which helps to understand
how the choice of the sticker molecule affects the morphology
of SMPs.

As a future work, the dynamic and rheological behavior of
SMPs including ring morphology should be addressed further.
It is expected that topological effects of a ring such as a
threading leads to slower dynamics than expected, which was
shown in inherent ring polymer systems. Moreover, concate-
nated and knotted rings can be formed due to the reversible H
bonds. Of course, the topology is not fixed for the system due
to the reversible H bonds, so the topological relaxation time

may compete with the H-bond lifetime, which determines a
characteristic relaxation time of the system. Therefore, it is
worthwhile to investigate the dynamic behavior of the model
H-bonding SMPs focusing on the ring morphology.
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