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Topology of dividing planar tilings: Mitosis and order in epithelial tissues
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We investigate a range of rule-based models of the in-plane structure of growing single-cell-thick epithelia
represented by the distribution of frequencies of polygon classes. Within the Markovian framework introduced
by Gibson er al. [Nature (London) 442, 1038 (2006)], we discuss various topologically allowed cell division
schemes assumed to control the structure of the tissue as well as a phenomenological Gaussian scheme, and we
compute the stationary distributions for all of them. Some of the distributions reproduce those seen in tissues
characterized by unbiased mitotic events but also in certain tissues with a preferred orientation of the mitotic
plane or a cell-rearrangement process such as neighbor exchange. In addition, we propose the asynchronous-
division variant of the model, which builds on the Lewis law and on the Aboav-Weaire law as well as on the
fact that the dividing cells are larger than the resting cells. This generalization a posteriori validates the original

model.
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I. INTRODUCTION

Epithelia, thin sheets of tissues made of one or a few layers
of cells, perform important and versatile functions during
development as well as in fully developed organisms. They
cover other tissues and organs, protecting them from physical
stimuli and forming a barrier which facilitates a selective
transport of substances. The physical properties of epithelia
depend on the interactions between the densely packed cells in
them. The strong adhesion between neighboring cells ensures
that the cell-cell contacts are mostly flat so that the structure
of a simple, singe-cell-thick epithelium can be accurately
represented by its en face view, which can be regarded as
a tiling of plane by polygons. Most vertices in these tilings
are three way; four-way vertices are rare [1] and vertices of
valence of more than four occur only in transient structures
such as rosettes [2].

The most accessible observables of cells in a tissue are
their morphometric features. These quantities are dynamical
and change as the tissue develops, and they generally vary
across the tissue. In single-cell-thick epithelia, the most easily
measured morphometric quantities are the projected (i.e.,
apical) cell area and the number of neighbors of cells, and
their distributions in a given tissue are of particular interest.
One of the first statistical descriptions of the in-plane structure
of epithelia was reported by Lewis in 1926 [3]. He observed
that the average projected cell area is a linear function of
the number of cell sides, i.e., the number of its neighbors.
This finding correlates a geometrical feature of cells with the
local topology of the tiling [4,5]. Also well established are
the topological correlations between the number of sides of
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a given cell and the average number of sides of its nearest
neighbors. This effect is described by the Aboav-Weaire law
[6,7], which states that the average number of sides of neigh-
bors of a cell with i neighbors is smaller than 6 if i is larger
than 6 and vice versa. In other words, cells with few sides
are surrounded by cells with many sides whereas many-sided
cells are surrounded by few-sided cells.

The topological structure of the tissue is conveniently rep-
resented by the distribution of the frequencies of the polygon
classes (triangles, quadrilaterals, pentagons, etc.) seen in the
en face view. In typical epithelia the most abundant polygon
class are hexagons followed by pentagons and heptagons
[8,9]; quadrilaterals are usually rare and so are octagons,
nonagons, and other polygons with many sides. If all vertices
are three way, the frequencies of polygon classes p; satisfy the
sum rule following from the Euler formula

D (i—6)pi =0, )

where the sum is over all polygon classes; this rule implies
that the average number of polygon sides is 6. The distribution
of p;’s is usually skewed since it is bounded at the lower end
(because no polygon can have less than three sides) but not at
the upper end.

Many approaches were explored to interpret the different
epithelial topologies, and each of them involves a certain
approximation. Some of them study the role of genes and
macromolecules in cell membranes and cell-cell interactions,
which play an important role in tissue organization [9]. Others
are more physical and attempt to describe the observed pat-
terns in terms of mechanics and thermodynamics, building on
concepts such as the energy or the entropy of the tissue viewed
as a tiling [10]. A comprehensive model which considers
energy-based cell mechanics and includes cell division as a
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generator of local topological transformations was elaborated
in Ref. [11]. Depending on parameters, the nondividing vari-
ant of such a model tissue adopts either a disordered state with
a distribution of polygon classes or an ordered state containing
only hexagons [11]. Once the cells are allowed to divide,
the tissue is disordered for all combinations of parameters,
suggesting that its structure should generally be viewed as a
stationary rather than an equilibrium feature. [Here we switch
to the two-dimensional (2D) terminology pertaining to the
tiling representation of the tissue, which is used in the rest
of the paper unless stated otherwise.]

Yet another view of an epithelium, which focuses ex-
clusively on cell division, was proposed in Ref. [12]. In
this mean-field model, where cells divide from generation to
generation and where all spatial and mechanical aspects of the
tissue are disregarded, the state of the tissue is not represented
by an actual tiling but solely by the vector

p = [p3, P4, P5: P6> - - - )

giving the frequencies of polygon classes p;. The essence of
this model is a concise set of rules which specify how an
average cell divides depending on the number of its sides. The
rules can be formulated within a discrete Markov-chain model
yielding a stationary state with a distribution of polygon
classes which compares favorably to some experimentally
observed distributions [12].

The predictions of this approach are quite interesting as it
sees the tissue in a very different light than, e.g., the model of
Ref. [11]. Of course, one may worry that the representation of
the tissue based on p that is not backed up by an actual tiling
may be too stripped down [13]. This is a valid concern, but
similar although lesser reservations apply to the commonly
used 2D vertex-model representation of epithelia [11,14,15]
which pertain to the projected (apical) geometry of the tissue
and disregard the actual three-dimensional (3D) shape of cells.
Given that in most epithelia the apical side is easily observed,
this is a natural choice yet still a simplification even if the
cells are prismatic, and much more so if they are not [16].
At the same time, in proliferating epithelia one does not need
to worry about this very much because, as mentioned above,
if cells divide then tissue structure changes dramatically [11]
so that the mechanical aspects of cells such as their energy
cannot play a decisive role. More importantly, any no-gap and
no-overlap tiling is subject to strong constraints embodied in
the sum rule [Eq. (1)] which too restrict the impact of cell
geometry on the structure of the tissue. These considerations
suggest that the Markov-chain model of Ref. [12] is well
worth analyzing in more detail.

Before spelling out the objectives of this paper, we summa-
rize the Markov-chain model [12] where the vector of polygon
frequencies at a time 7 is given by

P = p—1PS; 3)

here time is measured in units of cell cycle and thus gives the
generation number. The P matrix embodies the division rules,
the entry P;; giving the probability that an i-sided mother cell
divides and produces a j-sided daughter cell. If no triangles
are allowed, each daughter cell must inherit at least two
vertices from the mother cell such that upon formation of
the new side that divides the mother into two, each daughter

will have at least four vertices. This leaves the remaining
i —4 vertices to be distributed between the daughters. In
Ref. [12], these i — 4 vertices are divided randomly between
the daughters. In addition to the vertices inherited from the
mother, each daughter also acquires two additional vertices
due to the newly created side separating the daughters. Thus,
the probability for a j-sided cell to emerge from an i-sided
mother cell is

Ccomb(i - 47 ] - 4)

Pij = T ,

“

where C.omp (@, b) is the combinatorial coefficient.

The S matrix referred to as the shift matrix represents
the effect of division of the neighbors of a reference cell,
which too increases the number of sides of the cell if the
joint side is split into two, S;; being the probability that an
i-sided reference cell becomes j sided due to the division of
a neighbor. In an epithelium containing N cells, 2N new sides
are added because of this effect in each round of division
and if they are distributed evenly among the 2N cells present
after division, the number of sides in a cell increases by 1 on
average. Thus, S;; = 1if j =i+ 1 and 0 otherwise. This is a
mean-field approximation; if the tissue were represented as an
actual tiling, some cells would gain no sides and others would
gain more than 1 side [12].

One of the key assumptions of this model is that apart
from the two vertices that each daughter must receive from
the mother cell, the mother’s vertices are distributed like in a
binomial distribution. This assumption disregards the fact that
the vertices are geometrical rather than combinatorial entities
and are not independent because those that belong to a given
daughter must be adjacent to each other. As such, vertices
cannot be divided in the same way as the balls can be thrown
in two bins. The above topological limitation should be taken
into account, and here we propose a variant of the cell division
scheme from Ref. [12] that includes it as well as a range of
generalizations including the size-dependent asynchronous-
division version of the model which all complement earlier
reconsiderations of the Markov-chain approach [13,17].

The disposition of the paper is as follows: In Sec. II we in-
troduce and analyze five types of rule-based division schemes
and the phenomenological Gaussian scheme, in Sec. III we
propose the asynchronous-division model where the proba-
bility that a cell divides depends on the number of its sides
consistent with experimental observations; this model relies
on the Lewis law and the Aboav-Weaire law. In Sec. IV we
compare the results to experimental data and Sec. V concludes
the paper.

II. RULE-BASED SYNCHRONOUS-DIVISION SCHEMES

The modification of the model of Ref. [12] that we propose
implements the limitations to the combinatorics of cell divi-
sion that are required by geometry and topology. As suggested
in Ref. [13], there may exist various kinds of cell division rules
and we explore five such schemes, all of them departing from
that in Ref. [12]. Each of these rules is encoded in a different
P matrix and thus leads to a different stationary distribution
of polygon classes.
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The dominant topology of cell division is that where the
mitotic plane cuts from one of the sides toward another,
splitting each of the two sides into two. This leads to three-
way vertices in the tiling. The other scenario, where the
mitotic plane begins or ends in a vertex of the mother cell
such that one of the sides does not split and a four-way
vertex is created instead, is very rare; even more rare is the
case where the mitotic plane connects two vertices of the
mother. Like Ref. [12], we consider the dominant scenario.
The other condition imposed in Ref. [12] is that the frequency
of triangles is zero, which is based on the observation that
such cells are rarely found in experiments. Here, we analyze
cell division schemes which allow triangles as well as those
where not only triangles but also quadrilaterals and pentagons
are absent, and we compare the effects of such restrictions.

Like in Ref. [12], we concentrate on the distribution of
vertices among the daughter cells and we formulate the cell
division rules by focusing on the vertices as the geometrical
entities defining the mother cell and two daughter cells. The
division rules may equivalently be formulated by choos-
ing the two edges which are to be split into two in order to
insert the dividing edge, thereby generating the daughter cells.

A. Random division (R,,)

In the random division scheme, each of the daughters
inherits at least one, two, and three vertices from the mother
if the smallest-index polygon class allowed are triangles,
quadrilaterals, and pentagons, respectively; as noted above,
additional two vertices are created at points where the division
line intersects the sides of the mother cell. Figure 1 shows the
step-by-step branching algorithm used to determine the two
disjoint sets of vertices, one belonging to the first daughter
[red (dark gray) circles in Fig. 1] and the other to the second
daughter [blue (light gray) circles in Fig. 1] separated by the
mitotic planes (dashed lines in Fig. 1); the example pertains
to the division of a six-sided cell into daughters which can
be triangles, quadrilaterals, pentagons, hexagons, and hep-
tagons. In this algorithm, an arbitrary vertex of the mother
is assigned to the first daughter. Then, the adjacent vertex
in the clockwise direction is assigned either to the first or
to the second daughter cell with equal probabilities of % If
this vertex is assigned to the first daughter, the procedure
of vertex assignment continues in the same manner in the
clockwise direction, whereas otherwise the procedure samples
the vertices in counterclockwise sense starting from the first
assigned vertex. This procedure is terminated as soon as the
vertices belonging to one daughter are enclosed by those
belonging to the other, or when all vertices are assigned to
the two daughters. In Fig. 1, the final partitions are indicated
by a bold outline.

We note that the branching algorithm illustrated in Fig. 1
is an auxiliary device which allows us to identify the possible
final states rather rather than a physical model of cell division,
where the vertices belonging to each daughter are not selected
in a sequential manner. Thus, the probability associated with
a given final partition is given by the number of times it
occurs in the scheme divided by the total number of the final
partitions and is not weighted by the probability of arriving at
each final partition in the auxiliary scheme.
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FIG. 1. Schematic of the random division scheme applied to a
hexagon, with triangles as the smallest polygon class. The algorithm
starts with a random vertex assigned to the first daughter (left), and
in each step proceeding from left to right one of the neighbors of the
string of vertices already belonging to the first daughter is assigned
to either daughter with equal probabilities. Red (dark gray) and blue
(light gray) circles indicate vertices assigned to the first and the
second daughters whereas arrows show the direction of the neighbor
assignment in each step; dashed lines show the mitotic plane. This
procedure is carried out until all vertices are divided between the two
daughters, and the final partitions in this scheme are highlighted by
bold contours.

By construction, this algorithm respects the topological
necessity that all the vertices belonging to either daughter are
contiguous and form a string. Once all possible outcomes of
the algorithm are identified, we need to count the number of
instances when the result of the division of an i-sided mother
is a j-sided daughter, and then we calculate the respective
frequencies which represent the entries P;; of the P matrix.
The P matrix of the R3 scheme is spelled out in Appendix A
together with the matrices of all other schemes for the case
where the smallest polygon class are triangles. (We briefly
refer to the lower-end cutoff of the polygon classes allowed,
which is indicated in the subscript in the abbreviated name of
a scheme, as the smallest polygon class.)

The version of this scheme presented in Fig. 1 and denoted
by R3; produces daughters with three or more vertices, but
it can be generalized so as to exclude triangular cells by
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FIG. 2. Partly random division scheme, here illustrated by the
patterns resulting from the PR; division of a hexagonal mother,
begins with a vertex assigned to the first daughter [red (dark gray)
circle] and a vertex randomly selected from the remaining vertices
[blue (light gray) circle]. Based on these two vertices, we construct
all topologically allowed division patterns (dashed lines).

assigning two rather than just one vertex to the first daughter
and by terminating the algorithm when two vertices are left
for the second daughter; this may be thought to represent the
detachment or death of three-sided cells. This variant, which
allows polygons with four or more sides, is referred to as Ry.
In an analogous fashion we can also adapt the algorithm such
that the smallest number of sides is 5 (Rs).

B. Partly random division (PR,,)

In the second scheme considered here, an arbitrary vertex
of an i-sided mother cell is assigned to the first daughter. Then,
one of the remaining i — 1 vertices is selected at random, i.e.,
with a probability of 1/(i — 1), and assigned to the second
daughter. In the next step, the remaining i — 2 vertices are
distributed among the daughters, allowing all divisions that
result in two contiguous strings of vertices (Fig. 2). All of
the thus obtained patterns are assumed to be equiprobable.
Like the random scheme, this algorithm exists in three variants
depending on the smallest polygon class (3, 4, or 5; referred
to as PR3, PRy, and PRs, respectively); the PRy and PRs
schemes start with 2 and 3 contiguous vertices for each
daughter, respectively, rather than with 1 like PR;.

C. Symmetric division (S,,)

Experiments show that often each of the two most distant
vertices of the mother belongs to a different daughter and
that the more symmetrical divisions are more common than
the less symmetric ones [4,18]. To account for these facts,
we construct a scheme where each daughter is assigned 1 of
the 2 vertices that are topologically farthest from each other,
and the dividing line is determined by the most symmetric
division. Thus, a mother cell with an even number of sides i

FIG. 3. Symmetric division scheme of cells with three, four, five,
and six sides.

divides into daughters with i/2 4 2 sides, whereas those with
an odd number of sides produce daughters with i/2 + 3/2 and
i/2 4+ 5/2 sides (Fig. 3).

D. Near-symmetric division (S2, and S3,) and near-symmetric
topological division (ST2 and ST?)

The symmetric-division scheme can be extended so as to
also include the second and the third most symmetric patterns;
these two generalizations are briefly referred to as S7 and
Si, respectively. If we allow the first and the second most
symmetric divisions, then a mother cell with an even number
of sides i can produce daughters with i/2 + 1, i/2+ 2, or
i/2 4+ 3 sides (except if the mother is a triangle, in which
case the daughters can be only triangular and quadrilateral)
and that with an odd i can produce daughters with i/2 + 1/2,
i/243/2,i/2+5/2, or i/2 4 7/2 sides. Figure 4(a) shows
the two possible patterns in a hexagonal mother cell, which
can divide into two pentagonal cells or into a hexagonal and
a quadrilateral cell. These modes are then subject to further
restrictions imposed by the smallest polygon class permitted
(triangles, quadrilaterals, or pentagons) and are assumed to
occur with equal probabilities. In a similar fashion, the third
most symmetric division can be included too. In the near-
symmetric topological division scheme (ST? and ST?), the
probability for a given division pattern is proportional to the
number of times the pattern appears [Fig. 4(b)].

E. Topological division (7},)

In this scheme, two topologically most distant vertices
are assigned to the daughters and all possible divisions are
allowed, the frequency of a given pattern being proportional to
the number of its occurrences. As a result, the more symmetric
divisions are more frequent than the less symmetric ones
(Fig. 5). This approach is the same as that in Ref. [12], except
that it respects the topological limitations; as all of the other
schemes, it appears in three variants depending on the smallest
polygon class.

FIG. 4. Division of a hexagonal mother cell in the near-
symmetric division scheme allowing the first and the second most
symmetric patterns (a) which are assumed to occur with equal
probabilities. In the near-symmetric topological scheme ST?, the
probabilities of these modes are not the same but proportional to
the number of times each pattern appears. A hexagonal mother
produces a quadrilateral, a pentagonal, and a hexagonal daughter

with a probability of 2, 2, and %, respectively (b).

723
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FIG. 5. Division patterns of a hexagonal mother cell allowed by
the topological scheme 73. Two most distant vertices are assigned to
the daughters, and each possible division indicated by the position of
the mitotic plane (dashed line) occurs with a frequency proportional
to the number of instances where it appears.

F. Gaussian scheme

The P matrices of the above schemes share several features
best appreciated when looking at them; those corresponding
to the case where the smallest polygon class are triangles are
listed in Appendix A. The number of nonzero entries in a row
depends on the row in question (i.e., on the number of sides
of the mother cell) and on the smallest polygon class. If the
smallest polygon class are triangles, the polygons arising from
the division of an i-sided cell range from triangles to (i + 1)-
sided polygons. If the smallest polygon class are quadrilat-
erals, four- to i-sided cells can result from division, and if
this class are pentagons daughter cells can have between five
and i — 1 sides. By comparing the matrix in Eq. (A7) to that
spelled out in the non-normalized form in Box 1 in Ref. [12],
we also observe that in case where the smallest polygon class
are quadrilaterals, the P matrix is lower triangular whereas if
the smallest class are triangles it contains an additional upper
bidiagonal. The rows of the P matrix are symmetric in that the
first nonzero value in a row is the same as the last one, etc.;
naturally, each row must be normalized (see the P matrices in
Appendix A).

In the phenomenological Gaussian scheme, we dispose of
the rules behind the five schemes and we propose P matrices
with entries in each row distributed according to the Gaussian
function. The number of nonzero entries in each row is limited
depending on the row number and on the smallest polygon
class. The entries of the Gaussian P matrix are given by

exp (— x;;/20?)
v > exp (—7/202)

®)

where
Xij=—i/2+j—2 (6)

and 2 < j < i+ 2 if the smallest polygon class considered
are triangles; if it is quadrilaterals and pentagons, then 3 <
j <i+1land4 < j < i, respectively. The Gaussian function
respects the symmetry of entries in the rows of the P matrix,
and the position of the maximum of the Gaussian function
in Eq. (6) is chosen so as to correspond to all P matrices
constructed based on the division rules. The denominator in
Eq. (5) ensures that the rows are normalized. The Gaussian
scheme is controlled solely by o, which is taken to be the same
for all rows in the P matrix. If o is small, then the distribution
of entries in a row is narrow, whereas if ¢ is large it is broad.

G. Stationary distributions of polygon classes

The different cell division schemes proposed above pro-
duce different stationary distributions of polygon classes
(Fig. 6), which can be obtained either iteratively or by

finding the dominant eigenvector. Interestingly, one can
quickly see that the distributions can be divided into three
groups color coded in the figure using shades of gray, with
some variations within each group. Those in the first group
have the lowest frequency of hexagons (less than about
30%) and are broad, containing polygon classes ranging from
quadrilaterals to nonagons or even decagons. These distribu-
tions are rather skewed. The second group consists of distri-
butions that are somewhat narrower and have between 35%
and 50% of hexagons. Here, skewness is present too but in the
two distributions from this group shown in the left column it
is rather small. The third group represents completely ordered
tissues consisting exclusively of hexagons. Here, the hexag-
onal cells still divide so as to produce pentagons, e.g., in the
symmetric scheme [Eq. (A3)], but the stationary distribution
is also determined by the S matrix. The S matrix promotes
all pentagons produced by the division of the hexagons to
hexagons so that the tissue consisting solely of hexagonal cells
is indeed the fixed point of the algorithm.

The left, middle, and right columns in Fig. 6 correspond
to division schemes where the smallest polygon class is trian-
gles, quadrilaterals, and pentagons, respectively. It is evident
that the three groups are largely although not exclusively
determined by the choice of the smallest polygon class: all
members of the first group are in the left column and all
distributions in the right column belong to the third group.
We also observe that the stationary distributions are correlated
with the distribution of coefficients in the row of the P matrix
representing the division of heptagons, which are shown in
the inset of each panel in Fig. 6. In schemes with only a few
nonzero coefficients in this row then the stationary distribution
is narrow. The most evident examples are the cases in the right
column, where the smallest polygon class are pentagons, and
the symmetric division schemes S,,, where heptagonal cells
divide into pentagonal and hexagonal daughters with equal
probabilities; in both cases the stationary state consists solely
of hexagons. On the other hand, if there are many nonzero
coefficients in the row encoding the division of hexagons (i.e.,
if there exist many division topologies), the distribution of
polygon classes in the tissue will be broad and the frequency
of hexagons will be typically considerably smaller than
100%.

In the Gaussian scheme, the form of matrix P is controlled
by a continuous parameter o, and hence there exists a contin-
uous set of stationary distributions of polygon classes which
depend both on ¢ and on the choice of smallest polygon
class. Representative examples are shown in Fig. 7. Like in
the rule-based schemes, the distribution of polygon classes is
broad if o is large enough and if the smallest polygon class
are triangles. On the other hand, sufficiently small o, say 0.1,
result in a highly ordered, hexagons-only tissue as shown in
the bottom row of Fig. 7. The Gaussian scheme generally
reproduces all types of distributions obtained using rule-based
schemes, and it also gives a narrow symmetric distribution
containing pentagons, hexagons, and heptagons with ps = p;
seen, e.g., at o = 0.5 if the smallest polygon class are either
triangles or quadrilaterals (Fig. 7). Such distributions do not
result from any set of rules described in Sec. II. All Gaussian-
scheme distributions satisfy Eq. (1) with an accuracy of at
least 1077,
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FIG. 6. Stationary distributions of polygon classes obtained using rule-based cell division schemes from Sec. II. In the left, middle, and
right columns, the smallest polygon class are triangles, quadrilaterals, and pentagons, respectively. The insets show the coefficients in the row
of the P matrix representing the probabilities for the division of heptagons, with lines connecting points for better readability. The three groups
of distributions are color coded: in the dark-gray ones the frequency of hexagons is below 30%, in the medium-gray ones it is between 30%

and 100%, and in the light-gray ones it is 100%.

Some of our schemes can be compared directly to those
obtained in simulations within the topological model of
Ref. [18]. In this model, the tissue is represented by a finite
tiling but there is no mechanism controlling the geometrical
properties of the tiles so that the tiling is really a topological
object. Like in Ref. [12] all cells divide in each generation, and
the location of the mitotic plane is determined sequentially
by various rules. This leads to many modes of cell division,
two of which are nominally equivalent to our R; and S3

schemes; a third mode is partly related to the 73 scheme.
With the stationary set of frequencies p = [p3, ps ... pio]l =
[22.3%, 22.3%, 22.3%, 14.9%, 9.3%, 4.8%, 2.4%] (here we
do not include p;.jp), the R3 scheme compares rather
well to the “random and unequal split” mode where p ~
[26.9%, 27.2%, 18.4%, 10.4%, 6.3%, 4.1%, 2.8%]. The S3
scheme, which is characterized by a symmetric division of
polygons and predicts that the only nonzero frequency is pg =
100%, corresponds to the “random and equal split” mode
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FIG. 7. Representative examples of stationary distributions of polygon classes within the Gaussian scheme for o = oo, 1, 0.5, and 0.1
(top to bottom) and for three choices of the smallest polygon class (triangles, quadrilaterals, and pentagons in left, middle, and right columns,
respectively). The color code is the same as in Fig. 6 except in two of the o = 0.5 distributions containing only pentagons, hexagons, and
heptagons with identical frequencies of pentagons and heptagons (hatched).

with p = [7.9%, 29.4%, 34.2%, 19.0%, 6.8%, 2.1%, 0.3%],
and here the stationary distributions are completely differ-
ent. On the other hand, our 73 scheme is not exactly anal-
ogous to the “random and binomial split” mode but their
distributions of polygon classes, p = [13.1%, 26.3%, 28.5%,
18.4%, 8.8%, 3.4%, 1.1%] and p ~ [18.7%,27.5%,22.6%,
15.2%, 8.2%, 4.4%, 1.7%], respectively, are reasonably close
to each other. This comparison is encouraging but not good
enough so as to validate the schemes from Sec. II. At the same
time, there is no guarantee that the topological representation
of Ref. [18] can really be used as a reference. With many spiky
cells, its physical form clearly departs from the tilings seen in
real tissues, and any shape relaxation would surely affect the

topology.

II1. SIZE-DEPENDENT ASYNCHRONOUS DIVISION

By accounting for the two-dimensional topology and by
extending the cell division rules so as to include certain
empirical observations as well as some elements of mechanics
and energetics of division, the above modifications bring the
model from Ref. [12] closer to real tissues as evidenced by
the diverse range of stationary distributions of polygon classes
obtained. However, the approach still suffers from inherent
drawbacks. First, the evolution of the tissue is divided into
time steps corresponding to generations so that in each step,
all cells in the tissue undergo exactly one round of division
irrespective of any factors that control the process. The most
important physical feature that affects the probability for
division is cell size, which is known to increase prior to

division [4] so that the probability should be larger in the
larger cells. Cell size does not directly appear in the model
but it does correlate with the number of sides: The Lewis law
states that the average projected (i.e., apical) area of cells in
an epithelium is a linear function of the number of sides i [4].

Second, the version of the shift matrix S proposed in
Ref. [12] is obtained by averaging over the whole epithelium,
and all cells in a generation gain an additional vertex due to
division of their neighbors. However, the number of sides of
neighbors of a given cell is anticorrelated with the number of
sides of the cell itself: According to Aboav-Weaire law cells
with few sides are, on average, surrounded by cells with many
sides and vice versa [6,7]. As a result, a mitotic event is more
likely to take place in the neighbors of a cell with a small
number of sides i than in the neighbors of a cell with a large i,
and thus the reference cell is more likely to gain a side due to
the division of its neighbors if it has only a few sides. The S
matrix should thus depend on i.

A. Formulation of mean-field asynchronous-division model

The two deficiencies can be remedied within a refined
mean-field framework. Instead of considering cell divisions
at the level of a single generation where all of the cells divide,
we consider the evolution of the tissue in a time interval At
which is fixed by the fastest dividing cells, i.e., those with the
largest number of sides. For this we need to define the largest
polygon class considered and thus restrict the dimension of the
vector of frequencies of the polygon classes p. Here, we take
that i should be no larger than iy,,x = 10 because we know
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of no experimental report of a tissue where the frequency
of cells with more than 10 sides would be sizable [19]; the
smallest polygon class allowed are triangles. The duration of
the Markov step At is thus given by the average time required
for the division of a decagonal cell. During this period, fewer
than 100% of nonagonal, octagonal, ..., triangular cells divide
so that the probability for division in a time step of Ar denoted
by ¢; depend on the number of sides i, with g;-;, < 1 and
qi,,, = 1. This is where the Lewis law implicitly resides: cells
with many sides are on average larger than those with few
sides, so that in them the probability for division within the
period At should be larger than in the smaller cells.
A convenient ansatz for the dependence of ¢; on i is

1+ tanh[a(i — B)]

P =

Yo : (7)
where o; = {1 4 tanh[a(imax — B)]}/2 ensures that ¢; , =
1. This ansatz has two parameters. Roughly speaking, «
controls how strongly ¢; depends on i and for @ =0, g; = 1
irrespective of i so that the model, save for the upper cutoff of
the basis at ip,x polygons, reduces to its synchronous variant.
On the other hand, B represents a threshold for i such that
gi<g < 0.5 and gig > 0.5; in the limit of & > 1, g;cp — 0
whereas ¢g;.4 — 1. Experiments show that the average num-
ber of sides of a dividing cell is about seven and that the
frequency of eight- and nine-sided cells among the dividing
population is much larger than among the resting cells [4,20],
and thus choosing 8 around six seems reasonable. As per «,
we are not aware of any experimental facts that can be used
to estimate it; evidently, it can be considered as a fitting pa-
rameter. Our ansatz qualitatively agrees with the Drosophila
sensory organ precursor cells data from Ref. [21] analyzed in
Ref. [17]; depending on parameters, the agreement can even
be quantitative. ~

Now we can spell out the asynchronous-division matrix P
corresponding to one Markov step:

Pj=(1—q)8i; + Py (8)

here §;; is the Kronecker symbol and P;; is a suitable rule-
based division matrix from Sec. II. This expression states that
within one Markov step, an i-sided cell either does not divide
with a probability of 1 — g; or it divides with a probability
of ¢; and produces j-sided daughters as specified by the P
matrix. N

The asynchronous-division shift matrix S, which repre-
sents the redistribution of frequencies of polygon classes due
to division of neighbors of the reference cell, is based on the
empirical Aboav-Weaire law mentioned above. This law states
that the average number of sides of neighbors of an i-sided cell
is given by

6
mi)~ 6 —a+ 2TH2 9)
l

where a ~ 1 is a constant and u, is the second moment of
polygon frequencies p; which is about 1 in the disordered
tissues, smaller than 1 in the more ordered ones, and O in
tissues consisting solely of hexagonal cells. We note that m(7)
given by Eq. (9) is restricted to a rather narrow interval, for
a=1and u, =1, m(3)~ 7.3 and m(i > 1) & 5, so that

using it within too broad a range of i would be question-
able but within our scheme where i is between 3 and 10
it makes sense. In a mean-field spirit, we assume that the
probability that a neighbor of a cell with i sides divides in
one Markov step is given by g). The shift matrix is now
given by

§ij =[1 = gui)16ij + gm@)di+1,j- (10)

Here, the first term represents the decrease of the frequency
of i-sided cells due to the division of their i neighbors, which
convert i-sided cells into those with more than i sides, and
the second term is the increase of the frequency of (i + 1)-
sided cells due to the promotion of i-sided cells because one
of their m(i) neighbors has divided and thus the i-sided cells
gained 1 side. The shift matrix S conserves the probability
when applied to a vector of frequencies of polygon classes
unrestricted from above; a more detailed discussion of its form
is presented in Appendix B.

__ The size-dependent asynchronous-division model based on
P and S defined by Egs. (8) and (10), respectively, reduces
to the variant proposed in Ref. [12] if o« = 0 and we solve
it in the same manner except that now in each time step we
need to find the value of u, self-consistently as u, is both a
parameter of the shift matrix S through m(i) [Eq. (9)] and
the second moment of the ensuing distribution of frequen-
cies p. This is done iteratively, with three to four iterations
needed to converge the procedure. On the technical side, we
note that as the basis is cut at ipax, the shift matrix S in
general results in a leakage from the p vector at its iy.cth
(i.e., 10th) component. This is a small effect because pjg
is generally rather small. The probability leakage can be
repaired either by the renormalization of the last column of
the S matrix or by the renormalization of the p vector after
each iteration. In any case, the exact nature of dealing with
this problem is unimportant for the salient features of the
stationary distribution of polygon classes.

Figure 8(b) shows the stationary distributions of the
asynchronous-division model based on the near-symmetric
topological rule ST3 (Sec. II D) for several values of o at 8 =
5.5; Fig. 8(a) contains the corresponding division probabilities
q;. The stationary distributions demonstrate that the effect of
the variation of ¢; across the polygon classes can be rather
strong depending on «, and that the ensuing distributions
are generally broader and shifted to smaller polygon classes
compared to that obtained using the synchronous-division
model. This is best appreciated by comparing the o = 0.25
case [fourth panel from left in Fig. 8(b)] to the o = O case,
which reduces to the synchronous-division model [22] [first
panel from left in Fig. 8(b)]. In the former, the frequency
of pentagons, quadrilaterals, and triangles are considerably
larger than in the latter whereas the frequencies of hexagons,
heptagons, and octagons are much smaller; in fact, pentagons
are the most abundant polygon class. The shift is clearly
visible in Fig. 8(c) where we plot the mean of the stationary
distributions w1, which drops to a value as low as 5.4 at
o ~ 0.25. In turn, for a > 1 where the difference in division
probabilities of the smaller and the larger polygon classes is
essentially 100%, the mean again approaches that at « = 0,
that is w; = 6. Figure 8(c) also shows the mean for other,
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distributions vs « for g =1, 3,5.5, 6.5, and 9; squares indicate the data points corresponding to items in (b). The gray band represents the

range of u; seen in experiments [1].

less realistic values of g; those with large 8 (e.g., B = 9) are
definitely biased by the cutoff value iy, = 10.

B. Violation of Euler sum formula and four-way vertices

Any nonzero value of o produces stationary distributions
with a mean smaller than 6, which can be interpreted as
follows. For any « > 0, the division probability g; increases
with i and so polygons with a small number of sides remain
in the tissue for a longer time before they divide than those
with a large number of sides. In addition, the dividing smaller
polygon classes do not directly decay into the larger ones
(e.g., triangles necessarily produce only triangular and quadri-
lateral daughters in all schemes as shown by the matrices in
Appendix A) but they do result from the division of the larger
polygon classes as implied by the form of the P matrices
which is generally lower triangular with an additional first
diagonal above the main one (Appendix A). At finite but
small «, this results in a shift of the distribution. On the other
hand, if « is much larger than unity, then the smaller polygon
classes barely divide but they do gain new sides because of
the division of their neighbors, which divide with a very high
probability; in turn, the larger classes do not gain any new
sides from the division of t~l1eir neighbors, which have fewer
sides. In this regime, the S matrix depopulates the smaller
polygon classes but does not affect the larger ones.

The above effects all stem from the well-established fact
that the probability of division is not the same in all poly-
gon classes, which is included in our asynchronous-division
model but not in the synchronous-division model of Ref. [12]
and evidently leads to the shift of the stationary distribu-
tions of the asynchronous-division model. Moderate shifts
where the mean of the distribution is between 5.8 and 6 are
consistent with experimental observations [1] whereas large
ones with a mean below 5.8 are not. In this respect, the
asynchronous-division model is generally less realistic than
the more coarse synchronous-division model which produces
distributions with a mean of 6, thereby satisfying the sum
rule [Eq. (1)]. To better understand this point, we examine
the structure of the latter model and we find that stationary
distributions with a mean of 6 appear because of the symmetry
of the elements of each row of the P matrix and because of the
specific index-raising form of the S matrix (Appendix C). The
synchronous-division model meets these two requirements,
and so does our Gaussian model which is completely phe-
nomenological and does not rely on any explicit cell division
topology.

The symmetry of the rows of the P matrix is quite natural
as shown by the various division schemes proposed in Sec. II,
but the form of the S matrix, which promotes every polygon
class to that just above it in each generation, relies on patently
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mean-field arguments, and fortuitously yields reasonable re-
sults. The shift matrix of the asynchronous-division model
[Eq. (10)] goes a step beyond these arguments, building on
the Aboav-Weaire law, but leads to stationary distributions
with a mean smaller than 6. This may suggest that there exist
additional mechanisms that control cell division, addressing,
e.g. the orientation of th~e mitotic plane; this could affect the
S matrix as well as the P matrix. We relegate the discussion
of such an extension to a future study.

As the theoretical framework explored in Ref. [12] and
here is based on an abstract rather than a concrete represen-
tation of epithelia, we can interpret the obtained stationary
distributions solely by noting that those with a mean of 6 are
consistent with tilings with three-way vertices whereas those
with a mean smaller than 6 correspond to tilings which also
contain a fraction of four-way vertices. The latter are seen
in some tissues although typically in small numbers, and in
the scope of the present framework they may appear within
a single generation if the mitotic plane of the reference cell
agrees with that of a dividing neighbor. (This, of course, can
happen both within the original model of Ref. [12] and its gen-
eralizations presented in Sec. II and within the asynchronous-
division model.) If the fraction of four-way vertices denoted
by f4 is small, then [1]

p1~ 6 —4fy. (1)

This formula can be used to estimate the fraction of four-way
vertices corresponding to the distributions in Fig. 8. For ex-
ample, a 5% fraction of four-way vertices (fa = 0.05) yields
w1 = 5.8. This value of fy is not unreasonable either because
of unresolved pairs of nearby three-way vertices or because of
true four-way vertices, and in real tissues p; is indeed smaller
than 6 although not smaller than 5.8 [1]. This value may be
considered as the lower bound defining the range of o and S
where the asynchronous-division model produces results that
are consistent with experimental observations [shaded band in
Fig. 8(¢)].

C. Resting and dividing cell populations
in asynchronous-division model

The asynchronous-division model also allows us to distin-
guish between the resting and the dividing cell populations,
which are computed by multiplying the stationary distribution
with the respective probabilities 1 — ¢; and ¢; and then renor-
malizing the two partial distributions for easier comparison
with experiments. In Fig. 9, we show the two populations for
o =0.03 and 1.75 and B = 5.5; the model parameters were
chosen such that the combined distributions are very similar.
As anticipated, for o = 0.03 the distributions of polygon
classes in the resting and the dividing population are quite
close to each other [Fig. 9(a)], with means at 5.544 and 5.847,
respectively. But at the larger o = 1.75 where the cell division
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probability varies quite dramatically with i [Fig. 8(a)], the
distributions are markedly different from each other and both
narrower than the combined distribution. The resting popula-
tion is dominated by pentagonal cells with ps ~ 69% and the
mean is 4.968 whereas in the dividing population the mean
is 6.458. The fact that the shapes of the two distributions are
different disagrees with, e.g., Lewis’ experimental studies of
cucumber epidermis [4] and with the Drosophila wing disk
epithelium [20], but we expect that by varying o and § and
by using division rules other than ST% (Sec. II D) a range of
outcomes may be obtained.

The results shown in Fig. 9 demonstrate that although the
stationary distributions produced by the different models can
be quite similar, this does not necessarily apply to the partial
distributions of resting and dividing cells.

IV. DISCUSSION

To assess the relevance of the models from Secs. II and
III, one should compare them to experiments much like in
Ref. [12]. To this end, we collected data from various dividing
tissues, using the frequency of hexagons as the order parame-
ter that characterizes a given distribution; the tissues analyzed
are summarized in Table I. The data can be divided into two

categories. The first one contains tissues where growth is char-
acterized by an unbiased mitosis with no preferred orientation
of the mitotic plane [4,9,11,12,18,23,24], which appears to
be the primary process at the stage where the epithelium
is first formed. In these tissues, the frequency of hexagons
is typically between 38% and 48% (Fig. 10 and Table I).
This category of distributions can be interpreted using rule-
based schemes which include certain topological limitations,
are restricted to a few near-symmetric division patterns, or
account for the combinatorics of division which increases
the probability of the near-symmetric patterns. Such schemes
produce theoretical frequencies of hexagons typically a little
larger than 40%.

The second category consists of tissues whose struc-
ture is not controlled only by unbiased mitosis but also
by other ordering processes, which lead to tissue special-
ization in later developmental stages. These processes in-
clude oriented mitosis which takes place preferentially in
a specific direction [24,26] and tissue rearrangements due
to cell disappearance or neighbor exchange [8,25]. Most of
them make the tissue more ordered [9], but the processes
that lead to cell maturation and differentiation may result in
decreased order signaled by a small frequency of hexagons
[26].

TABLE 1. Epithelial tissues represented in Fig. 10.

Tissue Process involved Mitosis only Ref.
Xenopus laevis (tadpole tail epidermis) Rapid proliferation, few cell rearrangements . [12]
Hydra vulgaris (outer epidermis) Rapid proliferation, few cell rearrangements . [12]
Drosophila melanogaster (larval imaginal Rapid proliferation, few cell rearrangements . [12]
wing disk columnar epithelium and
peripodial epithelium)
Drosophila melanogaster (third instar Rapid proliferation, cell division with few ° [11]
larval wing disk) T2 transitions
Drosophila melanogaster (mid-third Proliferation . [23]
instar larva and early prepupa)
Drosophila melanogaster (developing Proliferation . [9]
wing epithelium: imaginal disk and
early prepupa)
Drosophila melanogaster (developing Uniform orientation by planar cell polarity [9]
wing epithelium: pupal development pathway involving neighbor exchanges
before hair formation)
Drosophila melanogaster (embryonic Neighbor exchange during germband extension [8]
epithelium at stages 6, 7, 8, and late
stage 8)
Anagalis arvensis (meristem) Rapid proliferation, few cell rearrangements proliferation . [18]
Cucumis (epidermis) . [4]
Allium cepa (abaxial epidermis of scales) Uniform tissue proliferation ° [24]
Euonymus fortunei var. Vegetus (adaxial Uniform tissue proliferation . [24]
epidermis of leaf)
Dryopteris filix-mas (gametophytic cells) Uniform tissue proliferation ° [24]
Anarchis densa (surface cells of bud) Uniform tissue proliferation ° [24]
Anarchis densa (abaxial and adaxial Proliferation in preferred direction [24]
surface of leaf)
Volvox aureus (colony) Proliferation, alternating mitotic planes [24]
Homo sapiens (epidermis) Division and cell detachment [25]
Gallus gallus (spinal cord neuroepithelium) Proliferation with wide range of mitotic plane [26]

orientations (perpendicular and parallel to
apical surface) and cell detachment
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FIG. 10. Experimental frequencies of hexagons ps in tissues
characterized by (i) mitosis with unbiased orientation of the mitotic
plane and by (ii) mitosis complemented by other processes that
contribute to cell rearrangement compared to the results of (iii) the
rule-based models and (iv) the phenomenological Gaussian scheme.
Each bar represents one set of experimental data from tissues listed
in Table I or one theoretical stationary distribution as appropriate.

As a result, the spread of pg in tissues from the second
category is much bigger than in tissues from the first category
(Fig. 10), the former including tissues where the frequency of
hexagons is between 28% and 78%. Those second-category
cases where pg exceeds 45% cannot be accounted for by
any of our rule-based division schemes, in which pg ranges
between 22% and 45% or equals 100% depending on the
scheme. This should not be too surprising as these schemes
do not include any information on the tissue aside from
the topological and statistical description of mitosis and the
implementation of any geometrical feature of the whole tissue
such as a preferred orientation of the mitotic plane is simply
beyond their scope.

As far as reproducing the more ordered, large-pg dis-
tributions from the second category is concerned, the size-
dependent asynchronous-division version of the model fares
no better than the original scheme. We implemented it using
the rule-based schemes that give hexagons-only stationary
distributions (e.g., the S3 symmetric division scheme), ex-
pecting that the asynchronous-division protocol will broaden
it to some extent. This indeed happens at a finite o but
the stationary distributions obtained (not shown) are all
rather anomalous, containing quadrilaterals, pentagons, and
hexagons but no heptagons and octagons. While a mean
1 < 6 is seen in the more ordered epithelia with a large
frequency of hexagons, a complete absence of heptagons is

not consistent with experiments [8,9]. We conclude that the
asynchronous-division model cannot provide an interpretation
of the structure of these more ordered types of epithelia. At
the same time, the phenomenological Gaussian scheme can
reproduce stationary distributions with an arbitrary pg solely
by varying o (Fig. 10), but does not offer much new insight.

The above outcome is still a lesson learned, namely, that
additional processes must be included in the model or that cell
division must be biased, say by planar polarity of the tissue.
Some of these features can conceivably be incorporated in the
topological model of Ref. [18].

V. CONCLUSIONS

The schemes described here extend and complement the
original model of Ref. [12], showing how the different cell
division rules affect the distribution of polygon classes in
an epithelium. Our rule-based schemes lead to a group of
distributions qualitatively similar to that of Ref. [12] but
also to many broader ones, which represent less ordered
tissues, and to the hexagon-only distribution corresponding
to a topologically perfectly ordered tissue. These schemes
offer a more comprehensive interpretation of the structure of
real proliferating tissues unaffected by any process other than
mitosis with an unbiased orientation of the mitotic plane. They
also cover some but not all tissues where cell division is biased
or accompanied by one or more modes of cell rearrangement.

Representing the tissue by the frequencies of polygon
classes rather than by a physical structure is an extreme case
of coarse graining, and the fact that a theory revolving solely
around the frequencies works is rather surprising at first sight.
At the same time, any physical tiling representing a tissue
is subject to constraints such the no-gap and no-overlap rule
applying to all edge-to-edge tilings and the sum rule [Eq. (1)],
which impose a strong restriction on the distribution of the
frequencies. As these constraints can be included in a model
based on the frequencies-only representation of the tissue,
such as model can produce meaningful results together with
a more transparent insight into the actual processes that deter-
mine the tissue structure. Our asynchronous-division model
shows how the original idea from Ref. [12] can be refined so
as to include well-known empirical facts pertaining to most
random tilings, which then provides an a posteriori validation
of the original model.

Neglecting the cell-level mechanics (forces and physical
constraints) may indeed seem a gross simplification. On the
other hand, there exists evidence that several features charac-
teristic of epithelial tissues do not depend on the underlying
energy functional; for example, the height of the energy
barrier and the energy gain after a T1 neighbor-exchange
transition in an epithelium as a function of projected edge
length [27,28] are essentially universal. Together with the fact
that cell division virtually completely overrides the minimal-
energy structure of the tissue [11], it suggests that models
such as that from Ref. [12], its generalizations proposed
here, and other approaches stripped of cell geometry such as
the topological model of Ref. [18] are well worth exploring
further. One of the next steps in this direction may be the
continuous-time variant of the asynchronous-division model.
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APPENDIX A: P MATRICES FOR DIVISION SCHEMES R,
PR3, S, 52, AND T,

Here, we spell out the P matrices for the division schemes
from Secs. Il A-II E for the case where the smallest polygon
class is triangles. All matrices begin with the P33 entry in the
top-left corner, which gives the probability that a three-sided
mother cell produces a three-sided daughter, and the last row
shown corresponds to the probabilities of division of a seven-

sided mother into daughters with three, four, . . ., eight sides.
In the random division scheme R3,
1/2 1/2
1/3 1/3 1/3
| 1/4 174 1/4 1/4
P=115 15 175 1/5 1/5 (AD
1/6 1/6 1/6 1/6 1/6 1/6
In the partly random division scheme PR3,
1/2 1/2
3/10 4/10 3/10
P 2/10 3/10 3/10 2/10
~ | 15/105 24/105 27/105 24/10515/105
3/28 5/28 6/28 6/28 5/28 3/28
(A2)
In the symmetric division scheme S3,
172 1/2
1
p_ 1/2 1{2 (A3)

12 1)2

In the near-symmetric division scheme allowing the first and
the second most symmetric patterns with equal probabilities
53,

/2 1)2
/3 1/3 1/3
| 1/4 174 1/4 1/4
P= 13 13 1,3 (Ad)
1/4 1/4 1/4 1/4
In the topological division scheme T3,
/2 172
1/4  2/4 1/4
P_ 16 2/6 2/6 1/6 . (AS)

1/9 2/9 3/9 2/9 1/9
/12 2/12 3/12 3/12 2/12 1/12

one can immediately see that the fourth row corresponding
to the division of hexagons is consistent with Fig. 5. For
comparison, the entries in the P matrix based on Eq. (4)
adapted so as to include triangles are given by

Ccomb(i - 27 .] - 3)
2i-2
because each daughter cell must inherit 1 vertex from the
mother so that the total number of vertices of the i-sided

mother that can be divided randomly is i — 2 rather than i — 4
like in Eq. (4). This gives

12 12
1/4  2/4  1/4

1/8 3/8 3/8  1/8

1/16 4/16 6/16 4/16 1/16

1/32 5/32 10/32 10/32 5/32 1/32

Pj= (A6)

P:

(AT)

APPENDIX B: FORM OF ASYNCHRONOUS-DIVISION
SHIFT MATRIX S

The first term in Eq. (10) depends on the probability that
the reference i-sided cell does not gain an additional side
due to the division of its i neighbors, which have m(i) sides
on average, and reads as 1 — gy,;). One may expect that this
probability should be given by 1 — ig,,; instead as there are i
neighbors rather than just 1, but such a conclusion is incorrect
because not all divisions of a neighbor increase the number
of sides of the reference cell as the mitotic plane may not
intersect the side shared by the cell and its dividing neighbor.
If the orientation of the mitotic plane is isotropic, then only
1/m(i) divisions of each of the i neighbors will increase the
number of sides of the reference cell by 1.

More precisely, if the exact numbers of sides of neighbors
of the reference cell were known, then the total probability
that the reference cell will gain a vertex because its neighbors
divide would be

i
£Ly (B1)
ki

=1

where ki, kp, . . ., k; are the numbers of sides of the neighbors

and gy, , g, , - - - » gk, are their respective division probabilities.

Since in the statistical representation of the dividing tissue k;’s
are unknown, we could try approximating expression (B1) in
a mean-field manner by

.gm(i)

lm(i), (B2)
where m(i) is the average number of sides of the neighbors of
the reference i-sided cell, which is given by the Aboav-Weaire
law [Eq. (9)].

In the present version of the asynchronous-division model,
this effect cannot be readily included because it leads to
negative entries in the S matrix, at least for some values of
o [Eq. (7)]. For example, at « = 0, ¢g; = 1 for all i and thus
the magnitude of the first term in Eq. (10) would be 1 —
i/m(i), which is negative for i > 6 where m(i) < 6. Naturally,
this unphysical situation arises because the time step of our
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asynchronous-division algorithm is chosen such that within
one step, the largest polygon classes divide with a probability
of 100%. In a continuous-time version with an infinitesimally
short time step, the division probability within a step would
be much smaller than 100% for all polygon classes, and this
issue would not arise.

In this paper, we do not explore such a model; instead, we
replace the expression (B1) by gy so as to arrive at the form
of the S matrix in Eq. (10). We note that with this choice our
asynchronous-division model reduces to the original model of
Ref. [12] for ¢ = 0, i.e., when all ¢; = 1.

APPENDIX C: SUM RULE AND FORM OF P AND S
MATRICES

The model of Ref. [12] leads to stationary distributions
which satisfy the sum rule [Eq. (1)] automatically due to the
specific, index-raising form of the S matrix, the triangular
nature of the P matrix, and the symmetry of the nonzero
elements in the columns of the P matrix [Eq. (6)], the latter
being a consequence of the symmetry of polygon division,
i.e., the fact that each daughter with j sides requires a com-
plementary daughter with i + 4 — j sides. To show this, we
spell out Eq. (3) for a stationary state where p; = p,—; row by
row:

Ps = Paps + Psaps + Peape + Pap7 + -+,

pe = 0+ Pssps + Pespe + Pispr + -+,

P71 =0+04 Pespe + Prop7 + -+,

ps=04+0+0+Pyp7+ ---,
O (C1)

here the effect of the S matrix is already taken into account
and we assume that the smallest polygon class are quadrilat-
erals.

Now, we sum the columns of these equations. The sum of
all left-hand sides is ps + ps + p7 + -+ =1 as the p vector
is normalized; note that in Ref. [12] p4 = 0 by construction
because triangular cells are not included in the scheme and all
quadrilateral cells are promoted to pentagonal cells upon the
action of the S matrix. Because all rows of the P matrix are
normalized [12], the sum of the first column on the right-hand
side is Pyyp4 = p4, the sum of the second column is Psyps5 +
Ps5sps = ps, the sum of the third column is Pgspg + Pospe +
Pespe = pe, etc.

The mean of the distribution p; = ), ip; can be written
by adding Eqgs. (C1) multiplied by an appropriate i (i.e., the
first equation by 5, the second by 6, etc.). After collecting the
terms with the same p; we find that

1 = 5Pyps
+ (5Ps4 + 6Ps5)ps
+ (5Psy + 6Pss + TPs6)ps
+ (5Pr4 + 6P;5 + TP16 + 8P17)p7
+oe- 2)

Due to (i) the fact that the entries in each row of the
P matrix in the triangle below the diagonal are symmetric
(P44 = 1, P54 = P55, P64 = P66 < P65, etc.) and to (11) the
normalization of each row of this matrix we can sum the terms
in each bracket to find that

w1 =5ps+55ps +6ps+65p7;+Tps+7.5pg + - - -
1
=) ipi+5) (6-ip;
Ei pit s Ei( P
= +1 E 6—1) (C3)
= M1 ) i Lpi-

Evidently, the second term on the right-hand side must vanish,
which immediately gives the sum rule [Eq. (1)].
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