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Evolutionary graph theory models the effects of natural selection and random drift on structured populations
of competing mutant and nonmutant individuals. Recent studies have found that fixation times in such systems
often have right-skewed distributions. Little is known, however, about how these distributions and their skew
depend on mutant fitness. Here we calculate the fitness dependence of the fixation-time distribution for the
Moran Birth-death process in populations modeled by two extreme networks: the complete graph and the one-
dimensional ring lattice, obtaining exact solutions in the limit of large network size. We find that with non-
neutral fitness, the Moran process on the ring has normally distributed fixation times, independent of the relative
fitness of mutants and nonmutants. In contrast, on the complete graph, the fixation-time distribution is a fitness-
weighted convolution of two Gumbel distributions. When fitness is neutral, the fixation-time distribution jumps
discontinuously and becomes highly skewed on both the complete graph and the ring. Even on these simple
networks, the fixation-time distribution exhibits a rich fitness dependence, with discontinuities and regions of
universality. Extensions of our results to two-fitness Moran models, times to partial fixation, and evolution on

random networks are discussed.
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I. INTRODUCTION

Reproducing populations undergo evolutionary dynamics.
Mutations can endow individuals with a fitness advantage,
allowing them to reproduce more quickly and outcompete
nonmutant individuals [1]. Two natural questions arise: If
a single mutant individual is introduced into a population,
what is the probability that the mutant lineage will spread
and ultimately take over the population (an outcome known
as fixation)? And if fixation occurs, how much time does it
take?

These questions have been addressed, in part, by evolu-
tionary graph theory, which studies evolutionary dynamics
in structured populations. Thanks to this approach, fixation
probabilities are now well understood for various models on
various networks [2—12]. Less is known about fixation times.
Given a model of evolutionary dynamics, one would like to
predict the mean, variance, and ideally the full distribution of
its fixation times.

Of these quantities, the mean is the best understood. Nu-
merical and analytical results exist for mean fixation times on
both deterministic [4,6,11-17] and random [16—19] networks.
Yet although mean fixation times are important to study, the
information they provide can be misleading, because fixation-
time distributions tend to be broad and skewed and hence are
not well characterized by their means alone [11,20-23]. Initial
analytical results have determined the asymptotic fixation-
time distribution for several simple networks, but only when
the relative fitness of the mutants is infinite [24—26]. For other
values of the relative fitness, almost nothing is known. Pre-
liminary results suggest that at neutral fitness (when mutants
and nonmutants are equally fit), the fixation-time distribution
becomes highly right-skewed [26].
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In this paper, we investigate the full fitness dependence
of fixation-time distributions for the Moran process [27,28],
a simple model of evolutionary dynamics. In the limit of
large network size, we derive asymptotically exact results for
the fixation-time distribution and its skew for two network
structures at opposite ends of the connectivity spectrum: the
complete graph, in which every individual interacts with
every other individual; and the one-dimensional ring lattice, in
which each individual interacts only with its nearest neighbors
on a ring.

The specific model we consider is the Moran Birth-death
(Bd) process [29], defined as follows. On each node of the
network there is an individual, either mutant or nonmutant.
The mutants have a fitness level r, which designates their rel-
ative reproduction rate compared to nonmutants. When r > 1,
the mutants have a fitness advantage, whereas when r = 1
they have neutral fitness. At each time step we choose a node
at random, with probability proportional to its fitness, and we
choose one of its neighbors with uniform probability. The
first individual gives birth to an offspring of the same type.
That offspring replaces the neighbor, which dies. The model
population is updated until either the mutant lineage takes
over (in which case fixation occurs) or the mutant lineage goes
extinct (a case not considered here).

As mentioned above, the distribution of fixation times is
often skewed. The skew emerges from the stochastic com-
petition between mutants and nonmutants through multiple
mechanisms. For instance, when the mutants have neutral
fitness, the process resembles an unbiased random walk. We
find that the asymptotic fixation-time distribution for a simple
random walk is only skewed when the walk is unbiased. The
lack of bias allows for occasional long recurrent excursions
(that are suppressed in biased walks) during successful runs
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to fixation. The fixation-time distribution is strongly skewed
because there are many ways to execute such walks that are
much longer than usual, but comparably few ways for mutants
to sweep through the population much faster than usual.

Depending on network structure, the fixation-time skew
can also come from a second, completely separate mech-
anism, which involves characteristic slowdowns that arise
because individuals do not discriminate between mutants and
nonmutants during the replacement step of the Moran process.
For example, when very few nonmutants remain, the mutants
can waste time replacing each other. These slowdowns are
reminiscent of those seen in a classic problem from probabil-
ity theory, namely the coupon collector’s problem, which asks
the following: How long does it take to complete a collection
of N distinct coupons if a random coupon is received at each
time step? The intuition for the long slowdowns is clear: when
nearly all the coupons have been collected, it can take an
exasperatingly long time to collect the final few, because one
keeps acquiring coupons that one already has. The problem
was first solved by Erd6s and Rényi, who proved that for large
N, the time to complete the collection has a Gumbel distri-
bution [30]. In fact, for evolutionary processes with infinite
fitness, there exists an exact mapping onto coupon collection
[25,26]. Remarkably, while this correspondence breaks down
for finite fitness, the coupon collection heuristic still allows
us to predict correct asymptotic fixation-time distributions for
non-neutral fitness.

In the following sections, we show that for N > 1, the
neutral-fitness Moran process on the complete graph and the
one-dimensional ring lattice has highly skewed fixation-time
distributions, and we solve for their cumulants exactly. For
non-neutral fitness, the fixation-time distribution is normal on
the lattice and a weighted convolution of Gumbel distributions
on the complete graph. These results are noteworthy; apart
from the infinite fitness limit and some partial results at
neutral fitness (noted below), the fitness dependence of these
distributions was previously unknown.

We begin by developing a general framework for comput-
ing fixation-time distributions and cumulants of birth-death
Markov chains, and then we apply it to the Moran process
to prove the results above. We also consider the effects of
truncation on the process and examine how long it takes to
reach partial, rather than complete, fixation. The fixation-time
distributions have a rich dependence on the fitness level and
the degree of truncation, with both discontinuities and regions
of universality. To conclude, we discuss extensions of our
results to two-fitness Moran models and to more complicated
network topologies.

II. GENERAL THEORY FOR BIRTH-DEATH
MARKOYV PROCESSES

For simplicity, we restrict our attention to network topolo-
gies and initial mutant populations for which the probability
of adding or removing a mutant in a given time step de-
pends only on the number of existing mutants, not on where
the mutants are located on the network. The state of the
system can therefore be defined in terms of the number of
mutants, m =0, 1, ..., N, where N is the total number of
nodes on the network. The Moran process is then a birth-death

Markov chain with N + 1 states, transition probabilities b,,
and d,, determined by the network structure, and absorbing
boundaries at m = 0 and m = N. In this section, we review
several general analytical results for absorbing birth-death
Markov chains, explaining how they apply to fixation times in
evolutionary dynamics. We also develop an approach, which
we call visit statistics, that enables analytical estimation of the
asymptotic fixation-time cumulants.

On more complicated networks, the probability of adding
or removing a mutant depends on the configuration of existing
mutants. For some of these networks, however, the transition
probabilities can be accurately estimated using a mean-field
approximation [19,23,25,26]. Then, to a good approximation,
the results below apply to such networks as well.

A. Eigendecomposition of the birth-death process

Assuming a continuous-time process, the state of the
Markov chain described above evolves according to the mas-
ter equation,

p(1) = Q- p@), ey

where p(¢) is the probability of occupying each state of
the system at time ¢, and 2 is the transition rate matrix,
with columns summing to zero. In terms of the transition
probabilities b,, and d,,, the entries of 2 are

an = bn5171,n+1 + dn(Sm,nfl - (bn + dn)am,nv (2)

where m and n run from O to N, §,, , is the Kronecker delta,
and by = dy = by = dy = 0. The final condition guarantees
the system has absorbing boundaries with stationary states
Pm = 6mo and p, = 8, v when the population is homoge-
neous. Thus we can decompose the transition matrix into
stationary and transient parts, defining the transient part 2
as in Eq. (2), but with m, n=1,..., N — 1. The transient
transition matrix acts on the transient states of the system,
denoted py (7). The eigenvalues of 2, are real and strictly neg-
ative, since probability flows away from these states toward
the absorbing boundaries. To ease notation in the following
discussion and later applications, we shall refer to the posi-
tive eigenvalues of —2 as the eigenvalues of the transition
matrix, denoted A,,, where m=1,..., N — 1.

From the perspective of Markov chains, the fixation time
T is the time required for first passage to state m =N,
given my initial mutants, p,,(0) = &, m,. At time ¢, the prob-
ability that state N has been reached (i.e., the cumulative
distribution function for the first-passage times) is simply
gp,;ol pn(t), where @, is the fixation probability given my
initial mutants. The distribution of first-passage times is
therefore (pn;ol pn(t) = go,;ol by_1pn—1(t). Since we normalize
by the fixation probability, this is precisely the fixation-time
distribution conditioned on reaching N.

The solution to the transient master equation is the ma-
trix exponential py () = exp(Qt) - P« (0), yielding a fixation-
time distribution ¢, 'by_i[exp(Qut) - pe(0)lv—1 [31]. If
we assume one initial mutant my =1, this becomes
o Yov_ [exp(L2¢?)]y—1,1- The matrix exponential can be eval-
uated in terms of the eigenvalues A,, by taking a Fourier (or
Laplace) transform (for details, see Ref. [22]). For a single
initial mutant, the result is that the fixation time 7 has a
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distribution f7(¢) given by

N—-1 N—1

fT(t)ZZ l—[ %
j

- hjei 3)
=1 \k=Lk#j

This formula holds as long as the eigenvalues A, are distinct,
which for birth-death Markov chains occurs when b,, and d,,
are nonzero (except at the absorbing boundaries) [32]. Gen-
eralizations of this result for arbitrarily many initial mutants
have also recently been derived, in terms of eigenvalues of the
transition matrix and certain submatrices [22].

The distribution in Eq. (3) is exactly that corresponding to a
sum of exponential random variables with rate parameters 1.
The corresponding cumulants equal (n — 1)! fo;{ (Am)™".
As our primary interest is the asymptotic shape of the distribu-
tion, we normalize T to zero mean and unit variance and study
(T — n)/o, where u and o denote the mean and standard
deviation of T. The standardized distribution is then given by
o fr(ot + p). The rescaled fixation time has cumulants

No No n/2
ky(N) = (n— 1)!(2 )7)/(2 A_Z) , 4

m=1"m m=1""m

which, for many systems including those considered below,
are finite as N — oo. When the limit exists, we define the
asymptotic cumulants by «, = limy_  «,(N). In particu-
lar, because we have standardized our distribution, the third
cumulant «3 is the skew. In practice the limit N — oo is
taken by computing the leading asymptotic behavior of both
the numerator and denominator in Eq. (4). As we will see
below, the scaling of these terms with N depends on both the
population network structure and the mutant fitness (see also
the asymptotic analysis in the Supplemental Material, Secs.
S3 and S4 [33]). This approach allows us to characterize the
asymptotic shape of the fixation-time distribution in terms of
the constants «,,. Since A,, > 0, it is clear from this expression
that, for finite N, the skew and all higher-order cumulants must
be positive, in agreement with results for random walks with
nonuniform bias [34]. As N — oo this is not necessarily true;
in some cases the cumulants vanish.

The eigendecomposition gives the fixation-time distribu-
tion and cumulants in terms of the nonzero eigenvalues of
the transition matrix. In general, the eigenvalues must be
found numerically, but in cases in which they have a closed-
form expression the asymptotic form of the cumulants and
distribution can often be obtained exactly.

B. Analytical cumulant calculation: Visit statistics

In this section, we develop machinery to compute the
cumulants of the fixation time analytically without relying on
matrix eigenvalues. For this analysis, we specialize to cases in
which b,,/d,, = r for all m, relevant for the Moran processes
considered below. These processes can be thought of as biased
random walks overlaid with nonconstant waiting times at each
state.

It is helpful to consider the Markov chain conditioned on
hitting N, with new transition probabilities b,, and d,, so that
the fixation probability ¢,,, = 1. If X; is the state of the system
at time ¢, then b, = P(X, =m — X,11 = m+ 1|Xo = N)

with d,, defined analogously. We derive explicit expressions
for b,, and d,, in the Supplemental Material, Sec. S1 [33].
Conditioning is equivalent to a similarity transformation on
the transient part of the transition matrix: Qe =SQ:S",
where S is diagonal with S,,,, = 1 — 1/r™. Furthermore, since
by/d, = r, we can decompose Q2 = QrwD, where D is a
diagonal matrix, D,,,, = b,, + d,,, that encodes the time spent
in each state, and Qgw is the transition matrix for a random
walk with uniform bias,

[QRW]nm =

8m,n+l + 8m,n—1 - (Sm,n- (5)

r 1
14+r 1+r
Applying the results of the previous section and using the fact
that the columns of 2 sum to zero, we can write the fixation-
time~ distriblgtion of the conditioned Markov chain as fr(t) =
—1Q; exp(247)pyr(0), where 1 is the row vector containing
all 1’s. This distribution has a characteristic function [31]

p(w) := E[exp(ioT)] = 1Qu(i0 + Q¢) ' pr(0),  (6)
and the derivatives (—i)"¢"’(0) give the moments of T,
E[T"] = (—1)"'n11Q,"py(0), (7N

in terms of Qp' = D7'SQpyS~!. This inverse has a nice
analytical form because S and D are diagonal and Qgrw is
tridiagonal Toeplitz. We call this approach visit statistics be-
cause the elements V;; of V = —SQg,S™! encode the average
number of visits to state i starting from state j.

Each power of € in Eq. (7) produces products of (b; +
d;) that arise in linear combinations determined by the visit
numbers V;;. Therefore, the cumulants of the fixation time
have the general form

ZN—] w;ll in-win (r,N|mg)
o iy=l (bi +d; )(b, +d; )"'(bi +d; )
Kn(N) = — . ®
ZN—] w,‘,(’aN|m0)
i.j=1 (bi+d)(b;+d;)
where wfl iz”_in(r,N |mg) are weighting factors based on the

visit statistics of the biased random walk, given the initial
number of mutants my. In what follows, we always assume
my =1 and we suppress the dependence of the weighting
factors on the initial condition, writing wg’]iz___i”(r, N) instead.
A detailed derivation of Eq. (8) and explicit expressions for
wy;(r, N) and w?jk(r, N) are given in the Appendix.

To the best of our knowledge this representation of the
fixation-time cumulants has not been previously derived, al-
though a similar approach was recently used to compute
mean fixation times for evolutionary dynamics on complex
networks [19]. This expression is equivalent to the well-
known recurrence relations for absorption-time moments of
birth-death processes [21,35], but it is easier to handle asymp-
totically, and it can be useful even without explicit expressions
for w’ (r, N). Estimating the sums in Eq. (8) allows us to

iriy- iy
compute the asymptotic fixation-time cumulants exactly.

C. Recurrence relation for fixation-time moments

Evaluation of the eigenvalues of the transition matrix for
large systems can be computationally expensive, with the
best algorithms having run times quadratic in matrix size.
Numerical evaluation of the expression given in Eq. (8) is
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even worse, as it requires summing O(N") elements. If only
a finite number of fixation-time cumulants (and not the full
distribution) is desired, there are better numerical approaches.
Using standard methods from probability theory [36], we
derive a recurrence relation that allows numerical moment
computation with run time linear in system size N. For
completeness, we provide the full derivation of the recur-
rence for the fixation-time skew in the Supplemental Material,
Sec. S2 [33].

D. Equivalence between advantageous and
disadvantageous mutations

In the following applications, we will generally speak of
the mutants as having a fitness advantage, designated by the
parameter r > 1. Our results, however, can be immediately
extended to disadvantageous mutations. In particular, the
fixation-time distributions (conditioned on fixation occurring)
for mutants of fitness r and 1/r are identical. When a mutant
with fitness 1/r is introduced into the population (and eventu-
ally reaches fixation), the nonmutants are r times as fit as the
mutants. Therefore, this system is equivalent to another sys-
tem that starts with N — 1 fitness » mutants, which eventually
die out (the mutants in the former system are the nonmutants
in the latter). It has been shown that the times to go from
one initial mutant to fixation m = 1 — m = N) and from
N — 1 initial mutants to extinction (mn =N — 1 — m = 0)
have identical distribution [22]. Thus indeed, the conditioned
fixation-time distributions are identical for mutants of fitness r
and 1/r. Of course, the fixation probability is very different in
the two cases: for the disadvantageous mutations it approaches
0 for large N [5].

III. ONE-DIMENSIONAL LATTICE

We now specialize to Moran Birth-death (Bd) processes,
starting with the one-dimensional (1D) lattice. We assume
periodic boundary conditions, so that the N nodes form a ring.
The mutants have relative fitness r, meaning they give birth r
times faster, on average, than nonmutants do.

Starting from one mutant, suppose that at some later time m
of the N nodes are mutants. On the 1D lattice, the population
of mutants always forms a connected arc, with two mutants
at the endpoints of the arc. Therefore, the probability b,, of
increasing the mutant population by 1 in the next time step
is the probability of choosing a mutant node at an endpoint
to give birth, namely 2r/(rm + N — m), times the probability
1/2 that the neighboring node to be replaced is not itself a mu-
tant. (The latter probability equals 1/2 because there are two
neighbors to choose for replacement: a mutant neighbor on the
interior of the arc and a nonmutant neighbor on the exterior.
Only the second of these choices produces an increase in the
number of mutants.) Multiplying these probabilities together,
we obtain

b, = ;, dy = ;’ €))
rm+N—m rm+N—m

where the probability d,, of decreasing the mutant population

by 1 is found by similar reasoning. Note that this derivation

fails form = 1 (im = N — 1) when the arc of mutants (nonmu-

tants) contains only one node, but one can check that Eq. (9)

still holds for these cases. These quantities play the role of
transition probabilities in a Markov transition matrix. The next
step is to find the eigenvalues of that matrix.

A. Neutral fitness

First we work out the eigenvalues for the case of neutral
fitness, » = 1. In this case, the transition probabilities are
equal, b,, = d,, = 1/N, and independent of m. Therefore, the
Moran process is simply a random walk, with events occurring
at arate of 2/N per time step. The associated transition matrix
is tridiagonal Toeplitz, which has eigenvalues given by

2 2 mir
Amz———cos<7), m=12,...,N—1. (10)

Applying Eq. (4) and computing the leading asymptotic form
of the sums S, = Zz;i (Am)™" (see the Supplemental Mate-
rial, Sec. S3 [33]), we find that as N — oo, the fixation-time
distribution has cumulants

K,,:(n—l)!w, (11)
C(@yr
where ¢ denotes the Riemann zeta function. In particular,
the skew k3 = 4/10/7 ~ 1.807, as previously calculated by
Ottino-Loffler et al. [26] via martingale methods. The other
cumulants (and characteristic function below) have not pre-
viously been computed for the Bd process on the 1D lattice.
The largeness of the skew stems from the recurrent property of
the random walk. As N — oo, long walks with large fixation
times become common and the system revisits each state
infinitely often [37].
Knowledge of the cumulants allows us to obtain the exact
characteristic function of the fixation-time distribution:

- 1/4 1/4
¢(w) = e_‘/;‘“l"<1 — M)F(l + M) (12)
T T

Although we cannot find a simple expression for the distribu-
tion itself, we can efficiently evaluate it by taking the inverse
Fourier transform of the characteristic function numerically.
Figure 1(a) shows that the predicted fixation-time distribution
agrees well with simulations.

B. Non-neutral fitness

Next, consider r # 1 with the transition probabilities given
by Eq. (9). Then the eigenvalues of the transition matrix are
no longer expressible in closed form. If r is not too large,
however, the probabilities b,, and d,, do not vary dramatically
with m, the number of mutants. In particular, b,, ~ 1/N for
all m when N is large. Therefore, as a first approximation we
treat the Bd process on a 1D lattice as a biased random walk
with b,, = r/(1 +r) and d,, = 1/(1 4 r). The eigenvalues of
the corresponding transition matrix are

2
ﬁcos<@), m=1,2,...

Ap=1-—
1+r N

,N—-1. (13)

The cumulants again involve sums S, = Z%;i (Am)™", which
can be approximated in the limit N — oo by

N [T |
S, ~ — d
" 71/0 (1 —27/(1 + rycosxl"

(14)
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FIG. 1. Fixation-time distributions on the 1D lattice obtained from 10° simulation runs. All distributions are standardized to zero mean and
unit variance. Solid curves are the theoretical predictions. Shown are the fixation-time distributions for (a) a 1D lattice of N = 100 nodes with
neutral fitness r = 1, and (b) a 1D lattice of N = 5000 nodes with mutant fitnesses » = 1.1 and 2.0. For the neutral fitness case, the theoretical
distribution was generated by numerical inverse Fourier transform of the characteristic function [Eq. (12)]. The » = 1.1 distribution is slightly

but visibly skewed due to finite network size.

Since the integral is independent of N and converges for
r # 1, each of the sums scales linearly: S, ~ N. Thus, using
Eq. (4), we see that all cumulants past second order approach
07

1 N—oo

Kn
Hence the fixation-time distribution is asymptotically normal,
independent of fitness level.
By evaluating the integrals in Eq. (14), we can more
precisely compute the scaling of the cumulants. For the skew
we find

24 2r(r+4) 1
Ny ——
T+ DJE DN

The integral approximation becomes accurate when the first
term in the sums S, becomes close to the value of the inte-
grand evaluated at the lower bound (x = 0). The fractional
difference between these quantities is

B 0-2Jr/d+n1"
© L= 2/7/(1 + r)cos(m /N)]"

2
_ + O(1/N"). (17)

(V7 — 1N?

Then we have A < 1 when N > N, where N, ~ 27 /n/(r —
1) (assuming r is near 1). For the skew, we require the sums
with n = 2 and 3, giving N, =~ 10/(r — 1).

The above calculation fails for » > 1, because when
r = oo the transition probabilities b,, = 1/m have different
asymptotic behavior as N — oo. In particular, more time is
spent waiting at states with large m. The process still has
normally distributed fixation times [26], but the skew becomes

N—1 N—1 32
i 331
K = 2(;;713)/(”;;112) N (18)

(16)

=l

for large N. Notice that the coefficient is different from that
given by the infinite-r limit of Eq. (16), k3 ~ 2/+/N. We
conjecture that there is a smooth crossover between these two
scaling laws with the true skew given approximately by

123 =K3|:r_q+%§(l—l’_q)i| (19)

for some exponent g, where k3 is the skew given in Eq. (16).
For small r, this ansatz has skew similar to that of a random
walk, but it captures the correct large-r limit. We do not have
precise theoretical motivation for this ansatz, but as discussed
below, it works quite well.

Numerical calculation of the skew for the 1D lattice was
performed using the recurrence relation method discussed in
Sec. II C. The results are shown in Fig. 2 for a few values of r.
This calculation confirms our initial hypothesis, i.e., that near
neutral fitness the waiting times are uniform enough that the
process is well approximated by a biased random walk and
the skew approaches 0, scaling in excellent agreement with
Eq. (16). When N <« N,, the bias is not sufficient to give the
mutants a substantial advantage: the process is dominated by
drift, and the fixation-time distribution has large skew «3 ~
1.807, as found in the preceding section. For N > N,, selec-
tion takes over, the cumulants approach 0, and the distribution
becomes normal. A similar crossover appears in the study of
the fixation probability, where a transition from ¢; ~ 1/N to
¢ ~1—1/r is seen when N passes a critical system size
(that is slightly different from N.). For large fitness r > 1,
the ansatz Eq. (19) captures the scaling behavior if we use
an exponent g = 1/2. Direct numerical simulations of the
process confirm that, for any r > 1, the fixation time on the 1D
lattice has an asymptotically normal distribution [Fig. 1(b)].

The random-walk approximation allows us to find the
asymptotic scaling of the fixation-time cumulants, but it ig-
nores the heterogeneity of waiting times present in the Moran
process. Using visit statistics, we can compute the cumulants
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10! 10° 103 10* 10°
N

FIG. 2. Scaling of the skew of the fixation-time distribution on
the 1D lattice with non-neutral fitness. Data points show numerical
calculation of the skew for various fitness levels. The solid lines
are the predicted scaling given in Eq. (19) with exponent ¢ = 1/2
for each value of fitness r. For small N (and small enough r), the
skew is that of a random walk, namely x3 = 1.807, as shown by the
dashed line. For large N, the skew k3 ~ 1/+/N with an r-dependent
coefficient.

exactly with Eq. (8) and rigorously prove they vanish as
N — oo, verifying that the waiting times have no influence
on the asymptotic form of the distribution. For details, see the
Supplemental Material, Sec. S3 [33].

Our analysis of the 1D lattice reveals an intriguing uni-
versality property of its fixation-time distribution. For any
value of relative fitness r other than r = 1, the fixation-time
distribution approaches a normal distribution as N — oo.
Thus, for r # 1 the asymptotic shape of the distribution is
universal and independent of  (bear in mind, though, that its
mean and variance do depend on r).

When r = 1, corresponding to precisely neutral fitness,
the unbiased random walk yields a qualitatively different
distribution with considerably larger skew. This qualitative
change as r passes through unity leads to a discontinuous
jump in the skew at r = 1.

As one might expect, the discontinuity stems from passage
to the infinite-N limit. For finite but large N, the distribution
varies continuously with r, though our numerical results indi-
cate that the sharp increase in skew still occurs very close to
r = 1. We will see in the next section that the discontinuity
and highly skewed distribution at neutral fitness persist when
we alter the network structure from a locally connected 1D
lattice to a fully connected complete graph.

IV. COMPLETE GRAPH

Next we consider the Moran process on a complete graph,
useful for modeling well-mixed populations in which all
individuals interact. By a similar reasoning to that mentioned
above, given m mutants the probability of adding a mutant in
the next time step is

rm N—m

b, = , 20
rm+N—mN —1 (20

while the probability of subtracting a mutant is

N_
dy, = mo_n Q1)
rm+N—mN —1

Interestingly, as we will see in this section, these transition
probabilities give rise to a fitness-dependent fixation-time
distribution, in stark contrast to the universality of the normal
distribution observed on the 1D lattice.

A. Neutral fitness

Again we begin with neutral fitness r = 1. Now b, =
dyn = (Nm —m?)/(N? — N). The eigenvalues of this transi-
tion matrix also have a nice analytical form:

_ m(m+1)

— , m=1,2,...N—1. (22)
NN — 1)

m

The asymptotic form of the sums, S, = Zz;i(km)‘”, can
be found by taking the partial fraction decomposition of
(A»)™" and evaluating each term individually. The resulting
cumulants are

3n/2
Kn:(n—l)'m
e (2n—k—1 .
x(—l)Z( L ){C(k)[1+(—1)]—1}.

k=1
(23)

Our knowledge of the eigenvalues also allows us to obtain a
series expression for the asymptotic distribution using Eq. (3).
For N — o0, the standardized distribution is

o0

ofr(ot+ 1) =co y (=1 +DEj+1)
j=1

x explj(j + D(cot + D], (24)

where to leading order in N the mean and standard devia-
tion are & = N? and o = ¢,N?, with ¢, = /72/3 — 3. This
distribution was previously found using a different approach
by Kimura, who also computed the first few fixation-time
moments [38]. We have extended these results, obtaining the
cumulants to all orders. Figure 3 shows that the predicted
asymptotic distribution agrees well with numerical experi-
ments.

The numerical value of the fixation-time skew for the
Birth-death process on the complete graph is k3 = 6+/3(10 —
m2)/(m? — 9)*? ~ 1.6711, slightly less than that for the 1D
lattice. This decrease is the result of two competing effects
contributing to the skew. First, since the birth and death
transition probabilities are the same, the process is a random
walk, which has a highly skewed fixation-time distribution, as
shown above. The average time spent in each state, however,
varies with m. For instance, when m =1orN — 1, b,, —> 0
for large N. But if m = «N for some constant 0 < @ < 1
independent of N, then b,, approaches a constant.

Intuitively, the beginning and end of the mutation-
spreading process are very slow because the transition proba-
bilities are exceedingly small. To start, the single mutant must
be selected by chance to give birth from the N available nodes,
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FIG. 3. Fixation-time distributions on the complete graph with
N = 100 nodes and neutral fitness (r = 1) obtained from 10° sim-
ulation runs. The distribution is standardized to zero mean and unit
variance. The solid curve is the theoretical distribution obtained by
numerically evaluating the infinite series in Eq. (24) for each value
of z.

a selection problem that is like finding a needle in a haystack.
Similarly, near fixation the reproducing mutant must find and
replace one of the few remaining nonmutants, again choosing
it by chance from an enormous population.

The characteristic slowing down at certain states is rem-
iniscent of “coupon collection,” as discussed earlier. Erdds
and Rényi proved that for large N, the normalized time to
complete the coupon collection follows a Gumbel distribution
[30], which we denote by Gumbel(w, 8) with density

ft) = lg—le—(l—ﬂf)/ﬁ exp ( _ e—(t—ﬂt)/ﬂ)' (25)

For the Moran process, each slow region is produced by long
waits for the random selection of rare types of individuals:
either mutants near the beginning of the process or nonmu-
tants near the end. In the next section, we show that the two
coupon collection regions of the Bd process on a complete
graph lead to fixation-time distributions that are convolutions
of two Gumbel distributions. In the case of neutral fitness,
these Gumbel distributions combine with the random walk
to produce a new highly skewed distribution with cumulants
given by Eq. (23).

B. Non-neutral fitness

We saw in Sec. III B that when the average time spent
in each state is constant or slowly varying, the fixation-time
distribution is asymptotically normal. Birth-death dynamics
on the complete graph, however, exhibit coupon collection
regions at the beginning and end of the process, where
the transition probabilities vanish. We begin this section
with a heuristic argument that correctly gives the asymptotic
fixation-time distribution in terms of independent iterations of
coupon collection.

Differentiating b,, with respect to m, we find the slope near
m = 01is (r + 1)/N, while the slope near m = N has magni-
tude (r 4+ 1)/(rN) for N > 1. The transition rates approach

zero at each of these points, so we expect behavior similar
to coupon collection giving rise to two Gumbel distributions.
Since the slope is greater for m near 0 than for m near N, the
Moran process completes its coupon collection faster near the
beginning of the process than near fixation.

This heuristic suggests that the asymptotic fixation time
should be equal in distribution to the sum of two Gumbel
random variables, one weighted by r, which is the ratio of
the slopes in the coupon collection regions. Specifically, if T
is the fixation time with mean p and variance o2, we expect

T—ua G+rG
b
o NI

where -5 means convergence in distribution for large N.
Here G and G’ denote independent and identically distributed
Gumbel random variables with zero mean and unit vari-
ance. It is easy to check that the correct distribution is
Gumbel(—y+/6/m, ~/6/7), where y ~ 0.5772 is the Euler-
Mascheroni constant.

Let us make this argument more rigorous. Previous the-
oretical analysis showed that in the infinite fitness limit, the
fixation time has an asymptotically Gumbel distribution [26].
This result can be recovered within our framework, since
when r = oo it follows that d,, = 0, so the eigenvalues of the
transition matrix are just A, =b,, = (N —m)/(N — 1) and
the cumulants can be directly calculated using Eq. (4).

For large (but not infinite) fitness, the number of mutants is
monotonically increasing, to a good approximation, since the
probability that the next change in state increases the mutant
population is /(1 4+ r) = 1. The time spent waiting in each
state, however, changes dramatically, especially near m = 1.
Here, by — 0 for large N, in stark contrast to the infinite
fitness system where b; — 1. The time spent at each state,
tw, is an exponential random variable, &£(b,, + d,,). In this
approximation, each state is visited exactly once, so the total
fixation time is a sum of these waiting times:

(26)

N—1
T ~ Z E(bp + dy). (27)

m=1

But this sum of exponential random variables has density
given by Eq. (3), with the substitution A,, — b,, + d,,. Thus,
the cumulants of (T — p)/o are

_ 1+
T (R

(n— 1)1 (n)
¢y

which are exactly the cumulants corresponding to the sum
of Gumbel random variables given in Eq. (26). In the limit
r — 00, the first term in Eq. (28) becomes 1, and the cumu-
lants are those for a single Gumbel distribution, in agreement
with previous results [26].

Remarkably, these cumulants are exact for any r > 1, not
just in the large-r limit. We can see this directly for the
skew k3 using the visit statistics approach, computing the
asymptotic form of Eq. (8) with the complete graph transition
probabilities, Eqs. (20) and (21). Details of the asymptotic
analysis are provided in the Supplemental Material, Sec. S4
[33]. Numerical simulations of the Moran process corroborate
our theoretical results. As shown in Fig. 4, for r = 1.1 and

; (28)

Kn
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FIG. 4. Fixation-time distributions on the complete graph with N = 5000 nodes and non-neutral fitness (r > 1) obtained from 10°
simulation runs. All distributions are standardized to zero mean and unit variance. Solid curves are the theoretical predictions obtained by
numerical convolution of two Gumbel distributions, one weighted by r. Distributions are shown for (a) r = 1.1 and (b) r = 5.0. For larger r,

the distribution has larger skew and a slightly sharper peak.

5 the agreement between simulated fixation times and the
predicted convolution of Gumbel distributions is excellent,
at least when N is sufficiently large. Again, our calculations
show a discontinuity in the fixation-time distribution at r = 1.
In particular, the r — 1 limit of the cumulants for non-neutral
fitness in Eq. (28) is not the same as the cumulants for neutral
fitness found in the preceding section [Eq. (23)].

For smaller networks, it is fascinating to see how the results
converge to the asymptotic predictions as N grows. Figure 5
shows how the skew of the fixation-time distribution depends
on r and N for the complete graph. As discussed in Sec. II D,
the fixation-time distributions for these systems are invariant
under r — 1/r. Therefore, we show the skew for all r > 0 to

1.75F

FIG. 5. Fitness dependence of fixation-time skew for the Moran
Birth-death process on the complete graph. The skew is shown
for r > 0 and is invariant under » — 1/r. For finite N, the skew
does not have a discontinuity, but it does show a nonmonotonic
dependence on fitness r. In particular, for a given N, there is a certain
fitness level with minimum skew. As N — oo, we see nonuniform
convergence to the predicted skew given by «3 in Eq. (28), leading to
the discontinuity at » = 1. Moreover, for fixed r, the convergence to
the N = oo skew is nonmonotonic.

emphasize the intriguing behavior near neutral fitness, where
r = 1. We find that nonuniform convergence of the fixation-
time skew leads to the discontinuity predicted at r = 1. For
finite N, the skew is a nonmonotonic function of r and has
a minimum value at some fitness rpyi (V). Furthermore, at
fixed r, the convergence to the N = oo limit is itself non-
monotone. Though beyond the scope of the current study,
further investigation of this finite-N behavior would be worth
pursuing.

V. PARTIAL FIXATION TIMES

In many applications, we may be interested in the time
to partial fixation of the network. For instance, considering
cancer progression [39—41] or the incubation of infectious
diseases [26], symptoms can appear in a patient even when a
relatively small proportion of cells are malignant or infected.
We therefore consider T,, the total time to first reach aN
mutants on the network, where 0 < o < 1. The methods
developed in Sec. II apply to these processes as well. For the
eigendecomposition approach, we instead use the submatrix
of Qi containing the first «N rows and columns. In calcu-
lations involving the numerical recurrence relations or visit
statistics, we simply cut the sums off at «NV instead of N, and
for the latter we replace w;,j,...;,(r, N) with wjj,..;, (r, aN).

A. One-dimensional lattice

Truncating the Moran Bd process on the 1D lattice by a
factor o has no effect on the asymptotic shape of the fixation-
time distributions. In both the neutral fitness system and the
random-walk approximation to the non-neutral fitness system,
the transition matrix has no explicit dependence on the state or
system size [aside from proportionality factors that cancel in
Eq. (4)]. Thus, the eigenvalues are identical to those calculated
previously, but they correspond to a smaller effective system
size aN. Taking the limit N — oo, therefore, yields the same
asymptotic distributions found in Sec. II1.
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FIG. 6. Variation of fixation-time skew k3 with fitness level r and truncation factor « for different network structures. (a) The skew of
the fixation-time distribution is plotted vs fitness for the 1D lattice (black solid line), complete graph (red dashed line), and complete graph
with truncation (green dotted line). The skew is shown for all » > 0 and is invariant under r — 1/r. When r # 1 and r < oo, the fixation-time
distribution is normal for the 1D lattice, and hence has zero skew (x3 = 0). The distribution becomes a fitness-weighted convolution of Gumbel
distributions for the complete graph, and a single Gumbel distribution for the complete graph with truncation (for any « < 1). Each curve jumps
discontinuously at r = 1, where the distributions become highly skewed with x5 > 1.5. The inset shows a blowup of the neutral fitness results,
specifying the skew for each case. On the complete graph with truncation, the skew is continuously variable at r = 1, taking on an interval of
values between 6+/3(10 — 72)/(7% — 9)*/? 22 1.671 when « = 1, and +/3 ~ 1.732 when « = 0. This range is indicated by the green vertical
line. The truncated fixation time on the complete graph has a second discontinuity at » = co (shown here at r = 0, by exploiting the r — 1/r
invariance). At this discontinuity, the functional form of the distribution jumps from Gumbel to normal. (b) The fixation-time skew for the
complete graph with neutral fitness, plotted vs the truncation factor . These points correspond to the green vertical line in panel (a) at r = 1.

B. Complete graph: Truncating coupon collection

The complete graph exhibits a more interesting depen-
dence on truncation. Since the transition probabilities have
state dependence, the eigenvalues change with truncation
(they do not correspond to the same system with smaller
effective N). Our intuition from coupon collection, however,
lets us predict the resulting distribution.

First consider non-neutral fitness. Then there are two
coupon collection stages, one near the beginning and another
near the end of the process, and together they generate a
fixation-time distribution that is a weighted convolution of
two Gumbel distributions. The effect of truncating the process
near its end should now become clear: it simply removes
the second coupon collection. The truncated process stops
before the mutants have to laboriously find and replace the
last remaining nonmutants. Therefore, we intuitively expect
the fixation time for non-neutral fitness to be distributed
according to a single Gumbel distribution, regardless of fitness
level.

The only exception occurs if r = oo; then no coupon
collection occurs at the beginning of the process either, as the
lone mutant is guaranteed to be selected to give birth in the
first time step, thanks to its infinite fitness advantage. Thus,
when fitness is infinite and the process is truncated at the end,
both coupon collection phases are removed and the fixation
times are normally distributed.

Similar reasoning applies to the Birth-death process with
neutral fitness. It also has two coupon collection regions, one
of which is removed by truncation. In this case, however,
the random-walk mechanism contributes to the skew of the
overall fixation-time distribution, combining nontrivially with
the coupon collectionlike process. We find that the skew of

the fixation time depends on the truncation factor «, varying
between 6+/3(10 — 7%)/(w? —9)3? ~ 1.6711 when o =1,
and /3 ~ 1.732 when a = 0. A derivation of this « — 0
limit is given in the Supplemental Material, Sec. S4 [33].

C. Summary of main results

The main results from Secs. III-V are summarized in
Fig. 6, which shows the asymptotic fitness dependence of
fixation-time skew for each network considered in this paper.
We again show the skew for all » > 0 (not just r > 1) to em-
phasize the discontinuities at zero, neutral, and infinite fitness.
On the 1D lattice, independent of the truncation factor «, the
Bd process has normally distributed fixation times, except at
neutral fitness where the distribution is highly skewed. The
complete graph fixation-time distributions are the weighted
convolution of two Gumbel distributions for r # 1, again
with a highly skewed distribution at r = 1. With truncation
by a factor & < 1, the distribution for the complete graph is
Gumbel for 1 < r < oo and normal for r = co. With neutral
fitness, the fixation distribution is again highly skewed, with
skew dependent on the truncation factor o.

VI. EXTENSIONS

It is natural to ask whether our results are generic; do
the same fixation-time distributions appear in other models
of evolutionary dynamics? Here we explore the robustness of
our results to various changes in the model update dynamics
and the network topology. The main finding is that our results
are insensitive to these changes, at least qualitatively. The
distributions typically remain right-skewed and even follow
the same functional forms derived above.
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A. Other update dynamics
1. Two-fitness Moran process

The Moran Bd processes considered above require a sin-
gle fitness level, designating the relative reproduction rates
between mutants and nonmutants. Another common model is
the Moran Birth-Death (BD) process [29], which has a second
fitness level 7 measuring the resilience of mutants versus
nonmutants during the replacement step [9]. Taking this into
account, when a mutant or nonmutant is trying to replace its
neighbors, mutants are replaced with probability proportional
to 1/7. Taking 7 = 1 returns to the model used throughout the
preceding sections. The two-fitness model may better capture
the complexity of real-world evolutionary systems but does
not generally give rise to qualitatively different fixation-time
distributions. For brevity, we simply discuss the resulting
fixation-time distributions for the BD model. Details support-
ing the results quoted below are provided in the Supplemental
Material, Sec. S5 [33].

Writing down the transition probabilities for the Moran BD
process, we find that b,,/d,,, — r7 as N — oo. This motivates
the definition of an effective fitness level, rosr = r#. When
retf 7 1, our results from above translate to this model. On
the 1D lattice, the fixation times are normally distributed,
while on the complete graph the fixation-time distribution is
a weighted convolution of Gumbel distributions G + (r/7)G,
with relative weighting r/7 (instead of ). When re = 1, the
process is asymptotically unbiased and we expect a highly
skewed fixation-time distribution. This is indeed the case,
although numerical calculations indicate there is an entire
family of distributions, dependent on r = 1/7.

It is interesting to contrast the above observations with
a result in evolutionary dynamics known as the isothermal
theorem. The theorem states that for 7 = 1, the Moran process
on a large class of networks, known as isothermal graphs,
has fixation probability identical to the complete graph [5].
Recent work has shown that this breaks down if 7 # 1; the
fixation probability develops a new network dependence [9].
In contrast, even isothermal graphs (including the complete
graph and the 1D lattice) have fixation-time distributions
that depend on network structure. The two-fitness BD model
breaks the universality in fixation probabilities predicted by
the isothermal theorem, but it leads to the same family of
fixation distributions that arise due to network structure.

2. The Death-Birth Moran process

A two-fitness Death-Birth (DB) Moran process [29] is also
frequently used to study evolutionary dynamics. In this model,
the birth and death events are reversed in order. At each time
step, a node is chosen at random with probability proportional
to 1/7, and one of its neighbors is chosen with probability
proportional to r. The first individual dies and is replaced by
an offspring of the same type as the neighbor. The process
continues until the mutation either reaches fixation or goes
extinct.

The BD and DB processes obey a duality property [9].
Starting from the BD transition probabilities, if we swap the
two fitness levels r <> 7 and substitute m — N — m (which
swaps mutants and nonmutants), we obtain the DB transition
probabilities. Therefore, the transition matrix for the DB

model is identical to that for the corresponding dual BD
process, but it has the main diagonal, superdiagonal, and
subdiagonal entries reversed in order. This leaves the matrix
eigenvalues unchanged, so that the DB process has identical
fixation-time distributions to those given in the preceding
section for the dual BD process.

In principle, the correspondence between DB and BD
fixation times could break down for the truncated process
considered in Sec. V. In practice, however, the results are
again generally identical. For the truncated DB process, the
fixation times on the 1D lattice remain normally distributed.
On the complete graph, one of two coupon collection regions
is removed by truncation leading to fixation times following a
single Gumbel distribution.

One exception, where the dual models yield different re-
sults under truncation, is at infinite fitness. As in Sec. V,
at infinite fitness (r — oo) the BD model performs a single
coupon collection near fixation, which is cut off by truncation,
leading to a normal fixation-time distribution. In contrast, in
the dual infinite-fitness DB model (7 — o0), the coupon col-
lection occurs at the beginning of the process, and even under
truncation the Gumbel fixation-time distribution is preserved.
This effect was previously observed by Ottino-Loffler et al.
[26].

B. Other networks: Approximate results via mean-field
transition probabilities

While the 1D lattice and complete graph provide illus-
trative exactly solvable models of the fitness dependence
of fixation-time distributions, other networks may be more
realistic. On more complicated networks, the analytical tools
developed here fail because the transition probabilities (the
probability of adding or subtracting a mutant given the current
state) depend on the full configuration of mutants, not just
the number of mutants. Such systems can still be modeled as
a Markov process, but the state space becomes prohibitively
large. Fortunately, for certain networks the effect of different
configurations can be averaged over, giving a mean-field ap-
proximation to the transition probabilities. This approach has
been used on a variety of networks to calculate fixation times
[19,23,25,26]. In this section, we discuss how such mean-field
approaches can be used to calculate fixation-time distributions
for evolution on several different networks.

1. Erdés-Rényi random graph

We start with the Erd6s-Rényi random graph, for which
the mean-field transition probabilities were recently estimated
[19]. The result is identical to the complete graph probabilities
[Egs. (20) and (21)] up to a constant factor 1 — 2/Np, which
depends on the edge probability p for the network. This
correction is important for computing the mean fixation time,
but does not affect the shape of the fixation-time distribution,
since proportionality factors cancel in Eq. (4). Therefore, we
expect that the asymptotic fixation-time distribution will be
a weighted sum of two Gumbel distributions. This prediction
holds for infinite fitness, where the fixation time on an Erdss-
Rényi network has a Gumbel distribution [26].

Preliminary simulations show that the Erd6s-Rényi net-
work has the expected fixation-time distributions for p = 1/4
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FIG. 7. Fixation-time distribution on an Erd6s-Rényi random
graph with N = 100 nodes, edge probability p = 1/4, and fitness
r =2, obtained from 10° simulation runs (the same graph is used
for each run). The distribution is standardized to zero mean and
unit variance. The solid curve is the theoretical prediction for the
complete graph, obtained by numerical convolution of two Gumbel
distributions, one weighted by r. For these parameters, the random
graph fixation time is captured by the mean-field approximation.

and r =2 (see Fig. 7). Further investigation is required to
determine the range of fitness and edge probabilities for which
this result holds asymptotically (as N — oo). For constant p,
the average degree is proportional to the system size
(k) = pN, similar to the complete graph. It may be, however,
that for some p and r the mean-field approximation is not
sufficient to capture the higher-order moments determining
the shape of the distribution. It is also traditional to con-
sider N-dependent edge probabilities with p(N) chosen, for
example, to fix (k). It is unclear whether such graphs will
behave like the ring (due to their sparsity), like the complete
graph (due to their short average path length), or somewhere
in between these extreme cases. In the same vein, which
other networks admit accurate mean-field approximations to
the transition probabilities? Do many complex networks have
fixation-time distributions identical to the complete graph?

2. Stars and superstars: Evolutionary amplifiers

Another nice approximation maps the Moran process on
a star graph, a simple amplifier of selection, onto a birth-
death Markov chain [15]. The resulting transition probabilities
exhibit coupon collection regions, similar to the complete
graph. The ratio of slopes near these regions (few mutants
or nonmutants), however, is 2. Our heuristic predicts that
the fixation-time distribution on the star is G + r>G’. In addi-
tion to amplifying the fixation probability, the star increases
fixation-time skew. This raises a broader question: do evo-
lutionary amplifiers also amplify fixation-time skew? Com-
puting fixation times for evolutionary dynamics on superstars
(which more strongly amplify selection [5]) remains an open
problem.

3. Growth of cancerous tumors: Evolutionary dynamics
on d-dimensional lattices

Mean-field arguments have also been applied to d-
dimensional lattices in the infinite-fitness limit [25,26]. In
this limit, the mutant population grows in an approximately
spherical shape near the beginning of the process, and the
population of nonmutants is approximately spherical near
fixation. The surface area to volume ratio of the d-dimensional
sphere gives the probability of adding a mutant. With finite fit-
ness, nonmutants can now replace their counterparts, and the
surface of the sphere of growing mutants roughens [39]. For
near-neutral fitness, the configuration of mutants resembles
the shape of real cancerous tumors. Perhaps mean-field ap-
proaches can draw connections between the fitness-dependent
roughness of growing mutant populations and fixation-time
distributions for evolution on lattices.

VII. SUMMARY

In this paper, we have obtained closed-form solutions for
the fitness dependence of fixation-time distributions of the
Moran Birth-death process on the 1D lattice and complete
graph. Previous analyses were restricted to the limit of infinite
fitness, with some partial results for neutral fitness. To reit-
erate our results: There is a dichotomy between neutral and
non-neutral fitness. When fitness is neutral, the distribution
always exhibits a discontinuity; whether the graph is complete
or a 1D lattice, the skew jumps up discontinuously in either
case. On the other hand, when fitness is non-neutral but
otherwise arbitrary, the results depend strongly on network
topology. Specifically, on the complete graph the fixation-
time distribution is a fitness-weighted convolution of Gumbel
distributions and hence is always skewed, whereas on the 1D
lattice the distribution is normal and hence is never skewed.

Together with the mean and variance, the distributions
derived here give a complete statistical description of the
asymptotic fixation time (see Table I). Our analysis revealed
that these results are robust in the sense that similar distri-
butions arise under truncation, in some other models, and
in some other network structures, including the Erd&s-Rényi
random graph.

VIII. FUTURE DIRECTIONS

Despite the fact that the model we have focused on here
(the Moran Birth-death model) is deliberately simplified, we
expect our results will be useful in applications. For instance,
the theory should allow a more refined analysis of the rate of
evolution by extending the seminal work of Kimura, whose
neutral theory of evolution predicted a molecular clock [42].
In his model, neutral mutations become fixed at a constant
rate, independent of population size. This result, with some
refinements, is now used widely in estimating evolutionary
timescales [43]. The fixation-time distributions discussed here
should allow one to go beyond Kimura’s classic analysis
to capture the full range of evolutionary outcomes by pro-
viding information about the expected deviations from the
constant-rate molecular clock, as well as how this prediction is
affected by population structure. More generally, it would be
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TABLE I. Asymptotic fixation-time statistics for the Moran Birth-death and Death-birth processes on the complete graph and the 1D
lattice. Together with the mean and variance, the standardized distributions give a complete statistical description of the fixation time. The

mean and variance given are to leading order in N for each case.

Asymptotic fixation-time statistics

Network Fitness level Mean Variance Standardized distribution
1D lattice r=1 iN? aN® Highly skewed [Egs. (11) and (12)]
1 D)2 4r+1) Ar3
r>1 2(;~+—1)N2 +3(r7$3+ N3 N(@©O, 1)
Complete graph r=1 N? (”3—2 —3)N* Highly skewed [Egs. (23) and (24)]
r>1 %N InN ”()z((r'jl);z N? G+rG

interesting to study the implications of these distributions for
rates of evolution at various fitness levels.

Furthermore, our results provide concrete predictions that
are testable via bacterial evolution experiments. Does the
same fitness and network structure dependence of fixation-
time distributions arise in real systems?

Future theoretical studies could analyze random networks
and lattices more deeply, as well as stars and superstars, the
prototypical evolutionary amplifiers [5]. More sophisticated
models involving evolutionary games are also of interest.
These have skewed fixation-time distributions [22] whose
asymptotic form remains unknown. Finally, we hope that
methods developed here will prove useful in other areas, such
as epidemiology [44], ecology [45], and protein folding [46],
where stochastic dynamics may similarly give rise to skewed
first-passage times.
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APPENDIX: VISIT STATISTICS

In this Appendix, we formulate the visit statistics approach.
We first provide further details in the derivation of the series
expression for the fixation-time cumulants given in Eq. (8),
and then explicitly compute the weighting factors that appear
in this expression to third order. This result requires constant
selection, b,,/d,, = r, as is the case for the Moran process.
Under constant selection the transient transition matrix can be
written as Q, = QrwD, where D is diagonal with elements
Dyun = by, + d,,, and Qrw is the transition matrix for a ran-
dom walk,

5m,r1+1 + _am,nfl - 5m,n~ (A])

-
Q nm — T
[$2rw] 1+r 1+r

Since we are interested in the fixation-time distribution, we
condition on fixation occurring. As discussed in Sec. II B (see

also the Supplemeptal Material, Sec. I [33]), the conditioned
transition matrix Q, = S Q; S~!, where S is diagonal with
Syum = 1 — 1/r™. Combining these results, we have that
Qu =S QrwS™'D, (A2)
where we have used the fact that both D and S are diagonal
matrices, and therefore commute.
We found in Sec. II B that the moments of the fixation time
T can be expressed as
fn = E[T"] = (=1)"'n! 1Q." p(0), (A3)
where 1 is a row vector of ones and p(0) is the initial state
of the system, with [py(0)], = 8,m, for mq initial mutants.
To compute these moments, we need the inverse Q;l =
D7'S Qpy S~ Since Qrw is a tridiagonal Toeplitz matrix, its
inverse has a well-known form [47]:

(—%w) 7 = I (r=D(rN=1) if i</, (Ad)
RW)ijm = ) aentd=De=r) e i
7 (r=D(N=1) J-
Hence the matrix V = —S Qg S~! has elements
F+DFE =12 =iy e s .
v. = |ro=ne—ne—n i< A5)
Y CEDE D ) e
=DV =T) J-

The matrix V, sometimes called the fundamental matrix,
encodes the visit statistics of the conditioned random walk:
V;j is the mean number of visits to state i from state j before
hitting the absorbing state N [48]. The Moran process has the
same visit statistics, but on average spends a different amount
of time, designated by (b; 4+ d;)~!, waiting in each state.
While one could now compute the moments u,, in Eq. (A3)
directly, we find that the cumulants yield nicer expressions.
Furthermore, the normal and Gumbel fixation-time distribu-
tions, predicted by our simulations and approximate calcula-
tions, are more simply described in terms of their cumulants.
The nonstandardized cumulants «,, are linear combinations
involving products of moments whose orders sum to n. Thus
each term in the cumulants has n powers of D producing n
factors of (b; +d;)~! with a weight designated by the visit
statistics. With this observation, it is clear the standardized
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cumulants «, = «,,/(k} )"/ have the form given in Eq. (8),

Z{Vfl A W iy iy, (HNM0)
i1,02, .0 g=1 (bil +d,-])(b,‘z+di2)“‘(bin+din)

kn(N) = , A6

n( ) N—1 wizj(r,N\mo) n/2 ( )
(Zlﬁ,]‘:l (b[+di)(hj+d/)>

where wl”l iz___i“(r, N|my) are the weighting factors coming en-

tirely from the visit statistics of a biased random walk (starting
from my initial mutants). As in the main text, we take the
initial state to be a single mutant my = 1, and we will suppress
the dependence of the weighting factors on the initial con-
dition, writing wﬁizmin(r, N) instead. Generalizations to other
cases are straightforward and are discussed briefly below.

We emphasize that even without explicit knowledge of
the factors wy, . (r,N), this formulation can be extremely
useful. For instance, when b; + d; is constant, these are just the
cumulants for the (possibly biased) random walk, which were
computed in Sec. III to approximate the Moran process on
the 1D lattice. In particular, the sums over weighting factors
obtained from setting b; + d; = 1 in Eq. (A6) have a leading
asymptotic form given by Eq. (14). This fact can be used
to bound the cumulants even when b; + d; # 1, which in
some cases is sufficient to determine the leading asymptotic
behavior. When this is not possible, the weighting factors must
be computed explicitly. We now turn our focus to deriving
wl-zj(r, N) and w?jk(r, N).

We can compute the weighting factors by writing out the
matrix multiplication of € '. First note that

Vi .

=17
[_ Qtr ]ij - b; + d;. (A7)
Then the first three moments of the fixation time are
_ Yo
K1 = L bitd’
Mo =2 3 YigVin
fy (bi +di)(b; + dj)
N ViiVaVi
M3:6 Z ijVjkVkl ) (AS)
Ryl (bi +di)(b; + d;)(by + di)

The corresponding nonstandardized cumulants are given by
the usual formulas, k5 =, — u and k5 = pu3 — 3puops +
2,u?. In terms of the visit numbers, the nonstandardized cu-
mulants become

o — ﬁ: 2ViiVii = VaVj
P i d) b+ dy)
N
6V;iViVii —6V;;ViV, 2V Vi Vi
Kézz ViV PVitVir + 2V Vi1 Vi (A9)

(bi +d;)(bj + d;) (b + di)

ij=1

From here we can read off the weighting factors accordingly.
For convenience, we can choose wizj(r, N)and w?jk(r, N) to be
symmetric by averaging the numerators in Eq. (A9) over the
permutations of the indices. Then,

1
wl-zj(r,N) =3 Z 2Voye@Vor1 — Voan Vot

JEHZ

1
wy (rN) = 3 Z 6 Voo Voo 3)Voi3)
G€H3

—6Vot)e Vo)1 Vo + 2 Vo Vo)1 Voiyi,
(A10)

where I1, is the set of permutations of {7, j}, and IT3 are the
permutations of {7, j, k}. We note that these expressions also
hold for the general initial condition by replacing the subscript
1 with my. Plugging Eq. (AS5) into this expression for wizj, we
obtain, after some algebra,

(r+ DX(rl = 12N —r')?

riti (r — 12N — 1)2

wi(r, N) = (A11)

for i > j. Since we have constructed wizj(r, N) to be sym-
metric, when j > i the formula is identical with i and j
exchanged. Similarly, using Eq. (AS5) together with the expres-
sion for wfjk in Eq. (A10) leads to

3 (r+ D?(* = D20 = DN = ry* (N = 1)

wije(r, N) =2 P (r— 13N — 1)

ijk
(A12)
for i > j > k. Again, the formula for different orderings of
the indices i, j, k is the same with the indices permuted
appropriately, so that w?jk is perfectly symmetric.

This completes the derivation of the visit statistics expres-
sion for the fixation-time cumulants. Together, Eqs. (A6),
(All), and (A12) give a closed-form expression for the
fixation-time skew, which is manageable for the purpose
of asymptotic approximations. The diagonal terms in the
higher-order weighting factors are also particularly simple,
wi ;(r, N) = (n — 1)!V;?. While we will not explicitly com-
pute them, the off-diagonal weights w;“l iy (r, N) can be found
by a straightforward generalization of the above procedure.
Example applications of this approach are given in the Sup-
plemental Material, Secs. III and IV [33], where we show that
all cumulants of the fixation time vanish for the Moran process
on the 1D lattice, and we compute the asymptotic skew for the
Moran process on the complete graph.
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