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Simultaneous phase separation and pattern formation in chiral active mixtures
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Chiral active particles, or self-propelled circle swimmers, from sperm cells to asymmetric Janus colloids,
form a rich set of patterns, which are different from those seen in linear swimmers. Such patterns have mainly
been explored for identical circle swimmers, while real-world circle swimmers typically possess a frequency
distribution. Here we show that even the simplest mixture of (velocity-aligning) circle swimmers with two
different frequencies hosts a complex world of superstructures: The most remarkable example comprises a
microflock pattern, formed in one species, while the other species phase separates and forms a macrocluster,
coexisting with a gas phase. Here one species microphase separates and selects a characteristic length scale,
whereas the other one macrophase separates and selects a density. A second notable example, here occurring in
an isotropic system, are patterns comprising two different characteristic length scales, which are controllable via
frequency and swimming speed of the individual particles.
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I. INTRODUCTION

Chirality, the property of a structure to be distinguishable
from (or not superimposable with) its mirror image, plays an
important role in all natural sciences. In physics, for example,
the concept of chirality plays an important role from sub-
atomic scales (for nucleonic mass generation) to astronomical
scales (for the formation of galaxies), commonly showing a
disklike geometry with bright spiral arms witnessing ongoing
star formation. In biology, chirality shows up, for instance,
in the double-helical structure of DNA, the shape of bacterial
flagella or the anatomy of flatfish like halibut. Interestingly,
in many cases left- and right-handed chiral structures are not
equally distributed: For instance, bacterial flagella and 19 of
20 amino acids are left-handed, evoking questions regarding
the origin and possible purpose of the prevalence of a certain
handedness on chiral structures. (Did it emerge before or from
life, on Earth, or does it have an extraterrestrial origin?)

Chirality also occurs in active matter, comprising self-
propelled particles such as microswimmers. Here microswim-
mers with mirror-symmetric body parts swim linearly,
whereas those with chiral body shapes (or body parts) show
noisy circular trajectories in two-dimensional (2D) and he-
lical trajectories in 3D [1,2]. Biological examples of chiral
microswimmers include sperm cells [3–5] and bacteria close
to walls or interfaces [6–9], both featuring chiral body parts
determining the handedness of their swimming trajectories.
Therefore, ensembles of chiral biological microswimmers
often share the same chirality (monochirality) but show a
distribution of rotation frequencies. Conversely, human-made
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synthetic microswimmers, like asymmetric Janus-colloids
[10,11] or granular microflyers [12], allow us to engineer the
handedness of a microswimmer on demand (e.g., via 3D print-
ing [13]). Thus, also polychiral mixtures can be produced,
which in principle could be reduced to monochiral mixtures
using chiral segregation schemes [14–16].

Besides affecting the trajectories of single active particles,
in free space or in crowded environments [17], chirality can
also have a spectacular impact on the collective behavior
of circle swimmers. Specifically, for the single-frequency
(monochromatic) case, it has been shown that circle swim-
mers with a tendency to align can self-organize into syn-
chronized rotating doublets [18] and large clusters [19,20],
providing a potential microscopic basis for the rotating ring
clusters observed in self-propelled membrane-bound FtsZ
proteins [19,21]. This class of circle swimmers can also self-
organize into a pattern of rotating microflocks with a well-
defined length scale which can be controlled by the swimming
speed and rotation frequency of the individual microswim-
mers [20,22], resembling the patterns seen in ensembles of
sperm cells [3]. Circle swimmers with spherical body shapes,
which do not align but sterically repel each other, can form
hyperuniform states [23] and aggregate in (macro)clusters
[24,25] which can even counter-rotate with respect to the
surrounding gas [24].

As compared to the monochromatic case, less is known
about the patterns emerging in (aligning) circle swimmers
with different frequencies. Such mixtures, broadly occurring
both in nature and in the world of synthetic microswimmers,
have previously been considered in our earlier work on syn-
chronization [16], noting the formation of counter-rotating
macroclusters as a side result and also in Ref. [26] dis-
cussing similar structures. More specifically, the key finding
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of Ref. [16] is that chiral active particles (viewed as locally
coupled active oscillators whose spatial motion depends on
their phase) can synchronize over large distances even in two
dimensions, opposing the heavily explored case of “passive”
oscillators (and oscillators moving independently of their
phase) which can synchronize only in higher dimensions.
(In addition, Ref. [16] focuses mainly on relatively low
frequencies where the system does not form patterns with
a characteristic length scale). In contrast to Ref. [16], the
present work numerically explores and characterizes pattern
formation in chiral active mixtures, focusing mainly on large
frequencies where the system (or a part of it) forms patterns
characterized by a length scale not scaling with the system
size. In particular, the present work provides a state diagram
generalizing the one in Ref. [20] which deals with identical
active chiral particles.

As our key result, we find that this phase diagram com-
prises a class of unexpected superstructures, occurring in a
wide domain of parameter space. The most interesting exam-
ple for such a superstructure emerges for a mixture of two
species with significantly different intrinsic frequencies: They
self-organize into a microflock pattern, formed in one species,
coexisting with a macrocluster formed by the other species
and a gas phase. This remarkable pattern unites microphase-
and macrophase-separation: One species selects a length scale
and the other one a density, both being characteristic, i.e.,
independent of system size. (Notice that these superstructures
do not emerge from superimposed patterns formed by each
species individually, since each of the species on its own
would stay in the disordered phase). When both species rotate
sufficiently fast, they form a second type of superstructure
given by a pattern comprising two characteristic length scales:
To form this pattern, circle swimmers also self-sort by chiral-
ity and form individual microflocks with a species-selective
size. In each case, the length scales involved in the super-
structures we report can be controlled by the properties of the
individual components of the system (swimming speed and
frequency), rather than requiring a more involved design of
their interactions, as often required to control pattern forma-
tion. Therefore, mixtures of circle swimmers provide a route
to the formation of controllable superstructures, which might
serve as a useful design principle to create active materials.

II. CHIRAL ACTIVE PARTICLE MODEL

We consider N overdamped circle swimmers, at positions
ri(t ), at time t , which self-propel with a constant speed v0 in
directions ni(t ) = [cos θi(t ), sin θi(t )] in a two-dimensional
square box of linear size L with periodic boundary conditions.
The orientation of particle i changes due to an intrinsic
frequency ωi, rotational diffusion and alignment interactions
(of strength coefficient K) with its neighbors, yielding [16,20]

ṙi(t ) = v0ni(t ), (1)

θ̇i(t ) = ωi + K

πR2

∑
j∈∂i

sin[θ j (t ) − θi(t )] +
√

2Drηi(t ). (2)

The sum runs over all the neighbors j at a distance less than
the interaction radius R to the ith particle, η represents a

Gaussian white noise of zero mean and unit variance and Dr

is the rotational diffusion coefficient. Here we chose not to
add translational noise in Eq. (1). Translational thermal noise
in active Brownian particle (ABP) models, as defined above,
plays a minor role, and it is usually introduced to continuously
connect the system with an equilibrium Brownian suspension.
Self-propulsion gives the most important contribution to the
diffusivity of the particles (which is proportional to the square
of the Peclet number in the dilute limit). In the presence of
translational noise the diffusivity would be shifted by a con-
stant amount, given by the amplitude of such noise and would
introduce an extra time scale in the problem. Translational
noise does not affect the phenomenology reported here, and,
since we wish to retain only the minimal ingredients needed to
understand the impact of rotations on the collective behavior
of active particles, we decided not to include it. Particles
interact via velocity alignment, introduced as a torque in
Eq. (2) and controlled by the coupling parameter K . Such
interaction mechanism constitutes a smooth version of the in-
teraction defining the Vicsek model [27]. In systems of circle
swimmers, which are typically nonspherical, steric repulsions
generically induce local alignment. Alignment interactions
might also be realized in systems of granular particles on
vibrated plates [12,13], which can be easily produced to swim
circularly.

A. State of the art and limiting cases

Before discussing pattern formation in mixtures of circle
swimmers, let us briefly review what is known for some
relevant limiting cases of this model:

(i) Individual circle swimmers: In the absence of interac-
tions (K = 0), each circle swimmer shows circular Brownian
motion with an average radius v0/ωi [28,29].

(ii) Linear swimmers: When switching on aligning inter-
actions (K > 0) but considering nonrotating swimmers ωi =
0, particles tend to locally align their swimming direction
[16]. This kind of ferromagnetic, or polar, coupling can lead
to flocking [27], which occurs when the coupling exceeds a
critical strength K > Kc and allows a macroscopic fraction
of the system to balistically move in a preferred direction.
This yields long-range order in a 2D system with local
coupling [30].

(iii) Single frequency (monochromatic) circle swimmers:
In the presence of rotations, the critical coupling strength Kc

does not change. However, despite having little impact on
the transition to flocking itself, rotations (or active torques)
dramatically change the collective behavior of polar active
particles in the ordered phase. For slow rotations, circle
swimmers form a macroscopic rotating cluster which coarsens
and scales with the system size at late times, whereas faster
rotations lead to a pattern of synchronized rotating clusters,
or microflocks, with a characteristic size. This size scales
linearly with the single-particle radius [20,22] offering a way
to control the assembly of chiral active particles.

(iv) No self-propulsion: For several frequencies, but in the
absence of self-propulsion (v0 = 0), Eq. (2) reduces to the
(noisy) Kuramoto model of phase synchronization [31], and
if rotations are also absent, to the XY model of magnetism
[32], in a 2D geometric network. The two latter models have
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been largely studied, and it is known that they cannot sustain
global (long-range) order in 2D [33,34]. However, remark-
ably, we now know that self-propulsion (v0 > 0) allows for
global synchronization, which can occur, e.g., in the form of
a mutual flocking phase generalizing the Toner-Tu phase to
circle swimmers [16].

In the following, we focus on pattern formation in mixtures
of circle swimmers, which has been far less explored than the
above limiting cases. For simplicity, we consider two species
with frequencies ω1,2 which can either have the same sign,
representing a monochiral mixture, or different signs. Despite
its apparent simplicity and specificity, these distributions are
largely representative of more complex situations and allow
us to understand general mechanisms (see Sec. VII).

B. Units, parameters, and simulations

We use the interaction range R and the inverse of the
rotational diffusion coefficient, 1/Dr , as length and time
units, respectively. We define the following dimensionless
parameters: (i) mean density per species, ρα = NαR2/L2, and
overall mean density, ρ0 = NR2/L2, where Nα is the number
of particles of species α, with intrinsic frequency ωα; (ii) the
reduced frequencies 	i = ωi/Dr ; (iii) the coupling strength
g = K/(4πR2Dr ); and (iv) the Péclet number Pe = v0/(RDr )
(which we fix at Pe = 2). For simplicity, we focus on the case
of equal density per species ρ1 = ρ2 = ρ0/2 (ρ1 = ρ2 = ρ3 =
ρ0/3 in Sec. VII). To explore pattern formation in mixtures of
circle swimmers, we use Brownian dynamics simulations of
N = 103 to N = 32 × 103 particles using a Euler integration
scheme with a time step 
t = 10−3. We then analyze the
system at long times, after letting it relax for more than
104 times the rotational diffusion time (tDr = 104) from a
random initial configuration. As shown in Ref. [16], at the
level of a coarse-grained description of the model Eqs. (1)
and (2), the disordered state generically looses stability at
gρ0 = 2 (which is robust against excluded volume interactions
[22,35]). Thus, to study pattern formation, we choose gρ0 =
3 in the following. Note that, for gρ0 = 3, the density per
species is too low to induce pattern formation if it was the
only species present; hence, particles of different species have
to cooperate to form patterns. Indeed, the structures reported
here are not to be interpreted as superpositions of structures
stabilized by each species independently.

III. SYMMETRIC MIXTURES

We first discuss unbiased symmetric mixtures 	1 =
−	2 = 	. When the coupling is weak (gρ0 � 2) the positions
and orientations of the particles are randomly distributed,
leading to a disordered homogeneous gaslike phase (not
shown). If gρ0 > 2, then the disordered phase loses stability
and a new state emerges, which may either be a uniform
ordered phase or a pattern.

A. Uniform ordered phase

If gρ0 � 2, then the system can settle in an ordered uni-
form phase which has been mainly explored for 	 = 0 (linear
swimmers), where it features long-range polar order [30] and
giant density fluctuations [36]. Remarkably, a similar phase,

FIG. 1. Snapshots based on Brownian dynamics simulations for
symmetric mixtures with 	 ≡ 	1 = −	2 for increasing rotation
frequency (from left to right): 	 = 0, 	 = 1, and 	 = 5, at fixed
ρ0 = 20 and N = 32 × 103. The red arrow in the leftmost snapshot
represents the average polarization of the particles in the dense band.
Particles rotating at 	 are represented in blue and the ones rotating
at −	 in red. Linear swimmers are represented in black.

the mutual flocking phase, occurs also for chiral particles of
opposite handedness (	 > 0), which cooperate and mutually
suppress their circular motion, forming two superimposed
flocks at a relative angle to each other [16]. (Note that the mu-
tual flocking phase occurs at densities beyond those discussed
in the present article).

B. Patterns

If gρ0 � 2 but not too large, then the system forms pat-
terns, comprising high-density structures of polarly ordered
particles which coexist with a disordered low-density gas. We
explore these patterns in the following: (i) For 	 = 0 (linear
swimmers) the dense structures appear in the form of traveling
bands [37], as shown in the leftmost snapshot Fig. 1 and
discussed in the previous section. (ii) If 0 < 	 � 1, then the
onset of flocking is accompanied by the spatial segregation
of particles by their chirality. Following segregation, chiral
particles form polarly ordered rotating clusters which are
roughly spherical (see Fig. 1) and coarsen as time proceeds.
Notably, each cluster contains some particles of opposite chi-
rality, which therefore rotate with a frequency opposite to their
intrinsic one. The central panel of Fig. 1 shows such clusters
at late times, which coexist with a disordered, low-density
background comprising particles of both species. Following
their size and shape, we call them rotating macroclusters or
simply macrodrops. (iii) For 	 � 1 (e.g., 	 = 5, rightmost
panel Fig. 1), circle swimmers self-sort by chirality, as in
case (ii), but self-organize into a different state: a pattern of
chiral rotating clusters, with a characteristic length scale. The
emergence of such a microflock pattern is associated with
a short-wave length instability of the homogeneous flocking
state, allowing to predict the size of the microflocks in the
single-species case [20,38].

C. Characterization of patterns: Macrodrops and
microflock patterns

To characterize the observed patterns, we analyze the size
of the clusters in different regimes. We associate a character-
istic length scale to the clusters based on the analysis of the
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FIG. 2. (a) Characteristic length scales l (rectangles) and ξ

(disks) as a function of ρ0 at fixed gρ0 = 3 in the macrocluster (	 =
0.5, in filled symbols) and microflock (	 = 5, in empty symbols)
regime; the blue line shows a 1/

√
ρ0 scaling law (at fixed particle

number), i.e., l, ξ ∼ L, showing that macroclusters scale linearly
with the system size. Configuration snapshots of the system for
ρ0 = 2, 	 = 0.5 (b) and 	 = 5 (c) and ρ0 = 10, 	 = 0.5 (d) and
	 = 5 (e). As the size of the system increases the size of the clusters
in the macrocluster regime grows, while the number of microflocks
in the system increases but keep approximately the same size. Here
we used N = 16 × 103 particles.

pair correlation function,

Nρ0G(r) = 〈δ(|r − r j + ri|)〉, (3)

and orientational self-correlation function,

C(r) = 〈ni · n j〉r, (4)

where 〈.〉r denotes an average over all the pairs of particles
at distance r. We thus define two length scales for such
rotating clusters, representing a density and an orientational
correlation length: we define l via the criterion G(l ) = 1 and ξ

via C(ξ ) = e−1. In Fig. 2(a) we show both length scales in the

slow-rotating, macrodrop regime (	 = 0.5), and in the fast-
rotating, microflock one (	 = 5) as a function of ρ0 at fixed
gρ0 = 3 (above the onset of flocking) and N = 16 × 103. In
each case l, ξ are very similar to each other. Here, for 	 = 5
(microflock patterns) both length scales are independent of
ρ0 when keeping gρ0 constant. (These length scales have
been recorded “at late times” in the simulations, here at
tDr = 25 × 104; for a discussion about a possible coarsening
of microflocks on timescales beyond those involved in the
coarsening of the macrodroplets, see Ref. [20]). Conversely,
for 	 = 0.5, the size of the macrodrop clearly decreases
as the density increases in a way which is consistent with
a l, ξ ∼ 1/

√
ρ0 ∼ L scaling (at fixed particle number), as

expected for systems undergoing phase separation. As further
evidenced by Figs. 2(b)–2(e), the size of the macrodrops
reduces when decreasing the system size [see Figs. 2(b)
and 2(d)], while it is the number of microflocks which in-
creases when the density is reduced and not their size. In
the macrodrop regime, for a given value of gρ0, Pe, and 	,
the system selects a density (the one of the macrodrops),
while in the microflock regime the system selects a length
scale.

IV. MONOCHIRAL MIXTURES

We now consider mixtures of swimmers of the same chiral-
ity (	1 × 	2 > 0), which do not fully segregate. To see this,
we first quantify “segregation.” We compute the local density
field of particles of species 1, ρ1, and species 2, ρ2. We then
analyze the probability distribution P of their difference ρs =
(ρ1 − ρ2)/ρ0. A region with an excess of particles of species
1 will be characterized by a peak or shoulder of P at positive
ρs, whereas peaks or shoulders in P at negative ρs stand for
regions with an excess of particles of species 2. Thus, P
allows us to quantify deviations from a homogeneous mixing
of circle swimmers. Representative examples of P[ρs] for
several values of 	1 at fixed 	2 = 1 are shown in Fig. 3(a).
For the case 	1 = 	2 (single-species case), P[ρs] features
a narrow Gaussian distribution around zero, stemming from
particles in an incoherent gaslike state and a broader Gaussian
tail stemming from particles in a denser region (a macro-
drop, not shown). As soon as 	1 > 	2, the distributions
become nonsymmetric and develop a tail at values of ρs > 0.
Such a distribution signifies dense structures with an excess
of frequency-	1 particles, whereas the uniform background
mainly contains 	2 particles [a configuration snapshot of such
a state is shown in Fig. 5(d)]. Thus, for monochiral mixtures,
fast-rotating particles dominate the formation of the dense
structures (i.e., of the pattern) while slower ones are partly
relegated to the low-density regions. (This is consistent with
the fact that, at the level of field equations [20] for a single-
species, the growth rate of the microflock-instability increases
with the frequency). For slower rotations, where the field
equations for the single-species case do not show a (short-
wavelength) microflock instability, but a long-wavelength
instability [20], this behavior is less pronounced, and we
observe a rotating macrocluster continaing a mixture of circle
swimmers of both frequencies [Fig. 5(b)]; we refer to this case
as mixing.
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FIG. 3. Distribution of the local segregation factor P (ρs ) with
ρs = (ρ1 − ρ2)/ρ0 for several values of 	1 (see key) for monochiral
mixtures (fixed 	2 = 1) (a) and for bichiral mixtures (	2 = −1) (b).
The two dotted lines in the top panel correspond to two Gaussian
distributions centered in zero with different variance.

V. SIMULTANEITY OF PATTERNS AND
MACROCLUSTERS IN GENERIC MIXTURES

Conversely to monochiral mixtures, where pattern forma-
tion is dominated by the faster-rotating species, in symmetric
mixtures both species of course behave equally when forming
patterns. Here we focus on circle swimmers with opposite
handedness but different frequency (	1 	= −	2) and show
that they can generate remarkable patterns featuring two char-
acteristic length scales.

To see this, let us first discuss the segregation behavior of
nonsymmetric bichiral mixtures [Fig. 3(b)]. Conversely, to the
discussed mixtures where P (ρs) shows only one shoulder
[Fig. 3(a)], remarkably, particles of opposite chirality can
create two (asymmetric) shoulders in P (ρs) [Fig. 3(b)]. This
leads to a rich set of possible patterns. For |	1| < |	2| we
find that particles of species 2 can self-organize into dense
structures, while particles of species 1 remain rather uni-
formly distributed, as represented by the negative tail in the
distribution for 	1 = 0 [Fig. 3(b)]. For |	1| = |	2|, P[ρs]
is symmetric with large tails at both ρs > 0 and ρs < 0,
indicating the chiral sorting of particles into dense, counter-
rotating clusters of same density and size. For |	1| > |	2| the
distribution is nonsymmetric but features a broader tail at ρs >

0, corresponding to a tendency of the system to generate dense
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FIG. 4. (a): Length scales associated to particle clustering, l (in
empty symbols), l1 (in blue), and l2 (in red), as a function of 	1

at fixed 	2 = −1. The inset shows the correlation length ξ (empty
symbols), ξ1 (in blue) and ξ2 (in red). (b) ξ1 (in blue) and ξ2 (in red),
as a function of 	1 at fixed 	2 = −2.

structures made by a larger fraction of particles of species 1. A
configuration snapshot of the system in this case is shown in
Fig. 5(e): High-frequency swimmers form microflocks while
lower-frequency ones form a coexisting single macrocluster.
This case represents an example of a state where one species
phase separates (the size of the macrocluster scales with the
system size) and the other species forms a pattern with a
characteristic length scale. For a higher-frequency dispersion
[see snapshot Fig. 5(f)], particles of species 1 quickly form
microflocks, leaving no room for slower particles of species 2
to aggregate, as the peak of P[ρs] for 	1 = 3 and 	1 = 4 at
small negative values of ρs and the tail at large positive values
of ρs shows [see Fig. 3(b)]. In this case we therefore observe a
pattern occurring for one species, whereas the second species
is in the uniform gas phase. Finally, for |	2| > 2, microflock
patterns can occur in both species, as the snapshot Fig. 3(g)
shows; here, remarkably, the resulting pattern comprises two
different length scales. (Note here that the observed patterns
cannot be viewed as a simple superposition of patterns formed
by both species individually; instead, at gρ0 = 3/2 < 2, each
of the species on its own would be in the disordered phase).

To characterize these patterns, we generalize the defini-
tion used for symmetric mixtures to define length scales
lα, ξα (α ∈ {1, 2}), associated with the density and orientation
correlations for each species. We define lα via Gα (lα ) = 1,
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FIG. 5. State diagram of two-species mixtures of aligning circle swimmers with rotation frequency 	1 and 	2 (a), together with
representative snapshots at different points in the (	1, 	2) plane: (b) (0.5,1.5), (c) (−1, 0.5), (d) (3, 0.5) (Movie 1 [39]), (e) (2,−1) (Movie
2), (f) (5; −1) (Movie 3), and (g) (−4; 2) [their location is indicated in the phase diagram (a) by green dots]. Particles rotating at frequency 	1

are represented in blue, while particles at frequency 	2 are in red. Blue symbols in (a) denote macrocluster states, pink ones microflock states.
Square symbols correspond to states where particles of opposite chirality segregate into different dense structures. The remaining symbols
correspond to states where species segregation, if any, does not lead to the formation of species-specific clusters. Note that both macroclusters
and microflock patterns of opposite chirality can appear, as shown in (g) and (c), respectively (and represented by blue and violet squares in
the phase diagram).

where G(r) is the pair correlation function, which is in turn
defined via Nρ0Gα (r) = 〈δ(|r − rα

j + rα
i |)〉, where averages

are performed over the particles, indexed with i, j. From the
partial orientational correlation function Cα (r), defined via
Cα (r) = 〈nα

i nα
j 〉, we define ξα via C(ξα ) = 1/e. In Fig. 4,

we show these length scales as a function of 	1 at fixed
	2 = −1 (a) and 	2 = −2 (b). In both cases, as 	1 increases,
the characteristic length scale decreases, i.e., faster rotations
induce smaller structures. For 	2 = −1 [see Fig. 4(a)], l1
and ξ1 decrease roughly linearly with 	1, while the length
scales associated to particles of species 2 saturate at some
comparatively small values (l2 = 0 and ξ2 ≈ 2) for 	1 � 3,
as expected from the previous inspection of the distribution
functions Fig. 3(b). In this regime, i.e., for large-enough 	1,
particles of species 2 are not able to form segregated dense
structures, such that the pattern shows a single characteristic
length scale. Interestingly, the situation changes for larger 	2,
providing a rich pattern formation scenario. Here, as shown
in Fig. 4(b), two finite length scales associated to particles of
species 1 and 2 can coexist. For 	1 � 1, particles of species
2 form clusters of a given size ξ2 ≈ 3, while, by increasing
	1, particles of species 1 form structures of smaller size. In
this regime, the emerging patterns feature two characteristic
length scales [see snapshot Fig. 5(g)].

VI. PHASE DIAGRAM

To provide an overview of the possible patterns seen in
mixtures of circle swimmers, we now summarize our findings
in the state diagram Fig. 5. Each symbol in the (	1 − 	2)
plane corresponds to a simulation. The pink area shows pa-
rameter regimes leading to microflock patterns while the blue
one corresponds to the rotating macrodrop regime. Here, rect-
angular symbols represent states where swimmers of opposite
chirality segregate into distinct dense structures, which can be
either microflocks (giving rise to a two-length-scale pattern)

or macrodrops. We distinguish five regimes, which we link to
the snapshots discussed earlier.

For
√

	2
1 + 	2

2 � 2, the system forms macroclusters. Here
we can either have (i) a single macrocluster containing a
mixture of circle swimmers, which occurs in the monochi-
ral case [see Fig. 5(b)] or by (ii) the formation of two

FIG. 6. Late-time snapshots for three-species mixtures with fre-
quency (	1,	2, 	3) = (0, 2, 4) (a), (−2, 4, 8) (b), and (−3, 0, 3)
(c) and for a continuous mixture of swimmers with uniformly
distributed intrinsic frequencies with 	a = −3 and 	b = 4 (d).
Particles of each species are colored according to their frequency:
	1 particles are in red, 	2 in green, and 	3 in blue and using a the
color code shown in (d) in the continuous polychromatic case.
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macroclusters of opposite handedness (segregation), which
generically feature different densities [see Fig. 5(c)]. For√

	2
1 + 	2

2 � 2 microflock patterns emerge. Here, as dis-
cussed in the previous section, we can distinguish three dif-
ferent regimes, characterized by (iii) the formation of mi-
croflocks made of a larger fraction of fast-rotating particles
[see Fig. 5(d) for the monochiral case, and Fig. 5(f) for the
bichiral one], (iv) the simultaneous formation of microflocks
and macrodrops composed of swimmers of opposite chirality
[see Fig. 5(e)], and (v) the formation of microflocks of differ-
ent size and handedness [see Fig. 5(g)]. The pattern in regimes
(iii) and (iv) is characterized by a single length scale while,
strikingly, a two-length-scale pattern emerges in regime (v).

VII. MULTISPECIES MIXTURES

Finally, we briefly comment on generalizations (i) to three
species rotating at frequencies 	1, 	2, and 	3 with ρ1 =
ρ2 = ρ3 and (ii) to a continuous distribution of frequencies,
where each swimmers’ frequency 	i is picked from a uniform
distribution U (	a; 	b).

We show in Fig. 6 configuration snapshots for four cases,
using both monochiral and bichiral mixtures. As expected
from our discussion above, fast-rotating particles lead to the
formation of dense structures, while slowly rotating ones
largely remain in the disordered background. The size of
the microflock patterns is smaller for larger frequencies [see

Fig. 6(b)]. For a large-enough frequency difference between
particles of opposite chirality, microflocks of opposite chi-
rality emerge [see Figs. 6(c) and 6(d)], giving rise to, even-
tually, a pattern characterized by two different length scales
[Fig. 6(d)].

VIII. CONCLUSIONS

Complementary to our previous work [16] focusing on
the synchronization of chiral active mixtures, here we have
systematically explored their tendency to form patterns. We
have shown that such mixtures show unusual patterns: While
bichiral mixtures tend to spatially segregate and hence self-
sort by their chirality, circle swimmers of the same chirality
can cooperatively form dense clusters, i.e., they mix. Within
both regimes, segregation and mixing, chiral active particles
can either form macroclusters (or macrodrops) with a size
scaling with the system size or microflock patterns with a
characteristic self-limited size. One particularly interesting
scenario occurs when one species rotates much faster and
opposite to the other one: Here a phase-separating macroclus-
ter and a microflock pattern can simultaneously exist, albeit
none of the two species would form structures on its own.
Finally, also the case where both species rotate sufficiently
fast in opposite directions is remarkable: Here they form a
pattern of clusters comprising two length scales which can
be individually controlled by the frequency or self-propulsion
velocity of the particles of each species.
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