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Multiscale entropy profiling to estimate complexity of heart rate dynamics
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In the analysis of signal regularity from a physiological system such as the human heart, Approximate entropy
(HA) and Sample entropy (HS) have been the most popular statistical tools used so far. While studying heart rate
dynamics, it nevertheless becomes more important to extract information about complexities associated with
the heart, rather than the regularity of signal patterns produced by it. A complex physiological system does not
necessarily produce irregular signals and vice versa. In order to equip a regularity statistic to see through the
respective system’s level of complexity, the idea of multiscaling was introduced in HS estimation. Multiscaling
ideally requires an input signal to be (a) long and (b) stationary. However, the longer the data is the less stationary
it is. The requirement multiscaling places on its data length largely limits its accuracy. We propose a novel
method of entropy profiling that makes multiscaling require very short signal segments, granting better prospects
of signal stationarity and estimation accuracy. With entropy profiling, an efficient multiscale HS based analysis
requires only 500-beat signals of atrial fibrillated data, as opposed to the earlier case that required at least 20 000
beats.

DOI: 10.1103/PhysRevE.100.012405

I. INTRODUCTION

Complexity of a physiological system cannot always be at-
tributed to the presence of chaos or order in it [1–3]. Although
statistical measures such as Approximate Entropy (HA) and
Sample Entropy (HS) are designed to retrieve information
about system complexity, in reality they only provide infor-
mation about regularity [2,4,5]. In 2002, Costa et al. [1] in-
troduced the concept of multiscale entropy (MSE) to measure
system complexity, where a scale dependent entropy is ob-
tained by considering coarse grained variables of an original
time series. In this approach, regularity estimated at the higher
scales eventually reveals the system’s complexity. The method
was devised in order to address the issue of abnormal phys-
iologic signals (less complex) having higher entropy values
(HA or HS) than their healthy counterparts (more complex), in
some cardiac pathologies like atrial fibrillation [1,3,6–9]. In
their work, Costa et al. have shown how a multiscaled HS es-
timation can accurately estimate ‘complexity’ based informa-
tion from heart rate time series signals of patients with Atrial
Fibrillation (AF) and Congestive Heart Failure (CHF) [1,3].

One big limitation of MSE is the dependency on longer
data length N [2,3], since coarse graining in MSE analysis
reduces the data length with increasing scale factor. In addi-
tion, longer data length reduces the accuracy of MSE analysis,
since such a signal is more prone to be non-stationary [2,3].
Enabling MSE to analyze short-term signals can overcome
these limitations. A few improvements and generalizations
to MSE analysis such as modified MSE (MMSE), short
time MSE (sMSE), and refined generalized MSE (RMSEσ 2 )
showed application of MSE analysis on short-term synthetic
data [10–12], however their applicability on physiologic sig-
nals are unknown.

Dependency of MSE on long-term signal is inherited from
the embedded irregularity estimation technique (HS). At an

embedding dimension m, the HS algorithm needs a minimum
data length of �30m to ensure a meaningful estimation [5,13].
In MSE analysis, coarse graining process reduces the data
length by the factor of scale. Therefore, Costa et al. have
demonstrated multiscaling results on AF and CHF data using
20 000 points with a maximum scale factor of 20 (at m = 2)
[1]. When only 1000 points of the same AF data are used,
multiscaling fails to capture complexity information at the
given m. [evident from Fig. 1(a)]. In 2011, Lake et al. [14]
proposed a new regularity statistic CosEn (Coefficient of HS),
where the concept of a ‘minimum numerator count’ is used to
select the optimal value of threshold r. This regularity statistic
removes the data length limitation seen in HS estimation. An-
other study [15] has used the ‘minimum numerator count’ idea
on FuzzyMEn (Fuzzy Measure Entropy) and further improved
the efficiency (with respect to CosEn) of AF detection on 12-
beat data. However, the ‘minimum numerator count’ method
requires the user to keep varying r and repeat estimation steps
till the optimal point is reached. A recent study published by
our group [16,17] introduces the novel concept of ‘entropy
profiling’ to estimate regularity, where the r selection is com-
pletely data driven [16,17]. This ‘entropy profiling’ method
was found suitable for analyzing short-length heart rate time
series signal in different physiological conditions [16,17].

In this study, we hypothesize that integrating entropy pro-
filing with multiscaling approach will make MSE independent
of data length. We believe the proposed MSE analysis tech-
nique will advance the field of measuring system complexity
using short-term signal.

II. DATA AND METHODS

RR (distance between two consecutive R peaks in an
electrocardiogram) interval data corresponding to the ECG
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FIG. 1. MSE analysis of RR-interval time series derived from
healthy subjects and atrial fibrillation subjects using (a) HS , (b) HNF,
and (c) HTS at N = 1000.

recordings of 18 ‘healthy’ and 25 ‘atrial fibrillated (AF)’
subjects have been used here. The data were obtained from the
MIT-BIH module of the PhysioNet database [18]. The MIT-
BIH database contains long-term ECG recordings of subjects
referred to the Arrhythmia Laboratory at Boston’s Beth Is-
rael Hospital. The normal sinus rhythm database contains 18
long-term ECG recordings (24 h duration each, sampled at
128 Hz) of subjects who were found to have no significant
arrhythmia; they include five men, aged 26 to 45, and 13
women, aged 20 to 50. The AF database contains 25 long-term
ECG recordings (10 h duration each, sampled at 250 Hz) of
human subjects with atrial fibrillation (mostly paroxysmal)
[19]. After extraction of all RR interval data from the the
PhysioNet database [18], each signal segment is selected from
the beginning to N = 20, 30, 50, 100, 500, and 1000.

A. Sample entropy

HS is an approximation of the conditional probabil-
ity [13] of two segments matching at a length of m + 1
if they match at m, where the match is decided by the
tolerance parameter r. A time series {x(n) : 1 � n � N}
is divided into (N − m) overlapping vectors, each of
length m, given by {X m

i : 1 � i � (N − m)}, where X m
i =

{x(i + k) : 0 � k � m − 1}. Cm
i (r) is then the probability of

a vector X m
j to lie within a distance r of the vector X m

i ,
1 � j � (N − m), j �= i, distance given by dm

i j = {max|X m
i −

X m
j |: 1 � j � (N − m), j �= i}. So, for an ith template vector,

the distance vector for an embedding dimension m will be
of the following form: dm

i = dm
i j : 1 � j � (N − m), j �= i.

Similarly, we obtain dm+1
i = dm+1

i j : 1 � j � (N − m), j �= i

at an embedding dimension m + 1 and compute Cm+1
i (r).

1. HS estimate

HS (N, m, r) = ln
�m(r)

�m+1(r)
, (1)

where

�m(r) = 1

N − m

N−m∑
i = 1

Cm
i (r). (2)

For all experiments conducted in this study, HS is evaluated at
an r value of 0.15 ∗ SD of signal and an m value of 2.

2. HS profile

Instead of choosing a single value of tolerance r to estimate
HS , we compute a complete set of data driven r values and
generate a profile of HS values [17]. Let D be the matrix
containing all elements of dm and dm+1. Then, we define U as
the set of all unique elements of D, sorted in ascending order.
Also, let nbin be the number of elements in U . The cumulative
distribution function f m

i is then calculated as

f m
iq = p

(
dm

i � Uq
)
; for 1 � q � nbin, (3)

where p is the probability. Here, each value of q represents
an r value in the profile. Thus,

HS (q) = ln
�m(q)

�m+1(q)
(4)

for 1 � q � nbin to get the complete profile of HS values,
where

�m(q) = 1

N − m

N−m∑
i=1

(
f m
iq

)
. (5)

3. Total sample entropy (HTS)

HTS is calculated by adding up all the individual values of
HS along the HS profile of a signal

HTS =
nbin∑
q=1

HS (q). (6)

B. Normalized fuzzy measure entropy

From the given time series, a set each of local and global
vector sequences are formed (as elaborated in [15]); Lm

i and
Gm

i , respectively, at an embedding dimension m. Then, the
local and global similarity degrees or fuzzy functions are
computed as

DLm
i j

(nL,rL ) = exp

(
−

(dLm
i j

rL

)nL
)

(7)

and

DGm
i j

(nG,rG) = exp

(
−

(dGm
i j

rG

)nG
)

, (8)

where dLm
i j

and dGm
i j

are the distances between the local and
global vector sequences respectively, computed as per [15].
The mean values of these fuzzy functions are computed as
BLm (nL, rL ) and BGm (nG, rG), respectively. The same steps
when repeated with an embedding dimension m + 1, produce
mean fuzzy functions ALm+1 (nL, rL ) and AGm+1 (nG, rG). The
fuzzy local and global measure entropies are then estimated
as

HLF = ln

(
BLm (nL, rL )

ALm+1 (nL, rL )

)
+ ln(2rL ) − ln(RRmean) (9)

and

HGF = ln

(
BGm (nG, rG)

AGm+1 (nG, rG)

)
+ ln(2rG) − ln(RRmean), (10)
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respectively. Finally, normalized fuzzy measure entropy is
given by

HNF = HLF + HGF. (11)

Here, rL and rG are the local and global thresholds of dis-
tance and are estimated using the minimum numerator count
method [14,15]. Also, nL and nG are called the local and global
similarity weights and both carry a value of 2 here.

C. Multiscale entropy (MSE)

The time series {x(n) : 1 � n � N} is divided into N
τ

non-
overlapping segments, each of length τ , where τ is the scale
factor. The mean of elements in each of the consecutive
segments form the new coarse grained time series; yτ (n) : 1 �
n � N

τ
, where

yτ (n) = 1

τ

nτ∑
i=(n−1)τ+1

x(i). (12)

For every coarse grained time series, the entropy estimate
(here, HS, HNF, or HTS) is then obtained.

For all entropy estimations, we use an m = 2.

D. Statistical analysis

In our study, we have used area under the ROC (Receiver
Operating Characteristic) curve in order to test the efficiency
of our measures in signal classification. The area under the
ROC curve (AUC) is the probability that a classifier ranks a
randomly chosen instance X higher than a randomly chosen
instance Y, X , and Y being samples taken from two inde-
pendent populations. An AUC value of 0.5 indicates that the
distributions of the features are similar in the two groups with
no discriminatory power. Conversely, an ROC area value of
1.0 would mean that the distribution of the features of the
two groups do not overlap at all. MATLAB R2014b Statistics
toolbox was used to perform all statistical operations.

III. RESULTS AND DISCUSSION

A. Measure of regularity or complexity?

For the largest data length used in our study, i.e., N =
1000, we estimate the respective multiscaled versions of
HS, HNF, and HTS using scales 1 to 20. As can be seen
from Fig. 1(a), multiscaling on HS consistently places healthy
signals’ entropy below that of the diseased ones, indicating
a misleading complexity judgement. Looking at Fig. 1(b)
and (c), we understand how multiscaling on HNF and HTS

changes the scenario in favor of an accurate complexity anal-
ysis, where the healthy signals have a much higher entropy
compared to their diseased counterparts.

B. Data length requirement for multiscaling

To find the minimum length of original data that would
show an impact when subjected to multiscaling, we estimated
HNF and HTS at different scales for a decreasing order of data
length N = 1000, 500, 100, 50, 30, 20. As can be seen from
Figs. 2 and 3, the effect of multiscaling on both measures
tends to decay, as data length decreases. In case of HNF, at N =
50, 30, and 20 [panels (d)–(f) of Fig. 2], the measure no longer
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FIG. 2. The mean ± SD values of HNF across a varying scale
factor, in differentiating healthy from AF signals. Analysis presented
at data lengths (a) 1000, (b) 500, (c) 100, (d) 50, (e) 30, and (f) 20.

reveals consistent or indisputable complexity information and
in fact eventually falls back to being a ‘regularity’ statistic
at N = 20. For HTS, the same behavior can be seen from
panels (d)–(f) of Fig. 3. Also, at N = 100 [panel (c) of Fig. 3],
the demarcation between healthy and AF signals, thereby
complexity information, remains insufficient at the higher
scale factors. The maximum scale factor intended for use in
our experiments was 20. But, for data lengths 100, 50, 30, and
20 of HNF and 50, 30, and 20 of HTS, multiscaling could not
be done at all of these scales. The minimum length of coarse
grained signal that could be handled by HNF was 8, while for
HTS, it was 5. Hence, the choice of maximum scale factor,
given a data length N will have to be N

8 for HNF and N
5 for HTS.
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FIG. 3. The mean ± SD values of HTS across a varying scale
factor, in differentiating healthy from AF signals. Analysis presented
at data lengths (a) 1000, (b) 500, (c) 100, (d) 50, (e) 30, and (f) 20.
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FIG. 4. AUC values of HNF across a varying scale factor, in
differentiating healthy from AF signals. Analysis presented at data
lengths (a) 1000, (b) 500, (c) 100.

Costa et al.’s [1] MSE analysis required 20 000 data points
for a maximum scale factor of 20 (at m = 2), in extraction of
complexity information. Under the same conditions, to reach
up to a maximum scale factor of 20, our method (HTS) requires
only 100 data points. This is because, while traditional HS

needs a minimum of N � 1000 (at m = 2) for an accurate es-
timation, HS profiling (and therefore HTS) can do an accurate
estimation even with an N as low as 5 (at m = 2).

C. Efficiency as a complexity measure

Taking the minimum data length requirement to be 100 for
both HNF and HTS, we next try to find out the maximum scale
factor necessary to give us the best classification performance
for N � 100. Lesser the scale factor required, lesser is the
computational cost. The AUC values of HNF and HTS in
classifying healthy from AF signals are shown at multiple
scale factors in Figs. 4 and 5. At N = 1000, 500, and 100, the
respective AUCmax values and corresponding scale factors are
shown in Table I. As can be seen, at each of the data lengths,
classification performance of HTS is significantly higher than
that of HNF. Also, at every data length, HTS reaches the highest
performance at a much lower scale factor than HNF. For
HTS, at N = 100, though complexity behavior at the higher
scale factors was insufficient [panel (c) of Fig. 3], highest
classification performance is obtained before the issue sets in.

Though HTS and HNF seem to be capable of handling
almost similar lengths of short-term data, as far as classifica-
tion performance and computational efficiency is concerned,
using multiscaled HTS over multiscaled HNF is undoubtedly
beneficial in detecting complexity of short-term AF signals.
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FIG. 5. AUC values of HTS across a varying scale factor, in
differentiating healthy from AF signals. Analysis presented at data
lengths (a) 1000, (b) 500, (c) 100.

TABLE I. Highest classification performances of HNF and HTS.

Measure Data length AUCmax Scale factor AUCmax

HNF 1000 0.8622 19
500 0.8533 19
100 0.6733 7

HTS 1000 0.9156 9
500 0.8778 7
100 0.7311 5

D. CHM based multiscaling: Robustness in classification
performance

Four random sets of healthy and AF signals, each of length
500 are generated for this section of analysis. We use N = 500
here (and not the minimum length requirement of 100) to see
a ‘consistent’ behavior of HTS as a complexity measure across
all 20 scale factors used. The initial pool of data constitutes
18 healthy and 25 AF signals of varying data lengths (all
above 20 000 beats). From each of these primary signals,
we generate 40 non-overlapping secondary segments, each of
length 500. To induce randomness, each 500-beat signal here
will have a unique starting point (beat value) chosen from the
original signal, followed by the next consecutive 499 points.
Thus, each set will contain (18X40) + (25X40) = 1720 ran-
dom 500-beat signals. (i) set 1: Uses i = [1 {500(k) + 1; 1 �
k � 39}] as starting points for the 40 secondary segments.
(ii) sets 2, 3, and 4 use 120 other unique starting points to
generate their respective random 500-beat signals. At each
scale factor, the mean ± SD of HTS of the 18 × 40 healthy
versus 25 × 40 AF signals is plot in Fig 6, for all four sets.
Their respective performance analysis is shown in Fig. 7. As
can be seen from the figures, the choice of signal segment
can be random and this does not affect multiscale entropy
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FIG. 6. HS profiling based MSE analysis of four random sets
of RR-interval time series derived from healthy subjects and atrial
fibrillation subjects at data length N = 500. (a), (b), (c), and (d) cor-
respond to random sets 1, 2, 3, and 4, respectively.
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FIG. 7. AUC analysis of the classification using the four random
sets; (a) set 1, (b) set 2, (c) set 3, and (d) set 4 of data.

profiling in any way. Thus, any random segment (from the
original signal) of minimum length 500 is sufficient for an
accurate classification of data based on complexity analysis.
This proves the robustness of multiscale entropy profiling.

IV. CONCLUSION

Multiscale entropy analysis (MSE) has become an in-
dispensable choice in order to examine complexity based

information from physiologic data. Unfortunately, the method
requires input data to be long-term as well as stationary,
one contradicting the other. Owing to data length restrictions
imposed by HS estimation procedure, multiscale HS analysis
remains unsuitable for applications involving short-term phys-
iologic data.

In this work, we have applied the recent concept of entropy
‘profiling’ instead of entropy ‘estimation’, so that multiscale
HS analysis can handle short-term physiologic data. For
complexity based classification of AF signals from healthy
cardiac signals, where MSE required a data length as high
as 20 000, our method of entropy profiling requires only
500 data points; at an embedding dimension m = 2. Our
study also shows that these 500 data points can be randomly
picked from anywhere in the original data, thereby proving
robustness of our approach. The practical implication of our
method is not limited to detecting a clinical condition such
as atrial fibrillation. While having the potential to be used on
any pathological RR time-series signal, our method primarily
focuses on identifying the actual physiological state of the
underlying cardiac system, given very few samples of the
respective RR time-series.
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