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Reconstructing free-energy landscapes for cyclic molecular motors using full
multidimensional or partial one-dimensional dynamic information
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Diffusion on a free-energy landscape is a fundamental framework for describing molecular motors. In the
landscape framework, energy conversion between different forms of energy, e.g., chemical and mechanical, is
explicitly described using multidimensional nonseparable potential landscapes. We present a k-space method
for reconstructing multidimensional free-energy landscapes from stochastic single-molecule trajectories. For
a variety of two-dimensional model potential landscapes, we demonstrate the robustness of the method
by reconstructing the landscapes using full dynamic information, i.e., simulated two-dimensional stochastic
trajectories. We then consider the case where the stochastic trajectory is known only along one dimension. With
this partial dynamic information, the reconstruction of the full two-dimensional landscape is severely limited in
the majority of cases. However, we reconstruct effective one-dimensional landscapes for the two-dimensional
model potentials. We discuss the interpretation of the one-dimensional landscapes and identify signatures
of energy conversion. Finally, we consider the implications of these results for biological molecular motors
experiments.
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I. INTRODUCTION

Diffusion on a free-energy landscape is a fundamental
framework for describing protein folding [1–10] and biolog-
ical molecular motors [11–15]. Physical properties of molec-
ular motors, such as drift velocity, diffusion coefficients
[16–22], efficiency [15], force or torque generation [23,24],
step sizes, and dwell times [25,26], can be derived from
the free-energy landscape. Free-energy landscapes of partic-
ular molecular motors have been determined from molecular
structure [4,27–30] or alternatively, in principle, could be re-
constructed from increasingly available experimental single-
molecule trajectories [2,3,6,7]. Reconstruction methods have
so far only been developed for one-dimensional systems
[31–35] and, therefore, do not in general apply to molecular
motors that convert energy between two or more degrees of
freedom. In this paper, we present a method for reconstructing
multidimensional free-energy landscapes for cyclic molecular
motors and show that it is robust in two dimensions when
the full two-dimensional stochastic trajectories are known. We
also consider what can be inferred about the two-dimensional
landscape when the trajectory is known in only one
dimension.

Free-energy landscape reconstruction methods are based
on the Smoluchowski equation that describes overdamped
Brownian motion on a time-independent free-energy potential
landscape. First, the probability density for the system is
determined from single-molecule trajectories and, then, the
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Smoluchowski equation is inverted to determine the land-
scape. The inversion step typically relies on a closed solu-
tion of the Smoluchowski equation that exists only in one
dimension [21,31,32]. However, we recently developed a k-
space method [34,35] that exploits the cyclic behavior of
molecular motors and can be used for both equilibrium and
nonequilibrium cases [34,35]. For one-dimensional systems,
the k-space reconstruction method converges for increasing
trajectory duration and sampling frequency [35].

Molecular motors convert energy from one form to another
[16]. For example, the enzyme ATP synthase is composed of
two molecular motors: The F0 part uses a proton concentration
gradient to drive rotation and the F1 part uses the rotation
to synthesize ATP. Within the energy landscape description,
energy conversion between different forms of energy is ex-
plicitly described via a nonseparable potential landscape with
at least two degrees of freedom [36–38].

The aim of this paper is to determine how landscape
reconstruction methods based on single-trajectory analysis
could be used to better understand energy conversion in
molecular motors. In the first part of this work, we extend
our k-space reconstruction method [34,35] to multiple di-
mensions. We use two-dimensional examples to show that
a full reconstruction of the landscape is possible when the
stochastic single-molecule trajectory is known in all relevant
degrees of freedom. We contrast the accuracy and numerical
expense of the full two-dimensional reconstruction with the
one-dimensional case. In the second part of this work, we con-
sider the case where the stochastic single-molecule trajectory
is only known in one degree of freedom. This is common,
for example, in mechanochemical molecular motors, where
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current experiments typically only measure the mechanical
degree of freedom [18,39,40]. We explore to what extent,
and under what circumstances, landscape reconstruction in
only one degree of freedom can infer details of the full two-
dimensional landscape and elucidate energy coupling.

The manuscript is ordered as follows. In Sec. II we re-
view the Smoluchowski equation formalism used to model
molecular motors and extend the one-dimensional k-space
reconstruction method to multiple dimensions. In Sec. III we
reconstruct two-dimensional landscapes for a variety of model
potentials using simulated two-dimensional single-trajectories
and demonstrate the accuracy and robustness of the method.
In Sec. IV we consider the case where single trajectories are
known only along one dimension. We show that it is always
possible to reconstruct an effective one-dimensional potential
along the measured degree of freedom but that it is often
difficult to relate the one-dimensional potential to the full two-
dimensional potential landscape. Despite this, we discuss the
interpretation of the effective one-dimensional landscape and
identify signatures of energy conversion. Section V concludes
the paper.

II. MULTIDIMENSIONAL FREE-ENERGY
LANDSCAPE RECONSTRUCTION

A. Landscape framework for molecular motors

Molecular motor dynamics are described as overdamped
Brownian motion on a time-independent free-energy potential
landscape and can be modelled via the multidimensional
Smoluchowski equation [41]:

dP(r, t )

dt
= −∇ · J(r, t ), (1)

where P(r, t ) is the probability density for finding the motor
at position r and time t and the probability current is

J(r, t ) = −�

γ
∇P(r, t ) − 1

γ
P(r, t )∇V (r) (2)

with γ the viscous friction coefficient, � = kBT , kB the
Boltzmann constant, and T the temperature. For the case of
cyclic molecular motors, the potential landscape V (r) is of the
form V (r) = V0(r) − F · r, where V0(r) = V0(r + Lj r̂ j ) is a
periodic potential with period Lj in the jth degree of freedom.
The external force F drives the system out of equilibrium.
The system dynamics can be described equivalently by the
overdamped stochastic Langevin equation:

ṙ(t ) = − 1

γ
∇V (r) + ξ(t ), (3)

where ξ(t ) is a random Gaussian noise with zero mean and
correlation 〈ξ j (t )ξ j′ (t ′)〉 = 2�δ j, j′ (t − t ′)/γ [41]. This for-
mulation is useful for simulating stochastic single-molecule
trajectories analogous to the traces measured in experiments
(see, for example, Ref. [8]).

To describe energy conversion in a molecular motor, the
multidimensional free-energy potential landscape must be
nonseparable [36]. Formally, the landscape can be written

V (r) =
∑

j

V j (r j ) + W (r), (4)

where the separable term V j (r j ) drives dynamics in the jth
degree of freedom and the remaining nonseparable terms
W (r) couple different degrees of freedom. Due to the non-
separable terms of the potential, the steady-state distribution
is not factorizable P(r) �=

∏
j

P j (r j ). The coupling means that

the steady-state drift

〈v j〉 = − 1

γ

∫
dr P(r)

∂V (r)

∂r j
, (5)

is dependent not only on the force Fj but also on other
components of the force, Fj′ where j′ �= j. The rate of change
of work in each degree of freedom is [42]

Ẇj = 1

γ
Fj〈v j〉. (6)

If the drift v j has the same sign as the force Fj in that degree of
freedom, then the rate of change of work is positive. However,
if the drift v j and the force Fj have opposite sign, then the
rate of change of work is negative. In this case work is being
done against the external force and energy is being converted
from one degree of freedom to another. Energy conversion
increases when the system is tightly coupled, i.e., when the
nonseparable coupling term W (r) dominates the potential
V (r), leading to the motion being confined to a coupled path
through the landscape. In this case high-efficiency energy
conversion can occur [36–38].

B. Multidimensional k-space landscape reconstruction

The k-space free-energy landscape reconstruction method
developed in Refs. [34,35] can be generalized to multiple
dimensions as follows. The periodicity of the potential means
that both the steady-state probability P(r) and steady-state
current J(r) are periodic. Therefore, we expand them in their
Fourier series as

V (r) = −F · r +
∑

q

V 0
q ei2πq·(r\L), (7)

P(r) =
∑

k

Pkei2πk·(r\L), (8)

Jj (r) =
∑

k

Jj k ei2πk·(r\L), (9)

where F, L, k, q are vectors and r\L denotes a matrix with
elementwise division such that (r\L) j = r j/Lj . The spectral
component indices k j and q j take integer values bound by a
finite maximum value K, i.e., k j = 0,±1,±2, . . . ,±K, and
similarly for qj .

Using Eqs. (7)–(9) we formulate the multidimensional
steady-state Smoluchowski equation in k space as∑

q �=0

(q · k)Pk−qV
0

q = −
[

(�k) · k − ik ·
(

F ◦ L
2π

)]
Pk,

k �= 0, (10)

where F ◦ L denotes a matrix with elementwise multiplica-
tion such that (F ◦ L) j = FjL j . Note that P0 = 1/‖L‖ is the

normalization condition in k space with ‖L‖ =
∏

j

L j and V 0
0
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is the reference level of the potential that has no physical
implications. The k-space probability current components are
given by

γ Jj k = FjPk − i
2π

Lj

{∑
q

q jPk−qV
0

q + �k jPk

}
. (11)

The drift velocity components are related to the k-space prob-
ability current by 〈v j〉 = Jj 0Lj . For k = 0, Eq. (11) simplifies
to

γ 〈v j〉 = FjL j

‖L‖ − i2π
∑

q

q jP−qV
0

q , (12)

which is the k-space representation of Eq. (5). Equation (12)
provides the general relationship between the drift 〈v j〉 and
the force Fj and the dependence on other forces Fj′ is via Pk

that depends on both V0(r) and F.
To reconstruct the free-energy landscape, the steady-state

probability density P(r) is determined from stochastic single
trajectories using a position histogram [34,35]. Equation (10)
is then cast into matrix form and standard matrix inversion
methods are used to calculate the Fourier coefficients of the
free-energy landscape from the probability density. The re-
constructed potential V R(r) in position space is then computed
using the Fourier series Eq. (7).

When the value of the force F is known, the direct recon-
struction of the free-energy landscape is straightforward as
described above using Eq. (10) [34]. However, if one or more
of the force components are unknown, the method can still
be used via Eq. (12) and the drift velocity determined from
the stochastic trajectories [18,39]. Equations (10) and (12)
cannot be solved together because they lead to a singularity.
Therefore, we use an iterative method to find a self-consistent
solution of Eqs. (10)–(12). This involves making a guess for
F, calculating the landscape, recalculating F, and so on. The
iteration process stops once all unknown force components
meet the tolerance condition

|Fi, j − F ′
i, j | � ε j ∀ j, (13)

where i is the iteration number and ε j > 0 is a small number
representing the desired accuracy of the force component in
the jth coordinate.

III. NUMERIC EXAMPLES OF TWO-DIMENSIONAL
LANDSCAPE RECONSTRUCTION

In this section we illustrate the multidimensional k-space
reconstruction method using a variety of model potentials.
Although there may be many dimensions in general, we
consider only two-dimensional potentials for the rest of the
manuscript. This provides the simplest explicit treatment of
energy coupling in a molecular motor. We consider four two-
dimensional model potentials defined as follows. The first
potential we consider is a simple potential constructed from
cosines:

VCC(x, y) = Ax cos

(
2πx

Lx

)
+ Ay cos

(
2πy

Ly

)

+ Axy cos

(
2π

[
x

Lx
− y

Ly

])
− Fxx − Fyy. (14)

FIG. 1. Contour plot over one period of the periodic part of
the two-dimensional potential (a) Eq. (14) with Ax − �, Ay =
�, Axy = −2�, Fx = −0.1�/Lx , and Fy = 0.6�/Ly; (b) Eq. (15)
with Ax = Ay = 0.5�, Axy = 3�, Fx = −0.1�/Lx , Fy = 0.6�/Ly,
A1 = −1.9�, θ1 = π/4, σ 2

x1 = 1/15, σ 2
y1 = 1/50, xo1 = yo1 = 0.7,

A2 = −1.25�, θ2 = π/4, σ 2
x2 = 1/20, σ 2

y2 = 1/50, and xo2 = yo2 =
0.25; (c) Eq. (18) with Axy = 3�, Fx = Fy = 0, and U = 1.5;
and (d) Eq. (20) with Axy = 2�, Fx = Fy = 0, U = 0.5, θ1,2,5,6 =
−7π/12, A1,5 = −2.5�, σ 2

x1,x5 = 1/40, σ 2
y1,y5 = 1/50, xo1,o5 = 0.07,

yo1,o5 = 0.20, A2,6 = −3.8�, σ 2
x2,x6 = 1/35, σ 2

x2,x6 = 1/50, xo2,o6 =
0.19, yo2,o6 = 0.56, θ3,4,7,8 = π/9, A3,7 = −2.5�, σ 2

x3,x7 = 1/40,
σ 2

x3,x7 = 1/50, xo3,o7 = 0.44, yo3,o7 = 0.81, A4,8 = −3.8�, σ 2
x4,x8 =

1/35, σ 2
y4,y8 = 1/50, xo4,o8 = 0.80, and yo4,o8 = 0.93. The colorbar

corresponds to the depth of potential.

This potential contains separable and nonseparable terms and
can exhibit narrow deep coupled channels along the diagonal
when Axy 	 Ax, Ay. The potential is shown for the example
parameters in Fig. 1(a).

The second potential we consider has the form

VCG(x, y) = VCC(x, y) +
2∑

g=1

Gg(x, y; θg), (15)

where

Gg(x, y; θg) =
∞∑
�,j

Age−(r−μg�j )TRT
θgσgRθg (r−μg�j )

, (16)

describes rotated elliptical Gaussian functions with matrices
Rθg and σg defined by

Rθg =
(

cos θg sin θg

sin θg − cos θg

)
, σg =

( 1
L2

x σ 2
xg

0

0 1
L2

y σ 2
yg

)
, (17)

and the vector r − μg�j = (x− xog− Lx�, y− yog− Lyj ),
where �, j are integers. Potential Eq. (15) has similar features
to VCC but it has additional metastable states per period due
to the Gaussian functions Eq. (16). The potential is shown in
Fig. 1(b).

We also consider two potentials that have a coupled chan-
nel taking a zigzag path through the landscape. The third
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potential is

VZZ(x, y) = −Axy sin

(
2π

[
x

Lx
− y

Ly
+ U

2
f (x, y)

])

− Fxx − Fyy, (18)

where

f (x, y) =
∑

p/π=1,3,5

4

p2
cos

(
2p

[
x

Lx
+ y

Ly

])
. (19)

This potential displays tight coupling and is shown in
Fig. 1(c).

Finally, we consider the potential

VZG(x, y) = VZZ(x, y) +
8∑

g=1

Gg(x, y; θg), (20)

that has the same zigzag channel of potential VZZ but with
the addition of metastable states along the coupled channel.
This potential is shown in Fig. 1(d) and for certain parameters
resembles the landscape proposed for ATP synthase [28,30].
For all model potentials considered in this paper we take the
periodicity to be Lx = Ly = L.

We simulate stochastic single trajectories for the two-
dimensional model potentials using Eq. (3). The trajectories
have duration τ and sampling frequency fs. The steady-state
probability density P(x, y) is then approximated from the
simulated trajectories by building a two-dimensional position
histogram within a single period [35]. The position histogram
has Nb bins in each dimension so the total number of bins
is N2

b . Figure 2(a) shows an example trajectory for the simple
potential Eq. (14). The steady-state probability density P(x, y)
in one period approximated from the trajectory is shown
in Fig. 2(b). Note that the full two-dimensional steady-state
probability density is recovered from the full two-dimensional
simulated trajectory.

The free-energy potential landscape is reconstructed from
the approximate steady-state probability density using the
multidimensional k-space method described in Sec. II B. The
periodic part of the reconstructed potential in k space is V 0

k ,
where k = (kx, ky). The terms along the axes with either kx =
0 or ky = 0 are due to the separable parts of the potential,
but there are also terms with kx �= 0 and ky �= 0 due to the
nonseparable coupling terms. Figure 3 shows an example of a
nonseparable reconstructed potential in k space.

Figure 4 show examples of the landscape reconstruction
for the model potentials. In all cases we find that the recon-
structed potentials determined via the k-space method from
simulated single trajectories are in qualitative agreement with
the original model potentials.

To quantitatively determine the accuracy of the landscape
reconstruction, confidence intervals are not an appropriate
measure because they do not propagate linearly in the k-
space inversion of the probability density to the reconstructed
potential [35]. Instead, we measure the overall accuracy of the
reconstruction method using the mean-squared error MSEpot

between the original potential and its reconstruction from

(a)

(b)

FIG. 2. (a) Single-trajectory simulated using the Langevin equa-
tion (3) for the two-dimensional potential Eq. (14) mapped over
the contour plot of the periodic part of the potential with black
arrows indicating the direction and relative magnitude of the force F.
(b) Approximate steady-state probability density P(x, y) computed
from the trajectory in (a) via a position histogram. Potential parame-
ters are Ax = −�, Ay = �, Ax,y = −2�, Fx = −0.1�/Lx , and Fy =
0.6�/Ly. Trajectory parameters are τ�/γ L2 = 100, γ L2 fs/� =
7.0 × 104, and Nb = 1000.

trajectories, i.e., we define

MSEpot = 1

N2
b

Nb∑
i=1

Nb∑
j=1

[
Vi, j − V R

i, j

]2
, (21)

where Vi, j and V R
i, j are the original and reconstructed poten-

tials, respectively, evaluated at the center of the bins used
in the position histogram approximation of the steady-state
probability density [35]. The mean-squared error for the
reconstructions shown in Fig. 4 are provided in the figure
caption.

An analysis of the convergence of the MSEpot value was
carried out, similarly to that provided for one-dimensional
systems in Refs. [34,35]. In general, we observed the same
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FIG. 3. Fourier coefficients V 0
k for the reconstructed potential

Eq. (14) with parameters Ax = −�, Ay = �, Axy = −2�, and
F = 0. Trajectory parameters are K = 21, τ�/γ L2 = 100, and
γ L2 fs/� = 7.0 × 104, and Nb = 1000. Terms with kx,y > ±6 are not
shown because |V 0

k | < 10−13.

trends in two dimensions as for landscape reconstructions in
one dimension, i.e., convergence for increasing number of
Fourier terms K, increasing trajectory duration τ , and increas-
ing sampling frequency fs [35]. An example of the conver-
gence with the number of Fourier terms K is shown in Fig. 5.
In this case we determined the steady-state probability den-
sity P(x, y) numerically from the Smoluchowski equation (1)

FIG. 4. Full two-dimensional landscape reconstruction from tra-
jectories, showing (a) Eq. (14), (b) Eq. (15), (c) Eq. (18), and
(d) Eq. (20). Potential parameters used same as in Fig. 1. Tra-
jectories parameters: (a) τ�/γ L2 = 100, γ L2 fs/� = 7.0 × 104;
(b) τ�/γ L2 = 100, γ L2 fs/� = 1.2 × 104; (c) τ�/γ L2 = 100,
γ L2 fs/� = 1.0 × 104; and (d) τ�/γ L2 = 1000, γ L2 fs/� = 1.4 ×
105. Mean-squared errors: (a) MSEpot = 0.018, K = 21 and Nb =
1000; (b) MSEpot = 0.0475, K = 61 and Nb = 1000; (c) MSEpot =
0.015, K = 31 and Nb = 1000; (d) MSEpot = 8.3 × 10−4, K = 61
and Nb = 1000.

FIG. 5. Mean-squared error MSEpot for the two-dimensional
landscape reconstruction of potential Eq. (14) with increasing
Fourier terms K and (dots) direct inversion with known force and
(squares) iterative inversion with unknown force. The probability
density P(x, y) is determined by numerically solving the Smolu-
chowski equation (1) for VCC with potential parameters the same as
in Fig. 2.

and determined the accuracy of the k-space inversion for
both direct reconstruction where F is known and iterative
reconstruction where F is not known but drift v is known.
The convergence with τ and fs is shown in Fig. 6. In this case
the probability density was built from simulated single trajec-
tories and the force was assumed to be known. Finally, Table I
provides a guide to the accuracy that can be expected for one-
and two-dimensional cosinelike potentials with barrier heights
in the range � to 7�.

(a)

(b)

FIG. 6. Mean-squared error MSEpot for the two-dimensional
landscape reconstruction of potential Eq. (20) with (a) increasing
trajectory duration τ at fixed sampling frequency γ L2 fs/� = 104

and (b) increasing sampling frequency fs at fixed trajectory duration
τ�/γ L2 = 1000. The force F is known, K = 61, Nb = 1000, and
the potential parameters are the same as in Fig. 4(c).
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TABLE I. Expected mean-squared error MSEpot for recon-
structed one- and two-dimensional cosinelike potentials with the
trajectory duration τ and sampling frequency fs required to achieve
that level of accuracy. †In two dimensions, Nb is the number of grid
points in each direction so the total number of bins is N2

b .

MSEpot τ �/γ L2 γ L2 fs/� Nb

1D known force ∼10−4 ∼102 ∼104 100
1D unknown force ∼10−2 ∼102 ∼104 100
2D known force ∼10−2 ∼103 ∼104 1000†

2D unknown force ∼10−1 ∼103 ∼104 1000†

IV. EFFECTIVE DYNAMICS PROJECTED
ON ONE DIMENSION

In this section we explore the implications of only measur-
ing one degree of freedom. To make the discussion concrete
we consider a mechanochemical molecular motor with one
mechanical and one chemical degree of freedom. Most motor
proteins with unidirectional mechanical motion [8,39,40] are
expected to be well described by this treatment assuming
the proper chemical reaction coordinate [43,44]. We take x
to be the measured mechanical degree of freedom and y to
be the unmeasured chemical degree of freedom. Our aim is
to establish the connection between the full two-dimensional
dynamics and the effective projected dynamics on the me-
chanical degree of freedom and determine the implications
of this for landscape reconstruction and elucidating energy
conversion.

A. Effective one-dimensional potential

We consider that only the mechanical degree of freedom
x is measured and define the effective one-dimensional pro-
jected probability density

PRX(x) =
∫ Ly

0
dy P(x, y). (22)

Expanding the two-dimensional probability density P(x, y) in
its Fourier series according to Eq. (8) and using the definition
of the reduced density Eq. (22) yields

PRX(x) = Ly

∑
kx

Pkx,0 ei2πkxx/Lx . (23)

This shows that PRX(x) is periodic.
We now show that it is always possible to reconstruct

an effective tilted periodic potential V eff (x) = V eff
0 (x) − F eff

x x
from the probability density PRX(x) and we derive an analytic
expression for the effective one-dimensional potential from
the two-dimensional potential. First, assuming the effective
one-dimensional potential exists, we write the effective one-
dimensional steady-state Smoluchowski equation,

0 = 1

γ

∂

∂x

[
�

∂

∂x
+ ∂V eff (x)

∂x

]
PRX(x). (24)

Integrating the two-dimensional steady-state Smoluchowski
equation over the chemical degree of freedom we have

0 =
∫ Ly

0
dy

∑
j

1

γ j

∂

∂r j

[
�

∂

∂r j
+ ∂V (x, y)

∂r j

]
P(x, y)

= �

γ

∂2

∂x2

∫ Ly

0
dy P(x, y) + 1

γ

∂

∂x

∫ Ly

0
dy

∂V (x, y)

∂x
P(x, y).

(25)

Comparing Eqs. (24) and (25) we find that the effective one-
dimensional potential can be written

V eff (x) =
∫ x

0

dx′

PRX(x′)

∫ Ly

0
dy P(x′, y)

∂V (x′, y)

∂x′ . (26)

When the potential is separable, we have V (x, y) =
V0x(x) + V0y(y) − Fxx − Fyy and Eq. (26) reduces to

V eff (x) =
∫ x

0
dx′ ∂V (x′, y)

∂x′ = V0x(x) − Fxx, (27)

where we have taken V0x(0) = 0 without loss of generality.
Equation (27) shows that for a separable potential the effective
one-dimensional potential is the original x component of
the full two-dimensional potential, i.e., V eff

0 (x) = V0x(x) and
F eff

x = Fx.
In general, for nonseparable potentials, we define the aux-

iliary function

(x′) = 1

PRX(x′)
=

∑
s

se
i2πsx′/Lx , (28)

which is also periodic. Substituting Eq. (28) into the effective
potential Eq. (26) gives

V eff (x) =
∫ x

0
dx′(x′)

∫ Ly

0
dy P(x′, y)

∂

∂x′ V (x′, y). (29)

Using V (x, y) = V0(x, y) − Fxx − Fyy and the corresponding
Fourier expansions for (x), P(x, y), and V0(x, y), we find for-
mal expressions for F eff

x and V eff
0 (x). This yields the effective

force

F eff
x = Fx − i2π

Ly

Lx

∑
k,qx

qx−(kx+qx )Pkx,kyV
0

qx,−ky
, (30)

and the effective one-dimensional periodic potential

V eff
0 (x) = Ly

∑
k, qx, s �= −kx − qx

(
qxsPkx,kyV

0
qx,−ky

s + kx + qx

)

× [ei2π (s+kx+qx )x/Lx − 1]. (31)

Equations (30) and (31) relate the two-dimensional non-
separable tilted periodic potential with the effective one-
dimensional tilted periodic potential projected on the mechan-
ical degree of freedom.

Equation (30) shows that in general F eff
x has two terms,

a linear dependence on Fx that is expected for a separable
potential, as well as an additional term that depends on the
nonseparable periodic potential V0(x, y) and the force F via
the probability density P(x, y) and (x). In Fig. 7 we show
the dependence of F eff

x on a range of forces F for different
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(a) (b)

(c) (d)

FIG. 7. Effective force F eff
x as a function of [(a) and (c)] force Fx

for Fy = −4�/Ly and [(b) and (d)] force Fy for Fx = 4�/Lx . [(a) and
(b)] The potential is Eq. (14) with (solid) Ax = −2�, Ay = 2�,
Axy = −2�, (dashed) Ax = −2�, Ay = 2�, Axy = −4�, and (dash-
dotted) Ax = Ay = 0 and Axy = −8�. [(c) and (d)] The potential
is Eq. (18) with Axy = 4� and (solid) U = 0, (dashed) U = 0.5,
(dash-dotted) U = 1, and (dotted) U = 1.5.

potentials. For cosinelike potentials of the form Eq. (14), the
relation between the forces Fx and Fy and the effective force
F eff

x is linear, as seen in Figs. 7(a) and 7(b). For potentials
of the form Eq. (18), the relation is nonlinear, as shown
in Figs. 7(c) and 7(d). For convenience in this section, all
numerical calculations are based on the probability density
P(x, y) determined by directly solving the Smoluchowski
equation (1). We also assume that the force F is known.

Not only does the effective force F eff
x depend on both

Fx and Fy, but also the periodic part of the effective one-
dimensional potential depends on both Fx and Fy. This is
shown in Eq. (31) where the effective one-dimensional po-
tential depends on the force F through the probability density
P(x, y) and (x). This is important because, for nonsepara-
ble potentials, V eff

0 (x) is no longer a function of solely the
mechanical coordinate but is different for different external
forces. Examples of reconstructed effective one-dimensional
potentials V eff

0 (x) are shown in Fig. 8 for [Fig. 8(a)] six
different values of the force Fx at fixed Fy and [Fig. 8(b)] for
variable Fy at fixed Fx. The effective forces F eff

x for each of the
cases are given in Table II. We find that not only varying the
mechanical force affects the effective periodic potential but,
because of the nonseparability of the potential, varying the
chemical force also affects the periodic part of the effective
one-dimensional potential.

B. Signatures of energy coupling

In the previous section we determined the relationship
between a full nonseparable two-dimensional landscape
and its corresponding effective one-dimensional potential
projected on one degree of freedom. This brings into
question what can be determined about the system from

(a)

(b)

FIG. 8. Effective one-dimensional periodic potential V eff
0 (x)

for (a) fixed Fy = 6�/Ly and (dots) Fx = −10�/Lx , (squares)
Fx = −5�/Lx , (hexagrams) Fx = 0�/Lx , (down-triangles) Fx =
5�/Lx , and (up-triangles) Fx = 10�/Lx and (b) fixed Fx = 4�/Lx

with (dots) Fy = −10�/Ly, (squares) Fy = −5�/Ly, (hexagrams)
Fy = 0�/Ly, (down-triangles) Fy = 5�/Ly, and (up-triangles) Fy =
10�/Ly. In all cases the two-dimensional potential is Eq. (18) with
Axy = 3� and U = 1.5.

TABLE II. Force F and calculated effective force F eff
x for the

cases shown in Fig. 8.

LxFx/�, LyFy/� LxF eff
x /�

−10 6 −7.9
−5 6 −3.0
0 6 0.3
5 6 3.1
10 6 6.6
4 −10 3.2
4 −5 1.9
4 0 1.8
4 5 2.5
4 10 2.4
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FIG. 9. Drift velocity with force in the mechanical degree of
freedom for potential Eq. (14) with Fy = 6�/Ly and (solid) Ax =
−3�, Ay = 1�, Ax,y = −6�; (dashed) Ax = −4�, Ay = 2�, Ax,y =
−3�; and (dash-dotted) Ax = −4�, Ay = 1�, and Ax,y = 0.

the effective one-dimensional potential alone, not knowing
the full two-dimensional landscape. In this section, we
identify signatures of energy conversion in the effective
one-dimensional dynamics.

For a one-dimensional system with r = x, the steady-
state drift velocity Eq. (5) has the closed analytic solution
[32,45–47]

〈v〉 = 1 − e−FL/�

γ N/�L
, (32)

where N is the normalization constant of the steady-state
probability density over one period. From this equation it
is possible to show that (i) the drift velocity 〈v〉 is zero at
zero force F , (ii) the force and drift velocity have the same
sign, and (iii) the drift velocity is a monotonic function of the
force [48].

Equation (32) and the properties (i)–(iii) also hold for
each degree of freedom in the case of a separable potential.
Thus, in two dimensions, if the velocity-force relation in the
mechanical degree of freedom does not satisfy all of the
properties (i)–(iii) above then this suggests the presence of
a nonseparable potential and coupling with another degree of
freedom.

Using the model two-dimensional potentials Eq. (14) and
Eq. (18), we determined the drifts 〈vx〉 and 〈vy〉 from Eq. (5).
The results are shown in Figs. 9 and 10 for a range of forces Fx

and a fixed value of Fy. Figure 9 shows that for a (dash-dotted)
separable potential all the properties (i)–(iii) are satisfied.
However, for a nonseparable potential the drift is nonzero
at finite force, violating property (i). Moreover, there is a
region where 〈vx〉 > 0 for Fx < 0, violating property (ii) and
demonstrating energy coupling in the system (see Sec. II A).
In addition, increasing the coupling strength increases the
drift velocity at Fx = 0. These results are in accordance with
experimental observations measuring the maximum torque
exerted by rotatory molecular motors [15,49] and support the
standard interpretation that the nonzero interceptor of the drift

FIG. 10. Drift velocity with force in the mechanical degree of
freedom for potential Eq. (18) with Fy = −4�/Ly, Ax,y = 6�, and
(solid) U = 1.5 and (dashed) U = 1.8.

velocity is due to the driving chemical degree of freedom (in
our formalism represented by Fy > 0). Figure 9 also shows
that the degree of coupling increases the force required to
achieve zero drift. Figure 10 shows that for certain geometries
of the coupling channel, the velocity-force relation becomes
nonmonotonic, violating property (iii).

So far in Sec. IV we have assumed that the force F
is known. However, in the case that F is not known, it is
no longer possible to determine the relation between the
steady-state drift and the force F. Instead, we can use the
iterative reconstruction method in one-dimension with
the measured drift velocity 〈vx〉 [34,35] to determine the
effective one-dimensional potential V eff (x). The relation be-
tween the steady-state drift 〈vx〉 and the effective force F eff

x
satisfies Eq. (32) and properties (i)–(iii), so to identify cou-
pling to another degree of freedom we must reconstruct the
periodic part of the effective one-dimensional potential for
different forces F. As shown in Eq. (31) and Fig. 8, when the
two-dimensional potential is nonseparable, different effective
periodic potentials V eff

0 (x) are obtained for different forces.
Similar ideas of chemical force dependent potentials have
been recently proposed elsewhere [50].

C. Tight-coupling regime

In this section we consider under what circumstances the
effective one-dimensional potential V eff

0 (x) can be used to
infer features of the full two-dimensional potential. From our
survey of the model potentials, we find that this is usually only
possible when the two degrees of freedom are tightly coupled
and when the path of the deep channel in the landscape
is along the diagonal. For this discussion we focus on the
potentials VCG(x, y) and VZG(x, y) that display metastable states
along the coupled channel.

In the tight-coupling regime, the nonseparable part of
the potential dominates and the two-dimensional landscape
exhibits a deep narrow coupled channel. In this case the
probability density P(x, y) is tightly confined to the chan-
nel. We numerically solve the Smoluchowski equation for
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(a)

(b)

FIG. 11. (a) Contour plot of the two-dimensional steady-state
probability density P(x, y) with (dashed) the minimum energy path
of the coupled channel. (b) (dashed) Reconstructed effective one-
dimensional potential V eff

0 (x) and (solid) two-dimensional potential
along the channel path projected onto the x axis V s

0 . The potential is
Eq. (15) in the tight-coupling regime with the parameters the same
as in Fig. 1(d).

the two-dimensional probability density and then calculate
PRX(x) using Eq. (23). Then we reconstruct the effective one-
dimensional potential V eff (x) from the effective probability
density PRX(x). The effective potential is then compared with
the two-dimensional potential along the minimum energy path
of the coupled channel projected onto the x axis V s(x). This
comparison is only possible because we know the model
two-dimensional potential and the path of the channel in
two dimensions {x(s), y(s)}. Typically, when reconstructing
potentials from single trajectory data, the underlying two-
dimensional landscape would not be known so the results
presented in this section are for illustrative purposes only.

Figure 11 shows the two-dimensional probability density
and reconstructed effective one-dimensional potential for the
diagonal potential VCG(x, y) Eq. (15). We find good agreement
between the reconstructed effective one-dimensional potential
and the two-dimensional potential along the channel shown as
the dashed line in Fig. 11(a).

In contrast, Fig. 12 shows the analogous calculation for the
zigzaglike potential Eq. (18). In this case the reconstructed
effective one-dimensional potential and the projected channel
of the two-dimensional landscape are very different. We can
understand this by noting that as the system moves along the
channel it spends significant time at certain regions of x while

(a)

(b)

FIG. 12. (a) Contour plot of the two-dimensional steady-state
probability density P(x, y) with (dashed) the minimum energy path
of the coupled channel. (b) (dashed) Reconstructed effective one-
dimensional potential V eff

0 (x) and (solid) two-dimensional potential
along the channel path projected onto the x axis V s

0 . The potential is
Eq. (20) in the tight-coupling regime with the parameters the same
as in Fig. 1(d).

moving along the y direction. Although not within a single
minimum of the two-dimensional potential during this time,
if only the x degree of freedom is measured, this behavior
leads to a deep minimum in the reconstructed effective one-
dimensional potential. Therefore, despite knowing the path
of the coupled channel, the reconstructed potential V eff (x)
does not accurately predict the profile of the two-dimensional
landscape along the channel. In this case, the reconstructed
effective one-dimensional potential is of limited value for
understanding the features of the full two-dimensional free-
energy landscape and full two-dimensional dynamic informa-
tion is needed to reconstruct the two-dimensional landscape.

V. SUMMARY

We have presented a k-space method for reconstructing
multidimensional free-energy potential landscapes of cyclic
molecular motors from stochastic single trajectories. Using
a range of model potentials in two dimensions we have
demonstrated that full two-dimensional stochastic trajectories
can be used to reconstruct full two-dimensional free-energy
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landscapes. When the external force is known in both degrees
of freedom, the landscape can be reconstructed directly from
the probability density and the Fourier decomposition of the
reconstructed potential enables mechanochemical coupling in
the system to be identified. If the external force is not known
in one or both degrees of freedom, then the steady-state drift
velocity can be used in an iterative method to reconstruct the
two-dimensional potential landscape, determine the forces on
the system, and identify mechanochemical coupling. As in
the one-dimensional case [34,35], we found the reconstruction
method to be robust in two dimensions with convergence for
increasing duration and sampling frequency of trajectories.

We also considered the case where the multidimensional
system is measured in only one degree of freedom. For
mechanochemical systems, it is always possible to reconstruct
an effective one-dimensional tilted periodic potential from
the effective one-dimensional probability density projected
onto the mechanical degree of freedom. The reconstructed
effective one-dimensional potential depends on the full two-
dimensional potential, including the external forces in both
the mechanical and chemical degrees of freedom. In general,
the effective one-dimensional potential cannot be used to
understand the features of the full underlying two-dimensional
landscape. However, even with dynamic information in only
one dimension it is possible to identify signatures of energy
conversion. If the external forces on the system are known,
then nonseparability and energy coupling can be identified
by reconstructing the effective one-dimensional potential and
examining the drift-force relation in the observed degree of
freedom. If the external forces on the system are not known,
coupling can be identified by reconstructing the effective one-
dimensional potential for a range of forces and observing a
force dependence in the periodic part of the effective one-
dimensional potential.

This work highlights three key messages for experimen-
tal studies of molecular motors. (1) It is often not obvious
how many degrees of freedom are needed for describing a
system, but by reconstructing an effective potential along
one degree of freedom and analyzing the drift-force rela-
tion and/or the force dependence of the reconstructed effec-
tive one-dimensional potential it is possible to differentiate
between a purely one-dimensional system and an effective

one-dimensional system with hidden coupled degrees of free-
dom. (2) In general, the effective one-dimensional potential
reconstructed from single trajectories measured in only one
degree of freedom is force dependent. This means that for
mechanochemical molecular motors, different chemical force
regimes can lead to different barrier heights in the recon-
structed effective one-dimensional potential in the mechanical
degree of freedom. Therefore, it is necessary to obtain ex-
perimental measurements for a wide range of forces to better
understand the coupling dynamics of the system. (3) Typically
in current experiments only one mechanical degree of freedom
is measured with single-molecule resolution. However, the
effective potential reconstructed in one degree of freedom is
only indicative of the features of the full two-dimensional
potential for tightly coupled systems with a diagonal path on
the landscape. Being unable to simultaneous measure both
mechanical and chemical degrees of freedom is a significant
handicap in understanding the full two-dimensional free-
energy landscape and elucidating energy coupling. Achieving
simultaneous measurement of multiple degrees of freedom
may be more realistic in systems with two mechanical degrees
of freedom. Alternative systems to consider would be elec-
tromechanical artificial molecular machines [51–54] or ion
gradient pumps in lipid membranes [11].

In this paper we have assumed that the potential landscape
is tilted periodic in all relevant degrees of freedom. However,
it is possible that one or more of the degrees of freedom
may be confined [48]. Provided the potential landscape of the
system is nonseparable we would still expect effects similar
to those described here, although the k-space method would
need to be modified in this case. We have also only considered
equal periodicity and equal viscous drag coefficients in all
degrees of freedom. It would be interesting to consider sys-
tems with very different dynamic timescales between different
degrees of freedom [55–57].
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