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Continuous attractor neural networks are used extensively to model a variety of experimentally observed
coherent brain states, ranging from cortical waves of activity to stationary activity bumps. The latter are thought
to play an important role in various forms of neural information processing, including population coding in
primary visual cortex (V1) and working memory in prefrontal cortex. However, one limitation of continuous
attractor networks is that the location of the peak of an activity bump (or wave) can diffuse due to intrinsic
network noise. This reflects marginal stability of bump solutions with respect to the action of an underlying
continuous symmetry group. Previous studies have used perturbation theory to derive an approximate stochastic
differential equation for the location of the peak (phase) of the bump. Although this method captures the diffusive
wandering of a bump solution, it ignores fluctuations in the amplitude of the bump. In this paper, we show
how amplitude fluctuations can be analyzed by reducing the underlying stochastic neural field equation to a
finite-dimensional stochastic gradient dynamical system that tracks the stochastic motion of both the amplitude
and phase of bump solutions. This allows us to derive exact expressions for the steady-state probability density
and its moments, which are then used to investigate two major issues: (i) the input-dependent suppression of
neural variability and (ii) noise-induced transitions to bump extinction. We develop the theory by considering
the particular example of a ring attractor network with SO(2) symmetry, which is the most common architecture
used in attractor models of working memory and population tuning in V1. However, we also extend the analysis
to a higher-dimensional spherical attractor network with SO(3) symmetry which has previously been proposed
as a model of orientation and spatial frequency tuning in V1. We thus establish how a combination of stochastic
analysis and group theoretic methods provides a powerful tool for investigating the effects of noise in continuous
attractor networks.
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I. INTRODUCTION

One of the fundamental abilities of the brain is to hold
information in short term memory. Experimental evidence
suggests that one mechanism for short term memory is persis-
tent neural activity that is sustained for a period of time after a
stimulus has been removed [1,2]. This persistent state is often
represented as an activity bump, which is a localized state of
activity in a spatially structured neural network. For example,
certain neurons respond to local regions of luminance in the
visual field; the stimulus region that elicits the maximum
average firing rate is known as the neuron’s receptive field.
Thus, at a population level, if a stimulus is at location x in the
visual field, then cells with receptive fields containing x will
have the highest firing rate, whereas the firing rate of cells with
receptive fields away from x will decrease as the distance from
x increases. In networks responsible for working memory, this
localized state persists after the stimulus is removed and the
location of the peak of the bump indicates the remembered
location [3–7].

Mathematically speaking, short term memory is typically
modeled using a so-called bump attractor network, which
simultaneously supports a stable uniform rest state and a
continuous family of stable bump solutions in the absence
of an external input or stimulus. The existence of a family
of bump solutions reflects a continuous symmetry of the
underlying neural field equations, and allows the network to
encode a continuous variable such as spatial location [8].

When an input is presented, it induces a transition from the
rest state to one of the bump solutions, which persists when
the input is removed, thus maintaining a memory of the input.

Another major application of bump attractor networks is
to modeling the formation of population tuning curves in
primary visual cortex (V1), which encode stimulus features
such as orientation [9–11], spatial frequency [12,13], and
texture [14]. The underlying picture is that recurrent excita-
tory connections amplify weakly biased feed-forward inputs
from the thalamus, which are subsequently sculpted by lateral
inhibitory connections. The resulting tuning width and other
aspects of cortical responses are thus primarily determined
by intracortical connections rather than thalamic inputs. The
output activity bump is said to amplify the input bias, and
provides a network-based encoding of the stimulus that can
be processed by downstream networks.

However, one major limitation of continuous attractor net-
works is that the location of the peak of a bump can diffuse
due to intrinsic network noise, resulting in degradation of a
working memory trace or a population code in V1 [3,5,15].
This is a natural consequence of the marginal stability of
bump solutions with respect to the action of the underlying
symmetry group in the absence of an input. One method for
analyzing the effects of noise in attractor networks is to use
the theory of stochastic neural fields. The latter has received
growing attention recently, not only within the context of
working memory [16–19], but also with regard to traveling
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waves [20–23], binocular rivalry [24], and stimulus-dependent
neural variability [25]. In these studies, noise is typically
assumed to be weak. Translation symmetry is exploited to
write the stochastic neural field, to leading order, as a shifted
deterministic bump solution where the shift, or phase, is
a stochastic variable. An approximate stochastic differential
equation (SDE) for the phase is then derived using pertur-
bation methods. Although such an approach captures the
diffusive wandering of a bump solution, it ignores fluctuations
in the amplitude of the bump. It is possible to take into account
the coupling between amplitude and phase fluctuations by
considering higher-order terms in the perturbation expansion,
however, the analysis is rather involved and is restricted to
weak noise.

In this paper, we follow a different approach by imposing
certain constraints on the synaptic weight function and intrin-
sic noise so that a reduced, but exact, SDE can be derived that
tracks the stochastic motion of both the amplitude and phase
of bump solutions for arbitrary levels of noise. In particular,
the resulting SDE can be expressed as a stochastic gradient
dynamical system, which allows us to derive an exact expres-
sion for the steady-state probability density and its moments.
We develop the theory by considering the particular example
of a ring attractor network with SO(2) symmetry, which is
the most common architecture used in attractor models of
working memory and population tuning in V1. However, we
also extend the analysis to a higher-dimensional spherical
attractor network with SO(3) symmetry, which has previously
been proposed as a model of orientation and spatial frequency
tuning in V1 [12,13].

We address two major issues within the context of ring
attractor networks. First, we determine how fluctuations in
the amplitude and phase of a bump depend on the input. This
is directly related to a topic of considerable current interest,
namely, understanding the neural mechanisms underlying the
suppression of cortical variability following the onset of a
stimulus [26–34]. Since trial-by-trial variability and noise
correlations are known to affect the information capacity of
neurons, such suppression could improve the accuracy of
population codes. We show that increasing the input greatly
suppresses steady-state phase fluctuations, consistent with a
recent study based on perturbation methods [25]. Moreover,
depending on parameter values, the input can either have a
negligible or a noticeable effect on amplitude fluctuations, but
the reduction in variability is much less than that for the phase.
Thus, amplitude fluctuations could be significant outside the
weak noise regime. Second, in the case of a bistable network,
we calculate the mean time for bump extinction due to a
noise-induced transition to a zero state or a low amplitude
bump. These transitions contribute to the steady-state variance
in the amplitude, but would be rare events in the case of weak
noise.

The paper is organized as follows. In Sec. II we show
how to reduce the deterministic neural field equation for a
ring attractor network to a planar gradient dynamical system,
which tracks the amplitude and phase of bump solutions. We
then use symmetry arguments to investigate the existence and
stability of bumps. In Sec. III, we turn to a stochastic version
of the neural field equation and the corresponding stochastic
gradient system. The latter allows us to compute a steady-

state probability density, which determines the distribution of
the phase and amplitude of a stochastically wandering bump
solution. We use this to investigate how inputs can suppress
amplitude and phase fluctuations. We also compare our exact
results to previous results obtained using perturbation theory
in the weak noise limit. In Sec. IV we analyze the escape
time problem for bump extinction in the presence of noise.
Finally, in Sec. V we extend our theory to spherical attractor
networks, thus establishing more generally how a combination
of stochastic analysis and group theoretic methods provides a
powerful tool for investigating the effects of noise in continu-
ous attractor networks.

II. RING ATTRACTOR NETWORK
AS A GRADIENT SYSTEM

Consider the deterministic neural field equation

∂u

∂t
= −u +

∫ π

−π

K (θ − θ ′) f (u(θ ′, t ))dθ ′ + I (θ ), (2.1)

where u(θ, t ) represents the activity of neurons with stimulus
preference θ ∈ [−π, π ), f (u) is a sigmoidal firing rate func-
tion

f (u) = 1

1 + e−η(u−κ )
,

with gain η and threshold κ , K describes the synaptic strength
between neurons with stimulus preferences θ and θ ′, and I (θ )
is the external input to the population. Here, θ could represent
the direction preference of neurons in area-middle temporal
cortex (MT) [31], the orientation preference of V1 neurons,
after rescaling θ → θ/2 [9–11], or a coordinate in spatial
working memory [3,15,16]. Following Ref. [16], suppose that
the 2π -periodic function K (θ ) is even and has the finite cosine
series expansion

K (θ ) =
N∑

n=0

wn cos(nθ ).

Since u and I are also periodic in θ , they have the correspond-
ing Fourier series expansions

u(θ, t ) =
∞∑

n=0

[an(t ) cos(nθ ) + bn(t ) sin(nθ )],

I (θ ) =
∞∑

n=0

[
IC
n cos(nθ ) + IS

n sin(nθ )
]
.

For notational convenience, we will rewrite these equations as

u(θ, t ) =
∞∑

n=0

xn(t ) · e(nθ ), I (θ ) =
∞∑

n=0

In · e(nθ ), (2.2)

where

xn(t ) =
[

an(t )
bn(t )

]
, In =

[
IC
n

IS
n

]
, and e(θ ) =

[
cos(θ )
sin(θ )

]
.
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Substituting Eqs. (2.2) into (2.1) and taking inner products
with respect to cos(nθ ) and sin(nθ ) generates a system of
ordinary differential equations (ODEs) for an, bn:

dxn(t )

dt
= −xn(t ) +

∫ π

−π

wn f

( ∞∑
m=0

xm · e(mθ )

)
e(nθ )dθ + In,

n � N (2.3a)

dxn(t )

dt
= −xn(t ) + In, n > N. (2.3b)

Thus, all modes outside the range of the integral operator
exponentially approach In. Therefore, for simplicity, we will
take initial conditions xn(0) = In for n � N + 1 and focus on
the corresponding finite-dimensional space

W R
N =

{
N∑

n=1

[an cos(nθ ) + bn sin(nθ )]

}
∼= R2N . (2.4)

Now, define the scalar function

V =
N∑

n=0

1

wn

[
1

2
||xn||2 − xn · In

]

−
∫ π

−π

F

(
N∑

n=0

xn · e(nθ ′) +
∞∑

n=N+1

In · e(nθ ′)

)
dθ ′, (2.5)

where

F (u) =
∫ u

0
f (u′)du′. (2.6)

We can then rewrite Eq. (2.3) as the scaled gradient system

dxn

dt
= −wn∇xnV, (2.7)

where

∇xnV =
[
∂anV
∂bnV

]
.

Almost all studies of ring attractor networks take the
dominant mode of K (θ ) to be cos θ [4,9,11,16]. First, this
represents a version of the so-called Mexican hat weight
distribution, in which neurons with similar stimulus prefer-
ences excite each other, and those with dissimilar stimulus
preferences inhibit each other. Second, in an appropriate
parameter regime, the resulting neural field equation supports
the existence of a stable stationary bump solution, whose dom-
inant mode is of the form cos(θ − θ0), where θ0 ∈ [−π, π )
is the location of the peak of the bump. In the absence of a
stimulus, θ0 is arbitrary. On the other hand, a stimulus of the
form I cos(θ − �) can fix the location of the bump such that
θ0 = �.

In light of these observations, it is reasonable to take [16]

K (θ ) = w cos(θ ),

I (θ ) = IC cos(θ ) + IS sin(θ ) = I cos(θ − �).

Within our particular formulation, we then have a traditional
planar gradient system

dx
dt

= −∇V0(x), (2.8)

where x = (a1, b1) = (a, b),

V0(x) = 1
2 ||x||2 − x · I − G(x), (2.9)

with I = (IC, IS ) = Ie(�), and

G(x) = w

∫ π

−π

F (x · e(θ ))dθ. (2.10)

It immediately follows that time-dependent solutions are of
the form of a time-dependent bump

u(θ, t ) = a(t ) cos(θ ) + b(t ) sin(θ ) = A(t ) cos[θ − �(t )],

where we have introduced the polar coordinates x(t ) =
A(t )e(�(t )), that is,

a(t ) = A(t ) cos �(t ), b(t ) = A(t ) sin �(t ), (2.11)

with A(t ) the amplitude of the bump and �(t ) the phase.
At the deterministic level, reexpressing the bump dynamics
in terms of a gradient system does not yield any major new
results regarding the existence and stability of equilibrium
solutions. The advantages will become apparent when we
look at the stochastic model in Sec. III. However, in order to
provide the necessary background for the stochastic analysis,
it is useful to rederive previous results concerning existence
and stability [16] using the alternative gradient formulation.

A. Homogeneous network

When I (θ ) = 0 in the original neural field equation (2.1),
the system is SO(2) equivariant with respect to the action
ϕu(θ ) = u(θ − ϕ). Since u(θ ) = x · e(θ ), it follows that

u(θ − ϕ) = x · e(θ − ϕ) = x · [R(−ϕ)e(θ )] = R(ϕ)x · e(θ ),

where R(ϕ) is the 2×2 rotation matrix by angle ϕ, and
therefore the induced action on x ∈ R2 is the standard action
ϕ · x = R(ϕ)x. Hence, V0(x) is SO(2) invariant when I = 0,
so that ∇V0(x) commutes with rotations. Consequently the
gradient system (2.8) is SO(2) equivariant with respect to
the standard action on R2. Moreover, since equilibria are
determined by extremal values of the potential V0(x) and V0(x)
has radial symmetry, there is a continuum of equilibria consti-
tuting a circle. This symmetry implies that we can, without
loss of generality, take stationary solutions x∗

0 = (a∗, 0) with
a∗ > 0 satisfying

a∗ = F (a∗) ≡ w

∫ π

−π

f (a∗ cos(θ )) cos(θ )dθ. (2.12)

Hence, existence of a stationary bump solution reduces to
finding a nontrivial solution to Eq. (2.12). Once the existence
of an amplitude a∗ has been established, we obtain group
orbits of solutions as

x∗ = R(ψ )x∗
0 = a∗( cos(ψ ), sin(ψ )), ∀ ψ ∈ [−π, π ).

(Note that we can take a∗ > 0 since its negative counterpart is
obtained by applying a rotation by π .)

Linearizing about some equilibrium solution x∗ = a∗e(ψ )
yields the eigenvalue problem

λy = Hy, y ∈ R2 (2.13)
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where H is the Hessian matrix for V0(x):

Hi j = − ∂2V0

∂xi∂x j

∣∣∣∣
x=x∗

= −δi, j + w

∫ π

−π

f ′(x∗ · e(θ ))ei(θ )e j (θ )dθ. (2.14)

If x∗ 
= 0, then SO(2) equivariance implies that H always has
a zero eigenvalue with corresponding eigenvector x∗⊥, the
vector orthogonal to the equilibrium x∗. In order to show this,
we first note that if x∗ is an equilibrium, then

∇V0(x∗) = 0 ⇒ ∇V0(R(s)x∗) = 0

for all s. Differentiating with respect to s and evaluating at
s = 0 gives

0 = − d

ds
∇V0(R(s)x∗)

∣∣∣∣
s=0

= H R′(0)x∗.

Thus,

R′(0)x∗ =
[

0 −1
1 0

]
x∗ ≡ x∗⊥ = a∗(− sin(ψ ), cos(ψ ))

spans null(H ). Equation (2.14) then shows that

−a∗ sin ψ + w

∫ π

−π

f ′(a∗ cos(θ −ψ )) cos θ sin(θ −ψ )dθ = 0,

which, after exploiting the SO(2) invariance of the integral,
yields the identity

w

∫ π

−π

f ′(a∗ cos(θ )) sin2(θ )dθ = 1. (2.15)

The analogous result in the original neural field variable is the
following: if u(θ ) is a nonconstant solution, then u′(θ ) is in
the null space of the linearization. This reflects the translation
symmetry of the system, i.e., u(θ ) is a solution if and only
if u(θ − ψ ) is a solution for any ψ ∈ [−π, π ). Thus, per-
turbations u = u0(θ ) + εu′

0(θ ) correspond to infinitesimally
shifting the phase of u0(θ ) while perturbations x = x∗ + εx∗⊥
correspond to infinitesimally rotating x∗ along a circle.

With this in mind, we can split R2 into two eigenspaces

R2 = span{x∗} ⊕ span{x∗⊥}.
The restriction of H to x∗ yields

Hx∗ = −x∗ + w

∫ π

−π

f ′(x∗ · e(θ ))e(θ )[x∗ · e(θ )]dθ.

Hence, taking the dot product of both sides of λx∗ = Hx∗ with
x∗ and dividing by ||x∗||2 yields

λ = −1 + w

∫ π

−π

f ′(x∗ · e(θ )) cos2(θ − ψ )dθ

= −1 + w

∫ π

−π

f ′(a∗ cos(θ )) cos2(θ )dθ

= −1 + F ′(a∗), (2.16)

where the second equality follows from SO(2) invariance
of the integral, and F is defined in Eq. (2.12). Perturba-
tions along x∗ corresponding to perturbations in the bump

FIG. 1. Plot of nontrivial fixed points of F (a∗) for both high gain
(η = 20) and low gain (η = 2). The black curves are the graphs for
y = F (a∗) and the gray curve is the graph for y = a∗. Filled circles
denote stable equilibria while open circles denote unstable equilibria.
High gain supports a bistable system, whereas low gain supports only
a single nonzero stable state. Other parameters used are w = 1 and
κ = 0.5.

amplitude. Therefore, the equilibrium bump solution will be
marginally stable if and only if

F ′(a∗) < 1. (2.17)

In particular, the stability condition for the trivial solution
a∗ = 0 is πw f ′(0) < 1. Note that if the trivial solution is
unstable, F ′(0) > 1, then there exists at least one stable
nontrivial bump solution. This follows from the observation
that F (a) is continuous and lima→∞ F (a) = 2w. Therefore,
there must exist some a0 > 0 such that a0 = F (a0). If there is
more than one solution, let a0 denote the smallest one. Then,
f ′(a0) < 1 since f (a) > a for 0 < a < a0 and f (a) < a for
a0 < a sufficiently close. Hence, the solution with the smallest
magnitude is stable. On the other hand, stability of the trivial
solution does not imply anything about existence of nontrivial
solutions. It will depend on how large w is. If w is too small,
then the trivial solution will be the only equilibrium. On
the other hand, if w is sufficiently large, then there will be
two equilibria corresponding to bump states, with the larger
amplitude being stable. Hence, the system is bistable with a
stable rest state and a stable bump state. See Fig. 1 for an
illustration of these results.

B. Inhomogeneous network

When I (θ ) 
= 0, the system (2.8) is no longer SO(2) equiv-
ariant, but it has other symmetry properties. In particular, if
x∗ is a stationary solution when I = I0, then R(ψ )x∗ is a
stationary solution when I = R(ψ )I0. Moreover, we can set
∇V0(x) = ∇U0(x) − I, where

U0(x) = 1
2 ||x||2 − G(x), (2.18)

which is SO(2) invariant. Thus, stationary solutions satisfy
∇U0(x∗) = I. Radial symmetry of U0(x) implies that, for
each x, ∇U0(x) is collinear with x and therefore stationary
solutions must be collinear with I. We can therefore, without
loss of generality, take I0 = (Ī, 0)T with Ī > 0 and, since x∗
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must be collinear, we can take x∗ = (a∗, 0)T . We thus obtain
the fixed point equation

a∗ − Ī = F (a∗). (2.19)

In contrast to the solutions of Eq. (2.12), negative and positive
solutions for a∗ will no longer be equivalent up to a rotation.
A positive solution to Eq. (2.19), a∗ > 0, will correspond to a
bump that is in phase with the input (peak at � = �), whereas
a negative solution, a∗ < 0, will correspond to an antiphase
bump (peak at � = � + π ).

The eigenvalue equation is identical to the homogeneous
case since I vanishes after differentiation. The main difference
is that, since the inhomogeneous system is not equivariant, the
Hessian H no longer trivially has zero eigenvalues. However,
we can still make use of the symmetry property that if x∗ is an
equilibrium solution when I = I0, then R(ψ )x∗ is a solution
when I = R(ψ )I0. This means that

0 = −∇U0(x∗) + I0 ⇒ 0 = −∇U0(R(ψ )x∗) + R(ψ )I0

for all rotation matrices R(ψ ) with ψ ∈ [−π, π ). Differenti-
ating with respect to ψ and setting ψ = 0 then yields

Hx∗⊥ = −I⊥
0 ,

where

x∗⊥ =
[

0 −1
1 0

]
x∗ and I⊥

0 =
[

0 −1
1 0

]
I0.

Since x∗ is collinear with I0,

I0 = Īe(�) ⇒ x∗ = a∗e(�), � ∈ [−π, π ),

with Ī > 0 and a∗ satisfying Eq. (2.19). Therefore,

Hx∗⊥ = − I0

a∗ x∗⊥,

showing that x∗⊥ is an eigenvector with corresponding eigen-
value

λo = − Ī

a∗ .

Hence, in-phase bump solutions (a∗ > 0) will always be
stable with respect to phase changing perturbations while an-
tiphase bump solutions (a∗ < 0) will always be unstable. (In
the absence of an input, Ī = 0, we recover marginal stability
with respect to phase shifts.) As far as we are aware, no one
has explicitly calculated λo before, with the exception of some
specific cases (for example, using a Heaviside firing rate [16]).
Interestingly, the general expression does not depend on the
form of firing rate function.

The eigenvalue corresponding to the eigenvector x∗ is
identical to Eq. (2.16). Since negative solutions a < 0 are
unconditionally unstable, we focus on stability of a > 0 and
specifically consider the bistable regime. Let 0<ar<au<as

denote the three positive equilibria. Note that if as exists
for Ī = 0, then it will exist for all Ī > 0. When Ī = 0, ar

and as are stable while au is unstable. Increasing Ī increases
the value of ar and as, while it decreases the value of au.
Since F (a) saturates, then F ′(as) decreases as as increases
[provided that F ′(as) < 1 for Ī = 0]. Therefore, increasing
I decreases the amplitude changing eigenvalue and, hence,

-2

-1

0

1

2

-4 -2 2 40
amplitude a*

(a)

(b)

-1 1 20
a

-1

0

1

b

FIG. 2. Equilibrium solutions for the inhomogeneous system.
(a) The black curve is the graph for y = F (a∗) and the gray lines are
for y = a∗ − Ī and various input amplitudes Ī . The solid gray line is
for Ī = 0.1, the dashed line for Ī = 0.5, and the dashed-dotted line
for Ī = 1. Filled circles denote stable equilibria while open circles
denote unstable equilibria. (b) Contour plot of the potential V0(x) for
Ī = 0.1 and x = (a, b). Other parameters used are η = 20, w = 1,
and κ = 0.5.

as remains stable. Similarly, for small enough Ī, ar remains
stable and au remains unstable.

At some critical value of Ī , the system loses ar and au

(a saddle-node bifurcation occurs). Finally, as Ī increases
further, only the stable in-phase bump state as remains. See
Fig. 2 for an illustration of the effects of input. The change
in the number of fixed points works similarly for the case
when the homogeneous system only has one stable fixed point
(modulo symmetry).

III. STOCHASTIC RING MODEL

Now, consider the stochastic ring model

du =
[
−u +

∫ π

−π

K (θ − θ ′) f (u(θ ′, t ))dθ ′ + I (θ )

]
dt

+ dW (θ, t ), (3.1)
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where dW is a Q-Wiener process (colored in space, white in
time) with E[dW (θ, t )] = 0 and

E[dW (θ, t )dW (θ ′, t ′)] = C(θ − θ ′)δ(t − t ′)dt dt ′,

where C(θ ) is taken to be an even periodic function of the
form

C(θ ) =
∞∑

n=1

σn cos(nθ ), σn > 0.

It is common to assume that the correlation function is SO(2)
invariant. Moreover, the restriction that C is even and σn > 0
follows from requiring that the corresponding integral opera-
tor

∫ π

−π
C(θ − θ ′)u(θ ′)dθ ′ is symmetric and positive definite

on W R
N . For simplicity, we assume that σn = 0 for n > M for

some M � N . As in the deterministic case, solutions will have
the form

u(θ, t ) =
M∑

n=0

an(t ) cos(nθ ) + bn(t ) sin(nθ ),

except that now an(t ), bn(t ) are stochastic variables. Define
the two-dimensional (2D) Wiener processes

dW̃n(t ) =
∫ π

−π

dW (θ ′, t )

[
cos(nθ ′)
sin(nθ ′)

]
dθ ′,

and set xn = (an, bn) as before. The vector-valued Wiener
process dW̃ = (dW̃1, . . . , dW̃M ) has the diagonal correlation
matrix

E[dW̃n(t )dW̃m(t ′)T ] = δn,mσnδ(t − t ′)dt dt ′.

Thus, we can write

dW̃n = √
σndWn,

where each dWn is a 2D uncorrelated Wiener process with
unit variance. Substituting into Eq. (3.1) and taking inner
products with cos(nθ ) and sin(nθ ) yields the SDE

dxn =
{
−wn∇xnV (x1, . . . , xM )dt + √

σndWn, 1 � n � N

[−xn + In]dt + √
σndWn, N < n � M.

(3.2)

Thus, xn for n � N follows a scaled stochastic gradient system
while xn for n > N describes an Ornstein-Uhlenbeck (OU)
process.

A. Planar gradient system and stationary probability density

Let us consider the simplest case N = M = 1 and In = 0
for n 
= 1, so that we have the planar stochastic gradient
system

dx = −∇V0(x)dt + √
σdW, (3.3)

where we set σ = σ1 throughout the rest of our analysis. The
corresponding Fokker-Planck (FP) equation for the probabil-
ity density p(x, t ) takes the form

∂ p

∂t
= ∇ · [∇V0(x)p(x, t )] + σ

2
∇2 p(x, t ), (3.4)

with ∇2 = ∇ · ∇ and V0(x) given by Eq. (2.9). The advantage
of a multivariate stochastic gradient system is that one can

explicitly write the stationary probability density

p(x) = 1

Z
e−2V0(x)/σ , (3.5)

which exists provided that the normalization factor

Z :=
∫
R2

e−2V0 (x)/σ dx < ∞.

Observe that

|F (u)| =
∣∣∣∣∫ u

0
f (u)du

∣∣∣∣ � |u|

since 0 < f < 1 is bounded, and therefore from Eq. (2.10)

|G(x)| �
∫ π

−π

|F (x · e(θ ))|dθ

� ||x||
∫ π

−π

| cos[θ − arg(x)]|dθ = 4||x||.

Hence,

V0(x) = 1
2 ||x||2 − x · I − G(x) ∼ 1

2 ||x||2, as ||x|| → ∞
and Z is indeed finite.

Since V0(x) → U0(x) when I = 0 and U0(x) is radially
symmetric, Eq. (3.5) shows that the stochastic phase of the
bump is uniformly distributed in the absence of an input,
which is consistent with previous studies of wandering bumps
[16]. The novelty here is that we can also determine the
stationary density for the bump amplitude. When I 
= 0, V0(x)
is not radially symmetric and thus has a discrete set of local
minima that lie along the line spanned by I. It is useful to
rewrite the stochastic dynamics in terms of the amplitude A
and phase � of the bump by converting to polar coordinates
x = A( cos(�), sin(�)). To that end we set

p(x, t )dx = p̂(A,�, t )A dA d�.

Transforming the time-dependent FP equation (3.4) to polar
coordinates yields (after dropping the hat)

∂ p

∂t
= 1

A

∂

∂A

{
A

[
∂U0(A)

∂A
− Ī cos(� − �)

]
p

}
+ 1

A

∂

∂�
[Ī sin(� − �)p]

+ σ

2

(
∂2

∂A2
+ 1

A

∂

∂A
+ 1

A2

∂2

∂�2

)
p. (3.6)

Multiplying both sides of (3.6) by A, we deduce that the
corresponding SDE for the amplitude and phase takes the
form

dA =
[
−∂AU0(A) + σ

2A
+ Ī cos(� − �)

]
dt + √

σdWA,

(3.7a)

d� = − Ī

A
sin(� − �)dt +

√
σ

A
dW�, (3.7b)

with WA(t ) and W�(t ) independent Wiener processes with
unit variance. Note that Eqs. (3.7) could also be derived by
performing a change of variables in Eq. (3.3) and using Ito’s
lemma.
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Using polar coordinates, we can derive a relationship
between the stationary densities with and without an input
(which we will call the homogeneous and inhomogeneous
densities, respectively). The probability density in polar co-
ordinates is given by

Ap(A,�) = 1

Z
Ae2IA cos(�−�)/σ e−2U0(A)/σ ,

Z =
∫ π

−π

∫ ∞

0
Ae2IA cos(�−�)/σ e−2U0(A)/σ dA d�,

since V0(x) = U0(x) − x · I, that is, V0(A,�) = U0(A) −
AI cos(� − �) with

U0(A) = 1

2
A2 − w

∫ π

−π

F (A cos θ )dθ. (3.8)

When I = 0 we have

Ap(A,�) = 1

2πZh
Ae−2U0(A)/σ ≡ 1

2π
ph

A(A), (3.9)

where

Zh =
∫ ∞

0
Ae−2U0(A)/σ dA,

and we define ph
A(A) as the homogeneous marginal density

for the amplitude. Obviously, this shows that the variables A
and � are independent, and the distribution for the phase is
uniform over S1. An example of the amplitude density ph

A
is presented in Fig. 3(a). Note that, although the system is
bistable in the chosen parameter regime, ph

A has no peak at
A = 0. This is due to the conversion to polar coordinates and
the fact that the amplitude of the mean of x is not the same as
the mean of the amplitude of x. The function p(x, t ) has peaks
at x = 0 and ||x|| = a∗ and thus p̂(A,�, t ) has peaks at A = 0
and A = a∗. However, changing variables also introduces a
Jacobian factor of A, which contributes to the expression for
ph

A, and causes the peak at A = 0 to vanish.
Similarly, for I 
= 0 we have the following relationship

between the homogeneous marginal amplitude density and the
full inhomogeneous density:

pih
A,�(A,�) ≡ Ap(A,�) = Zh

Z
e2IA cos(�−�)/σ ph

A(A). (3.10)

An example contour plot of pih in the (a, b) is shown in
Fig. 3(b). It follows that the statistics in the inhomogeneous
case can be calculated using the density from the homo-
geneous case. For example, the moments of A and circular
moments of � with respect to the inhomogeneous density are
equivalent to

E[Aneim�]ih = 2πZh

Z

∫ ∞

0
An ph

A(A)

×
[

1

2π

∫ π

−π

eim�e2IA cos(�−�)/σ d�

]
dA

= ζE
[
AnIm(βA)

]
h
eim�, (3.11)

where we define β = 2I/σ , ζ = 2πZh/Z , and, after shifting
� → � + � and factoring out ei�, the integral in the square
brackets is the definition of the mth order modified Bessel
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0
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0.2
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-4

-4

4

pih

0.5

 1

1.5

 2(b)

5
amplitude A

0.3

0.4

h

A,Δ

FIG. 3. Probability densities in the bistable regime for (a) the
homogeneous ring model ph

A, and (b) the inhomogeneous ring model
pih

A,� (unnormalized), with I = (0.1, 0). Other parameter values are
the same as Fig. 1.

function

Im(x) = 1

2π

∫ π

−π

exp(x cos θ ) cos(mθ )dθ. (3.12)

(The latter can also be related to circular moments of the so-
called von Mises distribution, see Sec. III B.) In particular, the
means are

〈A〉 = ζE[AI0(βA)]h, (3.13a)

〈ei�〉 = ζE[I1(βA)]hei�, (3.13b)

the variances are computed as

Var(A) = ζE[A2I0(βA)]h − ζ 2E[AI0(βA)]2
h, (3.14a)

Var(ei�) = (
ζE[I2(βA)]h − ζ 2E[I1(βA)]2

h

)
ei2�, (3.14b)

and the covariance is given by

cov(A, ei�) = (ζE[AI1(βA)] − ζ 2E[I0(βA)]hE[I1(βA)]h)ei�.

(3.15)
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Moreover, for � = 0,

〈cos(�)〉 = Re[〈ei�〉]
= ζE[I1(βA)]h, (3.16a)

Var[cos(�)] = 1
2

[
1 + Re〈e2i�〉] − [

Re〈ei�〉]2

= 1
2

[
1 + ζE[I2(βA)]h − 2ζ 2E[I1(βA)]2

h

]
,

(3.16b)

cov(A, cos(�)) = Re[cov(A, ei�)] = ζE[AI1(βA)]

− ζ 2E[I0(βA)]hE[I1(βA)]h, (3.16c)

and the expressions are unchanged when using cos(� − �).
Note that, in the absence of an input, setting β = 0 shows that
there is no correlation between amplitude and phase and the
presence of an input introduces correlations.

Finally, if we only want to analyze the amplitude and phase
separately, we can compute the marginal densities as

pih
A (A) = ζ I0(βA)ph

A(A), (3.17a)

pih
�(�) = ζ

2π
E[e2IA cos(�−�)/σ ]h. (3.17b)

Thus, the inhomogeneous amplitude density is proportional
to the homogeneous density modulated by the Bessel function
and the inhomogeneous phase density is proportional to the
expected value of a von Mises distribution with respect to
the homogeneous amplitude density. It is interesting that the
distributions for the inhomogeneous system can be completely
determined by the probability distributions of the amplitude
from the homogeneous system.

In Fig. 4 we show an example of the steady-state variances
and covariance as a function of input strength I for σ = 1 and
two different values for the firing rate threshold: κ = 0.5 and
0.9. (Since we wish to investigate the effects of amplitude
fluctuations outside the weak noise regime, we consider rel-
atively strong noise throughout.) In both cases, the variance
of cos(�) monotonically decreases toward zero as the input
increases, while the covariance has a weak nonmonotonic
dependence but still approaches zero for large input. On the
other hand, the nature of the dependence of the amplitude
variance on input strength depends on parameter values. For
κ = 0.5 we see that the variance remains approximately un-
changed, while for κ = 0.9 the presence of a sufficiently large
input decreases amplitude variability. The difference in the
input dependence of phase and amplitude fluctuations can be
understood in terms of the linear stability analysis of Sec. II B.
Recall that the discrete spectrum consists of two eigenvalues.
The first is λe = −1 + F ′(a∗), which corresponds to stability
with respect to perturbations in amplitude, and the second is
λo = −I/a∗, corresponding to phase changing perturbations.
Note that a∗ depends implicitly on I according to Eq. (2.19).
In particular, a∗ = F (a∗) + I and thus the stable amplitude
monotonically increases with I [see Fig. 2(a)]. Moreover,
F (a) → 2 for as a → ∞ and thus asymptotically a∗ ∼ I + 2
as I → ∞. Therefore, λo = 0 at I = 0 and monotonically
decreases toward λo → −1 as I → ∞. Now, focus on λe.
Since F ′(a) > 0 for all a and monotonically approaches 0 as
a → ∞, then λe > −1 for all I and monotonically decreases
toward −1 as I → ∞, which is the same asymptotic behavior

Var[A]
Var[cos(Δ)]
Cov[A,cos(Δ)]
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(b)

FIG. 4. Variances and covariance as a function of input strength
I for σ = 1 and (a) κ = 0.5, (b) κ = 0.9. All other parameter values
are the same as in Fig. 2.

as λo. The main difference is the value at I = 0, as illustrated
in Fig. 5, which accounts for the fact that input suppression
is stronger in the case of phase fluctuations. There are at
least two factors contributing to the differences in noise

λ

0

-0.2

-0.4

-0.6

-0.8

-1
0 1 2 3 4 5

input I

FIG. 5. Eigenvalues λe (gray lines) and λo (black lines) as a
function of input I for κ = 0.5 (solid lines) and κ = 0.9 (dashed
lines).
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suppression of the amplitude for κ = 0.5 and 0.9. First, if κ =
0.5, then F ′(a∗) is relatively small and there is a small change
in λe as the input increases. On the other hand, if κ = 0.9, then
F ′(a∗) is larger and there is a more prominent change in λe

(see Fig. 5). Second, when κ = 0.5, the homogeneous bistable
system spends almost all of its time in the stable bump state
so that noise-induced transitions to the stable zero state are
rare events. On the other hand, when κ = 0.9, noise-induced
transitions are more common, and can thus be suppressed by
an external input (see Sec. IV). Such a mechanism for input
suppression has previously been suggested by Litwin-Kumar
and Doiron [30].

As highlighted elsewhere [25], the input-dependent reduc-
tion of phase fluctuations in ring attractor networks provides
one possible mechanism for the experimentally observed
suppression of cortical variability following the onset of a
stimulus [26–29,31–34]. Our previous work showed that the
suppression of phase fluctuations is able to account for a
number of experimental results, provided that the noise is
relatively weak (σ ∼ 0.1 rather than σ ∼ 1), so that amplitude
fluctuations can be ignored to leading order [25]. This is a
common assumption in perturbation theoretic approaches to
the analysis of wandering bumps, which we turn to next. Our
current analysis suggests that this particular noise-suppression
mechanism could break down in the strong noise regime.

B. Weak noise limit and perturbation theory

Previous works on stochastic neural fields have utilized
perturbation theory to derive an effective SDE for the stochas-
tic motion of the phase of a bump (or traveling front) in
the presence of weak noise [16,17,20,25]. Given a stable
stationary solution u = u0(θ ) to the deterministic neural field,
it is assumed that one can write the stochastic solution as

u(θ, t ) = u0[θ − �(t )] + ε1/2v(θ, t ),

where ε � 1 is the strength of the noise, �(t ) is a stochastic
variable tracking the phase displacement, and v(θ, t ) is a
correction term. This decomposition is motivated by the fact
that the system is SO(2) equivariant when ε = 0. Suppose that
the weight kernel is K (θ ) = w cos(θ ), so that the stationary
solution is u0 = a∗ cos(θ ), where a∗ is a solution of Eq. (2.12).
In the presence of a weak input of the form

I (θ ) = √
ε Ī cos(θ − �),

perturbation theory leads, to leading order,

d� = −
√

ε Ī

a∗ sin(� − �)dt + √
εD dW, (3.18)

where

D =
∫ π

−π
∂θ f (u0(θ ))∂θ ′ f (u0(θ ′))C(θ − θ ′)dθ dθ ′[∫ π

−π
∂θ f (u0(θ ))u′

0(θ )dθ
]2 (3.19)

is an effective diffusion coefficient. The phase equation (3.18)
is identical in form to Eq. (3.7 b), except that the former ef-
fectively approximates the amplitude as a constant A(t ) = a∗,
and we have the rescalings Ī → √

ε Ī ,
√

σ → √
εDa∗.

It is important to note that the system (3.7) is exact, but
requires the noise correlations to be of the specific form

C(θ − θ ′) = σ cos(θ − θ ′). On the other hand, the approxi-
mate phase equation (3.18) holds in the weak noise limit for
an arbitrary noise correlation function. Expanding C(θ ) as a
Fourier series, we find that

D =
∑∞

n=0 σn
[∫ π

−π
∂θ f (u0(θ )) sin(nθ )dθ

]2[∫ π

−π
∂θ f (u0(θ ))u′

0(θ )dθ
]2

since u0(θ ) can be taken to be even, without loss of generality,
and thus ∂θ f (u0(θ )) is orthogonal to cos(nθ ) for all n. In the
specific case C(θ − θ ′) = σ cos(θ − θ ′), we have∫ π

−π

∂θ f (u0(θ ))∂θ ′ f (u0(θ ′))C(θ − θ ′)dθ dθ ′

= σ

[∫ π

−π

∂θ f (u0(θ )) sin(θ )dθ

]2

.

The denominator in the expression for D can be evaluated as∫ π

−π

∂θ f (u0(θ ))u′
0(θ )dθ = −a∗

∫ π

−π

∂θ f (u0(θ )) sin(θ )dθ,

and thus D = σ/a∗2. Hence, we recover the noise amplitude
of Eq. (3.7 b) for A(t ) = a∗ and ε = 1.

At the other extreme, when C(θ ) = σδ(θ ), the diffusion
coefficient is

D = σ

∫ π

−π
[∂θ f (u0(θ ))]2dθ[∫ π

−π
∂θ f (u0(θ ))u′

0(θ )dθ
]2

= σ

a∗2

∫ π

−π
[ f ′(u0(θ ))]2 sin2(θ )dθ[∫ π

−π
f ′(u0(θ )) sin2(θ )dθ

]2

= σw2

a∗2

∫ π

−π

[ f ′(u0(θ ))]2 sin2(θ )dθ,

where the last equality follows from Eq. (2.15). Using the
integral mean value theorem, there exists a ξ such that

D = σw2

A2
f ′(u0(ξ ))

∫ π

−π

sin2(θ )dθ = σw

a∗2 f ′(u0(ξ ))

since f ′(u) > 0 for all u. The noise amplitude is thus modified
by the multiplicative factor

√
w f ′(u0(ξ )).

As highlighted in Ref. [25], Eq. (3.18) is known as a von
Mises process, which can be regarded as a circular analog
of the OU process on a line, and generates distributions that
frequently arise in circular or directional statistics [35]. In
particular, the phase has a stationary density given by the von
Mises distribution

M(�; �,β ) = 1

2π I0(β )
eβ cos(�−�), β = 2Ī√

εa∗D
. (3.20)

Sample plots of the von Mises distribution are shown in
Fig. 6 for � = 0. One finds that M(�; 0, β )→1/2π as β→0;
since β ∼ Ī this recovers the uniform distribution of pure
Brownian motion on the circle. On the other hand, the von
Mises distribution becomes sharply peaked as β → ∞. More
specifically, for large positive β,

M(�; 0, β ) ≈
√

β

2π
e−β�2/2. (3.21)
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FIG. 6. Sample plots of the von Mises distribution M(�; 0, β )
for various values of β.

Moments of the von Mises distribution are usually cal-
culated in terms of the circular moments of the complex
exponential z = eiβ [see also Eq. (3.11)]. The nth circular
moment is given by

μn = 〈zn〉β,� :=
∫ π

−π

znM(�; �,β )d� = In(β )

I0(β )
ein�, (3.22)

where again In is the modified Bessel function defined in
Eq. (3.12). In particular, for � = 0, the first and second
circular moments yield

〈cos �〉β = I1(β )

I0(β )
, 〈sin �〉β = 0, (3.23)

〈cos2 �〉β = 1

2
[1 + 〈cos(2�)〉β] = 1

2

[
1 + I2(β )

I0(β )

]
,

and

〈sin2 �〉β = 1 − 〈cos2 �〉β = 1

2

[
1 − I2(β )

I0(β )

]
.

It follows that

Var[cos(�)] = 1

2

[
1 + I2(β )

I0(β )
− 2

(
I1(β )

I0(β )

)2
]
, (3.24a)

Var[sin(�)] = 1

2

[
1 − I2(β )

I0(β )

]
. (3.24b)

The best way to compare our gradient-based results to
Eq. (3.20) is to compute the probability density for � condi-
tioned on a fixed amplitude A. Using Eq. (3.10) for the density
in polar coordinates and the marginal amplitude density in
Eq. (3.17a) we obtain the conditional density

p�|A(�|A) = pih
A,�(A,�)

pA(A)
= 1

2π I0
(

2IA
σ

)e
2IA
σ

cos(�−�), (3.25)

which agrees exactly with Eq. (3.20) when C(θ ) = σ cos(θ ),
ε = 1, and A = a∗ since D = σ/a∗2.

C. Numerical results

We now simulate the time-dependent dynamics of two
different systems: (i) the gradient system with first-order noise
(σn = σδn,1) whose corresponding amplitude-phase SDE is
given by Eq. (3.7) and (ii) the neural field Eq. (3.1) with
higher-order noise. We compare these with the steady-state
results from both the gradient system and approximate phase
SDE in Eq. (3.18). For the sake of illustration, we take the
correlation function of the noise in the neural field equa-
tion to be given by the truncated convergent series C(θ ) =∑20

n=1
1
n2 cos(nθ ). We use the Euler-Maruyama method for

time integration and the trapezoidal rule for integration
in θ :

u(θi, t j+1) = u(θi, t j ) + dt[−u(θi, t j ) + I cos(θi)

+ cos(θi )Ic(u(θ, t j )) + sin(θi )Is(u(θ, t j ))]

+
√

dt
M∑

n=1

√
σn

[
ηc

n cos(nθi ) + ηs
n sin(nθi )

]
,

where Ic and Is are the trapezoidal rules for the integrals∫ π

−π

f (u(θ, t )) cos(θ )dθ,

∫ π

−π

f (u(θ, t )) sin(θ )dθ,

respectively, and ηc
n, η

s
n are independent normally distributed

random variables with unit variance. To obtain a more direct
comparison between the gradient system and the neural field
with higher-order noise, we use the same realization of noise
for the first-order contribution. That is, we generate ηc

1, η
s
1

from a normal distribution and use these same values in
both equations. Finally, for each iteration we set the initial
condition to

A(0) = a∗, �(0) = θ0, u(θ, 0) = a∗ cos(θ − θ0),

where a∗ is the stable bump amplitude and θ0 is pulled from
the uniform distribution on [−π, π ]. We chose a random angle
because it helped significantly to increase the convergence
speed to steady state for the phase distribution, while the
amplitude distribution converged relatively quickly regard-
less. To obtain the amplitude for the neural field solution
with higher-order noise we compute A = maxθ∈[0,2π )u(θ ) and
then we define the phase to be the value of θ that yields
this max.

In Fig. 7 we plot the time-dependent mean of cos(�) and
A, for both the homogeneous and inhomogeneous systems.
The solid black and gray lines denote results from simulations
for the first-order noise and higher-order noise, respectively.
The red solid lines indicate the theoretical steady-state means
obtained from Eqs. (3.13a) and (3.16a), and the red dashed
line in Fig. 7(b) corresponds to the approximate theoretical
mean from Eq. (3.23). We see that there is a very close match
between the first-order noise case and theory, which is to be
expected. For the higher-order noise system, the qualitative
dynamics are very similar, with an increase in the mean
amplitude and a decrease in the mean of cos(�). In Fig. 8 we
show corresponding plots of the variance of the phase and am-
plitude. (The covariance is plotted in Fig. 9.) The theoretical
variances are obtained from Eqs. (3.16b) and (3.14a), and the
dashed red line in Fig. 8(b) denotes the theoretical variance
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FIG. 7. Plots of the time-dependent mean of cos (�(t )) and the
amplitude A(t ). The black solid lines correspond to simulations of
the gradient system with first-order noise, evolving according to
the amplitude-phase SDE (3.7), and the gray solid lines correspond
to simulations of the full neural field equation (3.1) with higher-
order noise. The solid straight (red) lines are the exact analytical
results obtained from Eqs. (3.16a) and (3.13a). (a), (b) E[cos (�(t ))]
for a homogeneous and an inhomogeneous network, respectively.
The dashed straight (red) line corresponds to the approximation
from the perturbative approach in Eq. (3.23). (c), (d) E[A(t )] for
a homogeneous and an inhomogeneous network, respectively. The
input, noise strengths, and firing rate threshold are I = 0.5, σ = 1,
and κ = 0.9. We take the discretizations �t = 0.01 and �θ = 0.01
and run 50 000 realizations. All other parameters are the same as in
Fig. 2.

from the approximate phase SDE in Eq. (3.24a). Note that
in the homogeneous system, the steady-state phase variance
is the same for the gradient system and the phase SDE, and
thus there is only one red line in Fig. 8(a). Figure 8(c) shows a
very close match between the exact theory and simulations for
the first-order noise. The main effect of higher-order noise is
to change the overall variance. For the homogeneous system,
variance is decreased when including higher-order modes
whereas for the inhomogeneous system, the variances are
approximately the same. We have no intuition for this, but
the fact that the variance is decreased does not seem to be
a general result. For other parameter values, the variances in
the homogeneous system are approximately the same (results
not shown). The error in the approximate variance obtained
from the phase SDE is also quite small, particularly, given
the size of the noise strength, and becomes very accurate for
σ � 1. The results for the amplitude variance are similar, al-
though there seems to be a negligible effect from higher-order
noise.

Finally, in Figs. 10 and 11 we compare the marginal den-
sities p�(�) and pA(A) with numerical simulations of the 2D
gradient system as well as the full neural field equation with
higher-order noise. The main difference with the higher-order
noise is that the amplitude distribution is shifted slightly to
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FIG. 8. Plots of the time-dependent variance of cos (�(t )) and
the amplitude A(t ). The black solid lines correspond to simulations
of the gradient system with first-order noise, evolving according to
the amplitude-phase SDE (3.7), and the gray solid lines correspond to
simulations of the full neural field equation (3.1) with higher-order
noise. The solid straight (red) lines are the exact analytical results
obtained from Eqs. (3.16b) and (3.14a). (a), (b) Var[cos (�(t ))]
for a homogeneous and an inhomogeneous network, respectively.
The dashed straight (red) line corresponds to the approximation
from the perturbative approach in Eq. (3.23). (c), (d) Var[A(t )] for
a homogeneous and an inhomogeneous network, respectively. All
other parameters are the same as Fig. 7.

the right. This is consistent with the fact that the higher-order
noise increased the mean amplitude as seen in Fig. 8. It can
be seen that there is hardly a difference between the two
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FIG. 9. Plots of the time-dependent covariance between A and
cos(�) for the inhomogeneous network. Note that, as we show
above, the steady-state covariance is zero for the homogeneous net-
work so we exclude this case here. The black solid line corresponds
to simulations of the gradient system with first-order noise, and the
gray solid line corresponds to simulations of the full neural field
equation with higher-order noise. The straight (red) line corresponds
to the exact steady-state variance from Eq. (3.16c). Parameter values
are as in Fig. 7.
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FIG. 10. Simulation of steady-state distribution for � in the
(a) homogeneous system and (b) inhomogeneous system. Solid
line indicates the theoretical distribution from Eq. (3.17b). Circles
correspond to results from the full 2D stochastic gradient system.
Stars correspond to results from the full neural field model with
higher-order noise included. Parameters are the same as in Fig. 7.

types of noise and both show good agreement with Eq. (3.17),
with the minor exception of the homogeneous phase, where
the convergence to steady state is very slow. We also find
that p�(�) is very well approximated by the von Mises
distribution [which is equivalent to the conditional density
p(�|a∗)] for the parameter values used in the simulations (not
shown).

IV. ESCAPE TIME AND BUMP EXTINCTION

Recall that one application of a bistable ring attractor
network is to working memory. In the deterministic case, a
transient input can switch the network from a uniform rest
state to a stable bump state that persists when the input is
removed. As we have already discussed, noise can induce
the location of the peak to wander from its original position
due to phase diffusion. However, it is also possible for the
bump to disappear completely due to large fluctuations in
the amplitude of the bump in the absence of an input. The
“extinction” of the bump indicates a loss of memory of the
stimulus. This then raises the important issue of how long, on
average, it takes the bump to go extinct. We will assume that
the network operates in a bistable regime with the stable rest
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FIG. 11. Simulation of steady-state distribution for A in the
(a) homogeneous system and (b) inhomogeneous system. Solid
line indicates the theoretical distribution from Eq. (3.17). Circles
correspond to results from the 2D stochastic gradient system. Stars
correspond to results from the full neural field model with higher-
order noise included. Parameters are the same as in Fig. 7.

state and stable bump state with amplitude a∗ separated by an
unstable bump state with amplitude a0, 0 < a0 < a∗. In other
words, the radially symmetric potential U0(A) of Eq. (2.18)
has minima at A = 0 and a∗ and a maximum at A = a0. (The
analysis in the case of a nonzero input is considerably more
involved since one has to deal with the full planar dynamical
system. Now, there is a noise-induced transition from a large
amplitude stable bump to a low amplitude stable bump rather
than a zero state.)

Let T (r), r > a0, denote the mean first passage time
(MFPT) that the system starting at r reaches a0. From radial
symmetry it is well known that T (r) satisfies the boundary
value problem [36]

−U ′
0(r)T ′(r) + σ

2r

d

dr
(rT ′(r)) = −1, (4.1)

together with the absorbing boundary condition T (a0) = 0.
Define the modified potential

U (r) = U0(r) − σ

2
ln(r),

012402-12



STOCHASTIC NEURAL FIELDS AS GRADIENT … PHYSICAL REVIEW E 100, 012402 (2019)

and rewrite Eq. (4.1) as

− 2

σ
U ′(r)T ′(r) + T ′′ = − 2

σ
.

Note that U (r) ∼ r2 as r → ∞. Multiplying both sides by
e−2U (r)/σ yields

(T ′e−2U (r)/σ )′ = − 2

σ
e−2U (r)/σ .

Integrate from r to ∞ and note that T ′(r)e−2U (r)/σ → 0 as
r → ∞ so that

T ′ = 2

σ
e2U (r)/σ

∫ ∞

r
e−2U (r′ )/σ dr′.

Integrating again from r to a0 and using the boundary condi-
tion T (a0) = 0, we obtain

T (r) = 2

σ

∫ r

a0

e2U (r′ )/σ
[∫ ∞

r′
e−2U (r′′ )/σ dr′′

]
dr′

= 2

σ

∫ r

a0

1

r′ e
2U0(r)/σ

[∫ ∞

r′
r′′e−2U0(r′′ )/σ dr′′

]
dr′. (4.2)

It follows that the mean time to reach a0, starting at the
stable bump solution is T (a∗), and the corresponding mean
extinction time is thus 2T (a∗). The mean time to bump ex-
tinction has been numerically studied in [16] and analytically
approximated in [18] when the system is near a saddle-node
bifurcation. However, to our knowledge, there has never been
an exact formula.

In general, one has to evaluate the integrals in Eq. (4.2)
numerically. However, if σ is sufficiently small, then one can
approximate the integrals using steepest descents. Using stan-
dard arguments, one can approximate T (a∗) by the product of
two independent integrals [36]

T (a∗) = 2

σ

[∫ a∗

a0

1

r′ e
2U0(r)/σ dr′

][∫ ∞

a0

r′′e−2U0(r′′ )/σ dr′′
]
.

The first integral is dominated by the peak of U0 at r = a0

and the second integral is dominated by the minimum of U0

around r = a∗. Therefore, the potential is Taylor expanded as

U0(r) = U0(a0) − 1

2

(
r − a0

δ

)2

+ · · ·

near r = a0 and

U0(r) = U0(a∗) + 1

2

(
r − a∗

α

)2

+ · · ·

near r = a∗, where

δ = 1√|U ′′
0 (a0)| , α = 1√|U ′′

0 (a∗)| .

The second integral is then approximated as∫ ∞

r′
r′′e−2U0(r′′ )/σ dr′′ ≈ a∗

∫ ∞

−∞
e−2U0(a∗ )/σ e−(r′′−a∗ )2/σα2

dr′′

≈ √
πσαa∗e−2U0(a∗ )/σ ,

noise strength σ
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FIG. 12. Numerical simulation of mean escape time (circles)
compared against the approximation from Eq. (4.3) (solid line) for
the gradient system in Eq. (3.3) with I = 0. Other parameters are the
same as Fig. 7.

and the first integral as∫ a∗

a0

1

r′ e
2U0(r′ )/σ dr′ ≈ 1

a0

∫ ∞

a0

e2U0(a0 )/σ e−(r′′−a0 )2/σδ2

≈ √
πσδ

1

2a0
e2U0(a0 )/σ .

Hence,

T (a∗) ≈ π
a∗

a0

e2[U0(a0 )−U0(a∗ )]/σ√|U ′′
0 (a0)||U ′′

0 (a∗)| . (4.3)

[If we had taken the absorbing boundary to be at a = 0,
then we would have found the mean extinction time to be
2T (a∗).] A plot of the mean escape time versus noise strength
σ is shown in Fig. 12, and example plots of noise-induced
transitions are shown in Fig. 13(a). It can be seen from Fig. 12
that the approximation in Eq. (4.3) is a good match with
numerical simulations even for relatively large values of σ .

FIG. 13. Numerical simulations of a single noise-induced tran-
sition from a stable bump to the zero state for the full stochastic
neural field model with Ī = 0 (blue or lighter plot) and Ī = 0.2 (red
or darker plot). Other parameters are the same as Fig. 7.
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As σ → 0, the MFPT becomes exponentially large, so that the
extinction of a bump is unlikely to be observed over physio-
logical timescales. In Fig. 13, we compare single realizations
of the amplitude of the neural field solution. We find that the
input reduces the amount of time spent in the zero state, which
is one of the factors in the input-dependent suppression of
amplitude fluctuations discussed at the end of Sec. III A.

V. SPHERICAL MODEL

In this section we show how to extend our gradient analysis
of ring attractor networks to the case of spherical attractor
networks. First, note that analogous to Fourier series expan-
sions, one can perform an expansion in spherical harmonics
to show that a spherical attractor network also supports sta-
tionary bump solutions, and that these can also lock to weakly
biased external stimuli [12,13]. In the absence of inputs, the
bumps are marginally stable with respect to rotations of the
sphere, reflecting equivariance of the neural field equation
with respect to the action of the special orthogonal group
SO(3). One major application of spherical attractor networks
is to model the joint orientation and spatial frequency tuning
of neurons in a V1 hypercolumn [12,13]. Such a model was
originally motivated by a number of optical imaging studies,
which suggested that both orientation and spatial frequency
preferences are distributed almost continuously across cortex,
with iso-orientation and isofrequency contours being approx-
imately orthogonal, so that they generate a local curvilinear
coordinate system [37,38]. Although the existence of spatial
frequency preference maps in V1 is still controversial, a more
recent two-photon imaging study appears to be consistent with
earlier studies [39]. Further evidence for spherical network
structures in cortex has been provided by multielectrode data
analysis of cortical activity patterns based on computational
homology [40]. On larger spatial scales, the Nunez model for
the generation of electroencephalogram (EEG) signals [41]
has recently been formulated as a neural field model on a
sphere with space-dependent delays [42].

Marginal stability of spherical bumps with respect to ro-
tations of the sphere suggests that weak noise will induce
a stochastic wandering of the bumps, characterized by two-
dimensional Brownian motion of the peak of the bump on
the surface of the sphere (in the absence of inputs). This has
recently been established using a combination of group theory,
harmonic analysis, and perturbation theory [43], which also
highlighted one key difference between spherical attractor
networks and ring attractor networks: the sphere S2 is a curved
manifold whereas the circle S1 is intrinsically flat. Here, we
show that under extra constraints on noise correlations, one
can formulate a stochastic neural field equation on the sphere
as a three-dimensional gradient system.

A. Deterministic model

In the absence of noise, a spherical attractor network can
be modeled in terms of the neural field equation

∂u

∂t
= −u +

∫
S2

K (θ, φ|θ ′, φ′) f (u(θ ′, φ′))

× dμ(θ ′, φ′) + I (θ, φ), (5.1)

pmin

pmax

orientation
φ

θ

spatial
frequency

FIG. 14. Spherical network topology. Cells are labeled by the
pair of angular coordinates (θ, φ) on the surface of a unit sphere,
with 0 � θ < π and 0 � φ � 2π . These coordinates could represent
a pair of stimulus feature preferences such as spatial frequency and
orientation.

where μ is the measure on the sphere and thus dμ =
sin(θ ′)dθ ′dφ′. Within the context of orientation and spa-
tial frequency tuning, u(θ, φ) denotes the activity of neural
population with orientation preference φ/2 and spatial fre-
quency preference p, which is related to θ according to θ =
π

log(p/pmin )
log(pmax/pmin ) [12,13] (see Fig. 14). The function K denotes

the synaptic strength between neural populations (θ, φ) and
(θ ′, φ′). We will take Eq. (5.1) to be equivariant with respect
to the action of SO(3), that is, rotations of the sphere. This
requires K to be invariant under this action:

K (γ (θ, φ)|γ (θ ′, φ′)) = K (θ, φ|θ ′, φ′), ∀ γ ∈ SO(3).

Hence, K will have an expansion in terms of spherical har-
monics,

K (θ, φ|θ ′, φ′) =
∞∑

n=0

wn

n∑
m=−n

Y m
n (θ, φ)Y m∗

n (θ ′, φ′), (5.2)

where

Y m
n (θ, φ) = (−1)m

√
2n + 1

4π

(n − m)!

(n + m)!
Pm

n [cos(θ )]eimφ

for n � 0 and −n � m � n, and Pm
n (cos θ ) is an associated

Legendre function. The functions Y m
n (θ, φ) constitute the

angular part of the solutions of Laplace’s equation in three
dimensions, and thus form a complete orthonormal set. The
orthogonality relation is∫

S2
Y m1

n1

∗(θ, φ)Y m2
n2

(θ, φ)dμ(θ, φ) = δn1,n2δm1,m2 ,

where z∗ denotes complex conjugate of z.
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For completeness, the solution u and input I (θ, φ) can be written as

u(θ, φ, t ) =
∞∑

n=0

n∑
m=−n

anm(t )ym
n (θ, φ),

I (θ, φ) =
∞∑

n=0

n∑
m=−n

Inm(t )ym
n (θ, φ),

where ym
n are the corresponding real-valued spherical harmonics

ym
n =

⎧⎪⎪⎨⎪⎪⎩
1√
2

[
Y −m

n + (−1)mY m
n

]
, m > 0

Y m
n , m = 0
i√
2

[
Y m

n − (−1)mY −m
n

]
, m < 0.

(5.3)

Note that ym
n are also orthonormal and

〈
ym

n ,Y j
i

〉 =

⎧⎪⎪⎨⎪⎪⎩
1√
2
[δniδ−m, j + (−1)mδn,iδm, j], m > 0

δn,iδ0, j, m = 0

− i√
2
[δn,iδm, j − (−1)mδn,iδ−m, j], m < 0.

Substituting the expansions for u and I into Eq. (5.1) and using Eq. (5.2) yields

∞∑
n=0

n∑
m=−n

danm(t )

dt
ym

n (θ, φ) = −
∞∑

n=0

n∑
m=−n

anm(t )ym
n (θ, φ) +

∞∑
n=0

n∑
m=−n

Inmym
n (θ, φ)

+
∞∑

n=0

wn

n∑
m=−n

(−1)mY m
n (θ, φ)

∫
S2

Y −m
n (θ ′, φ′) f (u(θ ′, φ′))dμ(θ ′, φ′).

Taking the inner product of both sides with each Y m
n and using orthonormality yields

danm(t )

dt
= −anm(t ) + Inm + wn

∫
S2

f

⎛⎝ ∞∑
i=0

i∑
j=−i

ai j (t )y j
i (θ ′, φ′)

⎞⎠ym
n (θ ′, φ′)dμ(θ ′, φ′). (5.4)

If K has a finite expansion, then we can pose this as an ODE in a finite-dimensional space. Suppose that wn = 0 for n > N
so that anm exponentially approaches Inm. Analogous to the ring model we can take anm = Inm for n > N and focus on the
finite-dimensional space

W S
N =

{
N∑

n=1

n∑
m=−n

amnym
n (θ, φ)

}
∼= RN (N+1)+1. (5.5)

Defining the vectors

xn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

an,−n
...

an,−1

an,0

an,1
...

an,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, In =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In,−n
...

In,−1

In,0

In,1
...

In,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, yn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y−n
n
...

y−1
n

y0
n

y1
n

...
yn

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and the scalar function

V =
N∑

n=0

1

wn

[
1

2
||xn||2 − xn · In

]
−

∫
S2

F

(
N∑

n=0

xn · yn(θ ′, φ′) +
∞∑

n=N+1

In · yn(θ ′, φ′)

)
dμ(θ ′, φ′), (5.6)

the system can be written as

dxn(t )

dt
= −wn∇xnV, n � N, ∇xnV = (

∂an,−nV, . . . , ∂an,−1V, ∂an,0V, ∂an,1V, . . . , ∂an,nV
)�

. (5.7)
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B. Three-dimensional gradient system

Following along similar lines to our analysis of ring at-
tractor networks, we now consider the special case where
wn = Inm = 0 for all n 
= 1. We then need only consider the
first-order spherical harmonics

Y 0
1 =

√
3

4π
cos(θ ),

Y −1
1 = 1

2

√
6

4π
sin(θ )e−iφ,

Y 1
1 = −1

2

√
6

4π
sin(θ )eiφ

such that

K (θ, φ) = w[cos(θ ) cos(θ ′) + sin(θ ) sin(θ ′) cos(φ − φ′)],

where we have absorbed a factor of 3π/4 into w. Moreover,
solutions take the form of spherical bumps

u(θ, φ, t ) = x(t ) · e(θ, φ),

where x = (a1,1, a1,−1, a1,0) ∈ R3 and

e(θ, φ) = ( sin(θ ) cos(φ), sin(θ ) sin(φ), cos(θ ))

is the unit vector on the sphere with angles θ and φ. We thus
obtain the three-dimensional gradient system

dx
dt

= −∇V0(x), (5.8)

where the potential is now defined as

V0(x) = 1

2
||x||2 − x · I −

∫
S2

F (x · e(θ ′, φ′))dμ(θ ′, φ′),

(5.9)

with I = (I1,1, I1,−1, I1,0). Since the original neural field is
SO(3) equivariant when I = 0, then V0(x) is SO(3) invariant
and Eq. (5.8) is equivariant with respect to the standard action
of SO(3) on R3 when I = 0.

If we express x in terms of spherical coordinates

x = Ae(�,�), (5.10)

then

u(θ, φ) = x · e(θ, φ)

= A[cos(θ ) cos(�) + sin(θ ) sin(�) cos(φ − �)]

so that the solution obtains its maximum value A when
(θ, φ) = (�,�). Hence, A is the amplitude of the bump
and (�,�) encodes the location of the peak of the bump.
Similarly, if we set I = Īe(�,�), then Ī is the input amplitude
and (�,�) denotes the location of the input peak.

C. Stationary bump solutions and stability

First consider the homogeneous system with I = 0. Sta-
tionary solutions are given by extremal values of V0(x). Since
V0(x) is SO(3) symmetric, it follows that equilibria lie on
spheres in R3. We can therefore, without loss of generality,
take x∗

0 = a∗(0, 0, 1) and then apply the action of SO(3) to

obtain all other solutions. The implicit equation for a∗ is

a∗ = G(a∗) ≡ w

∫
S2

f (a∗ cos(θ ′)) cos(θ ′)dμ(θ ′, φ′)

= 2πw

∫ π

0
f (a∗ cos(θ ′)) cos(θ ′) sin(θ ′)dθ ′. (5.11)

Once a solution for a is established, the group orbit of
solutions is given by the two-parameter family of solutions
x∗=a∗( sin(�) cos(�), sin(�) sin(�), cos(�)),∀� ∈ [0, π ),
� ∈ [0, 2π ). Linearizing the system about the equilibrium x∗
yields the eigenvalue problem λy = Hy, y ∈ R3, where

H = − ∂2V

∂xi∂x j

∣∣∣∣
x=x∗

= −I + w

∫
S2

f ′(x∗ · e(θ, φ))e(θ, φ)e(θ, φ)T dμ(θ, φ).

(5.12)

Since the system has SO(3) symmetry, if x∗ 
= 0, then there
exist two null vectors for H , one for each independent direc-
tion of rotation. Let Ri(s) be a rotation about the i = x, y, z
axes. Then, following an argument identical to the SO(2) case,
the null vectors are given by

d

ds
[Rx(s)x∗]

∣∣∣∣
s=0

=
⎡⎣0 0 0

0 0 −1
0 1 0

⎤⎦x∗,

d

ds
[Ry(s)x∗]

∣∣∣∣
s=0

=
⎡⎣ 0 0 1

0 0 0
−1 0 0

⎤⎦x∗,

and

d

ds
[Rz(s)x∗]

∣∣∣∣
s=0

=
⎡⎣0 −1 0

1 0 0
0 0 0

⎤⎦x∗.

If x∗ lies along one of the axes, then one of these vectors
are zero and the other two necessarily nonzero. If it does
not lie on any axis, then only two of these vectors are
linearly independent. In general, let x∗⊥

φ and x∗⊥
θ denote the

two nonzero independent vectors. In other words, these two
vectors span the tangent space of the sphere at point x∗. The
analogous result for the original neural field is that if u0(θ, φ)
is a solution, then u0(θ − θ0, φ − φ0) is also a solution for all
θ0, φ0. Thus, perturbations

u = u0(θ, φ) + ε∂θu0(θ, φ) + ε∂φu0(θ, φ)

correspond to infinitesimally shifting θ and φ, while perturba-
tions

x = x∗ + εx∗⊥
θ + εx∗⊥

φ

correspond to infinitesimally rotating x∗ along the sphere.
We can then decompose the space into eigenspaces

R3 = span{x∗} ⊕ span{x∗⊥
θ } ⊕ span{x∗⊥

φ }.
The nontrivial eigenvalue will correspond to eigenvectors in
span{x∗}, i.e., amplitude changing perturbations. Restricting

012402-16



STOCHASTIC NEURAL FIELDS AS GRADIENT … PHYSICAL REVIEW E 100, 012402 (2019)

H to span{x∗} yields

Hx∗ = − x∗ + w

∫
S2

f ′(x∗ · e(θ, φ))e(θ, φ)

× [x∗ · e(θ, φ)]dμ(θ, φ).

Taking the dot product of both sides of λx∗ = Hx∗ with x∗
yields

λ = −1 + w

∫
S2

f ′(x∗ · e(θ, φ)) cos2 (α(θ, φ))dμ(θ, φ)

= −1 + 2πw

∫ π

0
f ′(a∗ cos(θ )) cos2(θ ) sin(θ )dθ

= −1 + G ′(a∗), (5.13)

where α(θ, φ) is the angle between x∗ and point at (θ, φ),
the second equality follows from SO(3) invariance of the
integral and the last equality follows from the definition of
G(a) in Eq. (5.11). The dependence of existence and stability
of equilibria on parameters is qualitatively the same as the ring
model.

Let us now turn to the inhomogeneous spherical model.
Following the same argument as for the ring model, we
conclude that if x∗ is an equilibrium when I = I0, then Rx∗
is an equilibrium solution when I = RI0 for any rotation R
in SO(3). Moreover, x∗ must still be collinear with I. Thus,
we may take I = I0 ≡ (0, 0, Ī ) with Ī > 0 and x∗

0 = (0, 0, a∗)
with a∗ satisfying

a∗ − Ī = G(a∗).

Again, positive values of a∗ will lead to bump solutions that
are in phase with the input while negative values lead to bump
solutions that are antiphase.

There is no longer a two-dimensional null space, however,
we can derive eigenvalues corresponding to phase changing
perturbations. Let I⊥

0,θ and I⊥
0,φ be the vectors orthogonal to

I0 with the same magnitude, i.e., the two linearly independent
vectors from

d

ds
[Rx(s)I0]

∣∣∣∣
s=0

=
⎡⎣0 0 0

0 0 −1
0 1 0

⎤⎦I0,

d

ds
[Ry(s)I0]

∣∣∣∣
s=0

=
⎡⎣ 0 0 1

0 0 0
−1 0 0

⎤⎦I0,

d

ds
[Rz(s)I0]

∣∣∣∣
s=0

=
⎡⎣0 −1 0

1 0 0
0 0 0

⎤⎦I0.

Using identical arguments as the ring model, it can easily be
shown that

Hx∗⊥
θ = −I⊥

0,θ , Hx∗⊥
φ = −I⊥

0,φ,

where x∗⊥
θ and x∗⊥

φ are the corresponding vectors orthogonal
to x∗. Therefore, x∗⊥

θ and x∗⊥
φ are eigenvectors with eigenvalue

λo = −Ī/a∗, which is exactly the same as the ring model.
All other stability results are qualitatively identical to the ring
model.

D. Stochastic spherical model

We now consider the stochastic spherical model

du =
[
−u +

∫ π

−π

K (θ, φ|θ ′, φ′) f (u(θ ′, φ′))dμ(θ ′, φ′)

+ I (θ, φ)

]
dt + dW (θ, φ, t ), (5.14)

with E[dW ] = 0 and

E[dW (θ, φ, t )dW (θ ′, φ′, t ′)] = C(θ, φ|θ ′, φ′)δ(t − t ′)dt dt ′.

Analogous to the ring model, we take C to be SO(3) invariant,
i.e., C(γ −1(θ, φ)|γ −1(θ ′, φ′)) = C(θ, φ|θ ′, φ′) and thus C has
the expansion

C(θ, φ|θ ′, φ′) =
∞∑

n=0

σn

n∑
m=−n

(−1)mY m
n (θ, φ)Y m∗

n (θ ′, φ′)

(5.15)

with σn > 0 for n � N so that the corresponding opera-
tor

∫
S2 C(θ, φ|θ ′, φ′)u(θ ′, φ′)dμ(θ ′, φ′) is positive definite on

W S
N . Analogous to the ring model we obtain

dxn = −wn∇xnV dt + √
σndWn, n � N (5.16a)

dxn = [−xn + In]dt + √
σndWn, N < n � M (5.16b)

where each Wn is a (2n + 1)-dimensional uncorrelated
Wiener process with unit variance.

Let us consider the simplest case N = M = 1 and In = 0
for n 
= 1, so that we have the 3D stochastic gradient system

dx = −∇V0(x)dt + √
σ dW, x = (a1,1, a1,−1, a1,0).

The corresponding FP equation for the probability density
p(x, t ) is given by Eq. (3.4), except now ∇2 is the 3D Lapla-
cian and V0(x) is given by Eq. (5.9). Moreover, the stationary
density has the form of Eq. (3.5) with the appropriate nor-
malization. Given the fact that we can express the stochastic
dynamics of the spherical model as a gradient system means
that we can generalize the various results obtained for the
ring.

In particular, in the absence of an external input, V0(x) →
U0(x) with U0(x) spherically symmetric. It follows that the
marginal density for �,� is given by the uniform distri-
bution on the sphere. Converting the full time-dependent
FP equation (3.4) into spherical polar coordinates (5.10)
with

p(x, t )dx = ps(A,�,�, t )A2 sin � dA d� d�
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gives

∂ ps

∂t
= 1

A2

∂

∂A

{
A2

[
∂U0(A)

∂A
− Īe(�,�) · e(�,�)

]
ps

}
− Ī

A sin �

∂

∂�
[sin �∂�e(�,�) · e(�,�)ps]

− Ī

A sin2 �

∂

∂�
[∂�e(�,�) · e(�,�)ps] + σ

2

[
1

A2

∂

∂A

(
A2 ∂

∂A

)
+ 1

A2 sin �

∂

∂�

(
sin �

∂

∂�

)
+ 1

A2 sin2 �

∂2

∂�2

]
ps.

(5.17)

The corresponding SDE in spherical polar coordinates is thus

dA =
[
−∂AU0(A) + σ

A
+ Īe(�,�) · e(�,�)

]
dt +√

σdWA,

(5.18a)

d� =
[

Ī

A sin �
∂�e(�,�) · e(�,�) + σ

2A2
cot(�)

]
dt

+
√

σ

A
dW�, (5.18b)

d� = Ī

A sin2 �
∂�e(�,�) · e(�,�)dt +

√
σ

A sin �
dW�,

(5.18c)

where WA(t ) and W�(t ) and W�(t ) are independent Wiener
processes with unit variance.

Similar to the ring model, in the absence of an input, the
amplitude dynamics decouples from the phase dynamics with
the stationary phase distribution being uniform over the sphere
and the marginal stationary density for the amplitude is

ph
A(A) = 1

Zh
A2e−2U0(A)/σ , (5.19)

with

U0(A) = 1

2
A2 − 2πw

∫ π

0
F (A cos θ ) sin θ dθ, (5.20)

and Zh = ∫ ∞
0 A2e−2U0(A)/σ dA. Moreover, having obtained the

homogeneous density, one can determine moments of the
amplitude and phases in the inhomogeneous case along anal-
ogous lines to the ring, using a higher-dimensional version
of the von Mises distribution (see below). Finally, the mean
bump extinction time can be obtained in the same manner as

the ring model. The result is identical to Eq. (4.3) except for
changing a∗/a0 → (a∗/a0)2.

Mathematically speaking, there is one interesting differ-
ence between the sphere and the ring, namely, the former has
intrinsic curvature. This is reflected by the nature of Brownian
motion on the surface of the sphere. Focusing on the phase
variables, the corresponding SDE is obtained by setting Ī = 0
in Eqs. (5.18b) and (5.18c) which reduces to the form

d� = σ

2A2
cot(�)dt +

√
σ

A
dW�, d� =

√
σ

A2 sin �
dW�.

(5.21)

The drift term in the first equation is a consequence of the fact
that the sphere is a curved manifold. Finally, note that Eqs.
(5.18b) and (5.18c) for A = a∗ and Ī 
= 0 are consistent with
the phase equations recently derived for a more general class
of correlation functions using perturbation theory [43].

E. Moments of inhomogeneous network

We now show how to relate the homogeneous and inho-
mogeneous probability densities of the stochastic spherical
model, using a higher-dimensional analog of the von Mises
distribution. This provides compact analytical expressions for
the various moments in a similar fashion to the ring model. In
the inhomogeneous case, we have

V0(A,�,�) = U0(A) − IAe(�,�) · e(�,�).

Therefore,

pih(A,�,�) ≡ A2 sin(�)p(A,�,�)

= Zh

Z
sin(�)e2IAe(�,�)·e(�,�)/σ ph

A(A),

with ph
A(A) given by Eq. (5.19). The moments of A and

directional moments of e(�,�) are given by

E[Ane(�,�)]ih = ζ

∫ ∞

0
dA An ph

A(A)

[
1

4π

∫
S2

e(�,�)e2IAe(�,�)·e(�,�)/σ dμ(�,�)

]
,

E[Ane(�,�)e(�,�)T ] = ζ

∫ ∞

0
dA An ph

A(A)

[
1

4π

∫
S2

e(�,�)e(�,�)T e2IAe(�,�)·e(�,�)/σ dμ(�,�)

]
,

where ζ = 4πZh/Z . The term inside the brackets can be related to the Fisher distribution on the sphere given by [44]

pF (x) = κ

4π sinh(κ )
eκn·x, x, n ∈ S2
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with n denoting the mean direction, and κ is a parameter. The directional moments of the Fisher distribution are given by [44]

m1(κ )n ≡
∫

S2
xpF (x)dx =

(
coth κ − 1

κ

)
n,

m2(κ ) ≡
∫

S2
xxT pF (x)dx = m1(κ )

κ
I3×3 +

(
1 − 3m1(κ )

κ

)
nnT ,

where I3×3 is the 3×3 identity matrix. Setting κ = βA for β = 2I/σ , and n = e(�,�) in the expressions for m1(κ ) and m2(κ ),
we see that

1

4π

∫
S2

e2IAe(�,�)·e(�,�)/σ dμ(�,�) = C(βA),

1

4π

∫
S2

e(�,�)e2IAe(�,�)·e(�,�)/σ dμ(�,�) = C(βA)m1(βA)e(�,�),

1

4π

∫
S2

e(�,�)e(�,�)T e2IAe(�,�)·e(�,�)/σ dμ(�,�) = C(βA)m2(βA),

where C(κ ) = sinh(κ )/κ .

It follows that

E[An]ih = ζE[AnC(βA)]h, (5.22a)

E[Ane(�,�)]ih = ζE[AnC(βA)m1(βA)]he(�,�),

(5.22b)

E[Ane(�,�)e(�,�)T ]ih = ζE[AnC(βA)m2(βA)]h. (5.22c)

For example, the mean, variance of A, and covariance matrix
of e(�,�) are given by

〈A〉 = ζE[AC(βA)]h, (5.23a)

〈e(�,�)〉 = ζE[C(βA)m1(βA)]he(�,�), (5.23b)

and

Var[A] = ζE[A2C(βA)]h − ζ 2E[AC(βA)]2
h, (5.24a)

cov[e(�,�)] = ζE[C(βA)m2(βA)]h

− ζ 2E[C(βA)m1(βA)]2
he(�,�)e(�,�)T ,

(5.24b)

respectively. The mean and covariance of e(�,�) depend
on the input phases (�,�). It would be useful to compute
the mean and covariance of a quantity that is invariant under
changes in the input phase. To that end, consider the vector

ẽ(�,�) = R(�,�)−1e(�,�),

where R is the rotation matrix such that

R(�,�)e3 = e(�,�), e3 =
⎡⎣0

0
1

⎤⎦.

Then,

〈̃e(�,�)〉 = ζE[C(βA)m1(βA)]e3, (5.25)

cov[̃e(�,�)] = ζE[C(βA)D2(βA)]

− ζ 2E[C(βA)m1(βA)]2
he3eT

3 , (5.26)

where

D2(κ ) =
⎡⎣ m1(κ )

κ
0 0

0 m1(κ )
κ

0
0 0 1 − 2m1(κ )

κ

⎤⎦.

Thus, the covariance matrix is diagonal and the directions are
uncorrelated. In particular, the phase variables � and � are
uncorrelated.

In the ring model, we calculated statistics of the
quantity cos(� − �). The analogous quantity here is
cos (α(�,�|�,�)), where α is the coplanar angle between
(�,�) and (�,�). Since

cos(α) = e(�,�) · e(�,�),

it follows that the first two moments are given by

〈cos(α)〉 = e(�,�)T 〈e(�,�)〉 = ζE[C(βA)m1(βA)]h,

(5.27)

〈cos2(α)〉 = e(�,�)TE[e(�,�)e(�,�)T ]ihe(�,�)

= ζE[C(βA)m̃2(βA)]h, (5.28)

where

m̃2(βA) = e(�,�)T m2(βA)e(�,�) = 1 − 2m1(βA)

βA
.

Therefore, the variance is

Var[cos(α)] = ζE[C(βA)m̃2(βA)]h − ζ 2E[C(βA)m1(βA)]2
h.

(5.29)

Finally, we obtain the covariance

cov(A, cos(α)) = e(�,�)TE[Ae(�,�)]ih − 〈A〉〈cos(α)〉
= ζE[AC(βA)m1(βA)]h

− ζ 2E[AC(βA)]hE[C(βA)m1(βA)]h.

(5.30)

In the absence of input, taking β → 0, we obtain

ζ → 1, C(βA) → 1, m1(βA) → 0, m̃2(βA) → 1
3
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FIG. 15. Variances and covariances of A and cos(α) as a function
of input strength for (a) κ = 0.5 and (b) κ = 0.9. All other parame-
ters are the same as the ring model except we set w = 0.7 so that the
stable amplitude is relatively the same.

and thus

Var[cos(α)] = 1
3 , cov(A, cos(α)) = 0,

with the latter showing that the amplitude and phase are
uncorrelated. Including an input introduces correlations.

Finally, the marginal densities are given by

pA(A) = ζC(βA)ph
A(A), (5.31a)

p�,�(�,�) = ζ sin(�)

4π
E[e2IA cos(α)/σ ]h. (5.31b)

We see that the marginal phase density is similar in form to the
phase density for the ring model, with α analogous to � − �

and the former having the prefactor of sin(�) which is due to
the curvature of the sphere. Note that, although � and � are
uncorrelated for any I , when I 
= 0 they are dependent since
the joint density is not separable. On the other hand, when
I → 0 we obtain

p�,�(�,�) → sin(�)

4π
, p�(�) → sin(�)

2
, p�(�) → 1

2π
,

which are the joint and marginal densities for the uniform
distribution over a sphere. In this case, the phases are uncor-
related and independent.
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FIG. 16. Marginal densities for (a) phase and (b) amplitude. Note
that the density for the phase is constant in � for input phase
� = � = 0.

Finally, the phase density conditioned on the amplitude is

p(�,�)|A(�,�) ≡ pih(A,�,�)

pA(A)

= sin(�)

C(βA)
e2IAe(�,�)·e(�,�)/σ ,

which has the same form as the Fisher distribution after con-
verting to angular coordinates, i.e., x = e(θ, φ), n = e(�,�).

In Fig. 15 we plot the steady-state variance and covariance
as a function of the input strength I . The results are quali-
tatively similar to the ring model. Finally in Fig. 16 we show
example plots of the marginal densities pA(A) and p�,�(�,�)
for � = � = 0. Note that, for this choice of input, the phase
density is constant in � and thus we plot it against � only.
These are the spherical analogs of the densities shown in
Figs. 10(b) and 11(b) for the ring model.

VI. DISCUSSION

In this paper we have demonstrated how a combination
of stochastic analysis and group theoretic methods provides
a powerful tool for investigating the effects of noise in con-
tinuous attractor networks. In particular, by imposing certain
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constraints on the synaptic weight function and intrinsic noise,
we derived an exact SDE for both the amplitude and phase
of bump solutions, which was valid at arbitrary levels of
noise. Moreover, the SDE could be expressed as a stochastic
gradient dynamical system, which allowed us to derive an
exact expression for the steady-state probability density and
its moments. We focused on the example of a ring attractor,
and used our theory to investigate the noise-induced sup-
pression of amplitude and phase fluctuations. We showed
that increasing the input greatly suppresses steady-state phase
fluctuations by locking the location of the peak of the bump,
consistent with a recent study based on perturbation methods
[25]. This differs from the mechanism for noise-induced
suppression of amplitude fluctuations, which is based on the
suppression of noise-induced transitions of the bump to other
attractors of the system. In cases where such transitions are
rare events, input suppression of amplitude fluctuations is neg-
ligible. We also calculated the mean time for bump extinction
due to a noise-induced transition to a zero state or a low
amplitude bump. These transitions contribute to the steady-
state variance in the amplitude, but would be rare events in
the case of weak noise. Finally, we showed how our theory
could be extended to higher-dimensional spherical attractor
networks, where we exploited the underlying SO(3) symmetry
of the homogeneous network to analyze the resulting gradient
dynamical system.

In order to use the theory of gradient dynamical systems,
we have assumed that the weight kernel can be expanded as
a finite Fourier series with a single dominant mode cos θ (in
the case of ring attractor networks). This is consistent with
the observation that population tuning curves in visual cortex
tend to be unimodal. If the weight kernel is just a single mode,
then we have an exact gradient system, whereas the inclusion
of a finite number of higher-order modes in the weight kernel
leads to a “scaled gradient” system coupled with an Ornstein-
Uhlenbeck process [see Eq. (3.2)]. (Note that our analytical
methods would not be applicable to weight kernels that have
infinite Fourier series expansions. However, it is common to
approximate such kernels by truncated Fourier series, which
could then be incorporated into our framework.) One pos-
sibility for analyzing the effects of higher-order modes is
to treat the higher-order coefficients as small compared to
the first-order coefficient and combine perturbation theory
with the methods presented here. Including higher modes in
the weight kernel also requires the inclusion of higher-order
modes in the noise. (Below we describe a possible method for
analyzing the effects of higher-order noise terms.) Interest-
ingly, the restriction to low-order noise in order to formulate
the dynamics as a gradient system does not appear to be a
severe constraint, since higher-order noise yields qualitatively,
and in many cases, quantitatively similar behavior.

There are a number of possible extensions of the gradient
analysis developed in this paper, as we now highlight.

A. Modeling the effects of higher-order noise
as a fluctuating barrier

If higher-order noise terms are small, σn�σ1 for all n 
=1,
then it is possible to reformulate the scaled gradient system
(3.2) for N = 1 as a planar gradient system with a fluctuating

barrier. For the sake of illustration, suppose that σn = σδn,1 +
qδn,M with q � σ . Equation (3.2) then becomes

dx = −∇xV (x, y)dt + √
σdW1, (6.1a)

dy = −ydt + √
qdW2, (6.1b)

where

V (x, y) =
[

1

2
||x||2 − x · I

]
− w

∫ π

−π

F [x · e(θ ′) + y · e(Mθ ′)]dθ ′. (6.2)

For small q we can treat y as small with high probability and
thus Taylor expand the potential to first order in y. This gives

V (x, y) ≈ V0(x) + y · Z(x), (6.3)

with V0(x) given by Eq. (2.9) and

Z(x) = −w

∫ π

−π

f (x · e(θ ′))e(Mθ ′)T dθ ′. (6.4)

Applying this approximation to Eq. (6.1), we obtain the SDE

dx = [−∇xV0(x) − yT B(x)]dt + √
σdW1, (6.5a)

dy = −ydt + √
qdW2, (6.5b)

where

B(x) = −w

∫ π

−π

f ′(x · e(θ ′))e(θ ′)e(Mθ ′)T dθ ′.

Since we have assumed that q � σ , we can intro-
duce a second small parameter ε with

√
q = ε

√
σ . Follow-

ing Ref. [45], perform the rescaling ỹ(t ) = y(t )/ε so that
Eqs. (6.5) become, after dropping the tildes and setting I = 0,

dx = [−∇xU0(x) − εyT B(x)]dt + √
σdW1, (6.6a)

dy = −ydt + √
σdW2. (6.6b)

Note that the systems x, y decouple when ε = 0. The cor-
responding FP equation for the probability density p(x, y, t )
takes the form

∂ p

∂t
= ∇x · [∇xU0(x)p(x, y, t )] + σ

2
∇2

x p(x, y, t )

+ ε∇x · [yT B(x)p(x, y, t )]

+ ∇y · [yp(x, y, t )] + σ

2
∇2

y p(x, y, t ). (6.7)

Equations (6.5) or (6.6) are examples of overdamped
Brownian motion in the presence of a fluctuating barrier.
Such systems have previously arisen in a wide variety of
contexts (see the review [46]). In the 1990’s, fluctuating
barriers generated considerable interest following the obser-
vation by Doering and Gouda [47] that the mean escape time
across a fluctuating barrier may exhibit a nonmonotonous
dependence on the characteristic timescale of the fluctuations,
so-called resonant activation. The particular fluctuating bar-
rier model that most resembles Eqs. (6.5) was considered in
Refs. [45,48], and consisted of a one-dimensional gradient
dynamical system with additive noise, with fluctuations in the
potential a linear function of a scalar OU process. However,
there are a number of major differences between this model
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and Eqs. (6.5). First, both x and y are two-dimensional rather
then one-dimensional stochastic processes. Second, the char-
acteristic timescale of the fluctuating barrier in Eq. (6.5b) is
fixed. That is, the relaxation rates of both x and y are deter-
mined by the membrane time constant τ , which we have set to
unity. Hence, one cannot independently modify the correlation
time of the colored noise. Third, in the absence of noise, the
four-dimensional dynamical system has a continuous circle of
fixed points, rather than isolated fixed points, which are given
by (x, y) = (a∗ cos θ, a∗ sin θ, 0, 0) with a∗ a stationary point
of the radially symmetric potential U (a). [It is not possible
to reduce the x dynamics to radial dynamics since the matrix
B(x) is not radially symmetric.]

In future work it would be interesting to calculate how the
fluctuating barrier due to higher-order noise affects the mean
escape time (4.3) for bump extinction. Calculating escape
times for multidimensional models with fluctuating barriers is
generally intractable, unless some additional approximation
is made such as a separation of timescales or a weak noise
limit [45]. Even then, one can usually only determine the
exponentially leading part (the quasipotential).

B. Other topological attractor networks

Another possible extension of our work would be to con-
sider other topological attractor networks. Examples include
the torus with SO(2)×SO(2) symmetry and the Poincaré disk
with its group of isometries. (The latter is a model of two-
dimensional hyperbolic geometry in which the points of the
geometry are inside the unit disk, and the straight lines consist
of all segments of circles contained within that disk that are
orthogonal to the boundary of the disk, plus all diameters of

the disk. It has been incorporated into a neural field model of
texture processing [14].) Yet another example is a spatially
extended ring (or spherical) model [49]. Suppose that the
associated neural field equations on Rd × S1 take the product
form [50,51]

∂u(x, θ, t )

∂t
= −u(x, θ, t ) +

∫
R2×S1

J (x − x′)K (θ − θ ′)

× f (u(x′, θ ′, t ))dx′dθ ′. (6.8)

If we take K (θ ) = w cos(θ ), then we can also write this as
a gradient system in the following way. Define the vector-
valued function v(x, t ) = (a(x, t ), b(x, t ))� and potential

V (v(x)) = 1

2
||v(x)||2

−w

∫
R2×S1

J (x − x′)F (v(x′) · e(θ ′))dθ ′dx′.

Equation (6.8) can then be rewritten as

∂v(x, t )

∂t
= −∇vV.

However, it remains to be seen to what extent such a for-
mulation is useful when the Fourier components evolve ac-
cording to a partial differential equation, rather than a finite-
dimensional system of ordinary differential equations.
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