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Effects of network robustness on explosive synchronization
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Current studies have shown that there is a positive correlation between the network assortativity and robustness
and that the assortativity also plays an important role in explosive synchronization. In this paper, taking
the network robustness as a global property, we investigate its significance as well as the influence of its
interaction with the assortativity on explosive synchronization. Our numerical results demonstrate that explosive
synchronization is suppressed in extreme situations of both the robustness and assortativity. In addition, through
appropriate adjustments of them, a maximum hysteresis area between the forward and backward transitions
can be reached. Furthermore, our results might also provide reference for those who are interested in effects of
network structure on synchronization, though this problem is still challenging as we show in the discussion.
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I. INTRODUCTION

Networks as an effective approach have widely been stud-
ied in numerous domains ranging from nonlinear science
to biology and from statistical mechanics to medicine and
engineering [1]. These studies are mainly twofold. On the
one hand, a highly interacted system can be appropriately
modeled by a graph whose nodes represent the dynamic units
and whose edges capture their interactions. It is much easier
to study the global properties of systems from a network per-
spective, such as the stability of power grids [2] or the spread-
ing dynamics of messages or epidemics in communication
systems [3]. On the other hand, studying the corresponding
network provides rehearsal of manipulation on real systems
and facilitates better solutions to control, predict, optimize,
or reconstruct them [4,5]. In particular, synchronization on
networks arouses much interest among scientists, because it
may guide us to more profoundly understand the function and
structure of real complex systems’ dynamic processes [6,7],
such as in power grids, climate systems, or neuron systems.

Recently, much attention has focused on a critical phe-
nomenon, called explosive synchronization (ES) [7–10],
which is observed when the coupled oscillators (e.g., of
the Kuramoto system [11]) are associated with a scale-free
topology [8]; i.e., the natural frequency of each oscillator pro-
portionally corresponds to its number of connections, and they
are coupled by the related adjacency matrix. Indeed, the node
degree plays a crucial role in the ES phenomenon, not only of
one node itself, but also of its neighbors. Thus, for example,
the degree-degree correlation has been demonstrated to be
important for the emergence of ES [12–15]. However, while
studying the effects of network assortativity on ES, a fact
which cannot be ignored is that there is also a strong associa-
tion between the network assortativity and robustness [16,17].

In this paper, we view the network robustness F (see
the next section for the mathematical definition) as a global
attribute to capture the network structure and investigate its

influence on ES, since network assortativity r is actually a
local property. Following the assumption of Refs. [8,14], we
mainly find that ES depends not only on the network assor-
tativity but also on the network robustness. Specifically, there
might exist a maximization of the hysteresis area which can be
achieved by adjusting the network assortativity while keeping
F constant. In particular, this process cannot be inverted, i.e.,
keeping the network assortativity in a certain status to adjust
F . In addition, we further discuss the response of F and r
to the change of each other, which induces a gap between the
enhancement and weakness. We also find that this gap actually
plays an important role in ES.

II. MODEL

We consider a network G(N, E ) comprising n = |N | nodes
linked by m = |E | edges where N and M are the node set
and edge set, respectively. Then, for a certain q = �/n where
� ∈ N+ and � � n, the robustness of G against an intentional
attack (remove the q-fraction hubs) [17] can be measured by
the ratio between the size of the giant component nG and the
network size n, say, G(q) = nG/n, which is associated with
the assumption that the main part of a system still works
even though some components failed [17]. In other words,
a network with a larger G(q) means that it is more robust.
However, there is a problem that a different q corresponds
to a different G(q), which makes it difficult to compare the
robustness among networks. Considering this, two types of
metrics are developed: the critical threshold qc [17,18],

qc := arg min
qc∈{q}

{qc|G(q > qc) ∼ 0,∀q}, (1)

and the average giant fraction F [4],

F := 1

n

∑

q

G(q). (2)
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In this paper, we use F to measure the network robustness
since it can more effectively capture the global change of the
giant component instead of a special condition (qc) where the
giant component vanishes.

Letting ei j ∈ E correspond to a unique edge between nodes
i ∈ N and j ∈ N , we use the assortativity coefficient r in
Ref. [16] to measure the network assortativity

r =
1
m

∑
ei j∈E kik j − [

1
2m

∑
ei j∈E (ki + k j )

]2

1
2m

∑
ei j∈E

(
k2

i + k2
j

) − [
1

2m

∑
ei j∈E (ki + k j )

]2 , (3)

in which ki denotes the degree (the number of connections)
of node i. Moreover, following the assumption of Ref. [8]
viewing the dynamics of the nodes of G as phase oscillators
coupled by the associated edges, we still employ the Ku-
ramoto model [11] to govern the dynamics of the coupled
oscillators:

θ̇i = ωi + λ
∑

j∈N

Ai j sin(θ j − θi ), (4)

where i ∈ N , θi is the phase of oscillator i, and ωi denotes the
corresponding natural frequency. Ai j is a binary symbol; i.e.,
Ai j = 1 if ei j ∈ E , otherwise, Ai j = 0. λ represents the cou-
pling strength by adjusting the coherence (usually measured
by the order parameter �) among the oscillators which will
change:

�(t )eiψ (t ) = 1

n

∑

j∈N

eiθ j (t ), (5)

where i = √−1, e is Euler’s number and ψ (t ) = 〈θ (t )〉 de-
notes the average phase of the system under the evolution of
time t .

To modify the values of F and r of G, we first define the
following procedures:

C(ei j ) := cut the edge between nodes i and j,

A(σuv ) := add an edge between nodes u and v,

where σuv means that there is no direct connection between
nodes u ∈ N and v ∈ N , i.e., ei j ∈ E and σuv /∈ E . Further,
letting

C(ei j, euv ) := C(ei j ) and C(euv ),

A(σiu, σ jv ) := A(σiu) and A(σ jv ),

we have the following observations: (1) the average degree
〈k〉 keeps constant if C(ei j ) and A(σuv ) appear in a pair; (2)
the node degree distribution keeps unchanged if C(ei j, euv )
and A(σiu, σ jv ) appear in a pair; and (3) r keeps constant if
ki = kv or/and k j = ku under the condition of observation (2).
Note that both ei j and euv are randomly selected from G in
this paper. Also, for convenience of description, we define
the goal function ξ δ (g) based on the cut-add strategy, i.e.,
C(ei j, euv ) and A(σiu, σ jv ) appear in a pair, where g is the
metric associated with a certain property of G, like r or F ,
and δ is a symbol corresponding to either the enhancement
(+) or the reduction (−) of g. Moreover we employ ξ δ (g|cg)
to represent the evolution of ξ δ (g) under the condition of cg.
For example, ξ+(F0|r ≡ r0) means that the robustness F of
G is enhanced to F0, while its assortativity r is fixed to r0,
where both F0 and r0 are given values. In addition, when

we specify a certain value, e.g., r = 0.000, it means that the
difference between the given value and the real value is within
1 × 10−5. For this case, we use ξ δ (g) instead of ξ+(g) or ξ−(g)
because both of them are employed to adjust the network in
a small region around the given value. In other words, for
instance, we first use either ξ+(r0) or ξ−(r0) to make the
network assortativity close to r0 and then employ both ξ+(r0)
and ξ−(r0) to further adjust the network, which finally has
r = r0 ± 10−5.

Specifically, given a certain network and g0 (assuming
g0 > g), one procedure C(ei j, euv ) and A(σiu, σ jv ) is accepted
if it increases g; otherwise, is ignored. Similarly, when g0<g,
we adopt the exchange C(ei j, euv ) and A(σiu, σ jv ) if it de-
creases g. Then we repeat those two procedures until the
desired g0 is reached, which corresponds to ξ δ (g). During the
process to g0, we may capture some points (say, g′

0), where g
undergoes only an enhancement or a reduction. This case is
associated with ξ+(g′

0) or ξ−(g′
0), respectively. Moreover, if

there is no special explanation, we also relate g0 > g to the
enhancement of the attribute g and g0 < g to the reduction.

III. RESULTS

In this section, we will numerically demonstrate the effects
of F as well as the combinations of F and r on the system of
Eq. (4), in which the natural frequency ωi of each oscillator
is fixed to the associated node degree ki. In addition, the
order parameter � [Eq. (5)] is calculated by simulating the
system long enough until it is stable using the adaptive Runge-
Kutta-Fehlberg method [Fehlberg’s 4(5) method] [19] with
error tolerance 1 × 10−4, respectively, for the forward and
backward evolutions of the coupling strength λ(τ ) := λ0 +
τ�λ,∀τ ∈ [0, L], τ, L ∈ N, where λ0, �λ, and L are given
values. In other words, each λ(τ ) corresponds to a steady
state of �(λ(τ )), and the forward transition of � evolves with
an ascending order of τ and the backward process with a
descending order of τ . Note that in this paper �λ = 0.02 is
considered for each simulation, and all of the initial scale-free
(SF) networks are constructed using the Barabási-Albert (BA)
model [20]. Also, for convenient description, the symbols e
and b are accordingly used to be associated with the forward
and backward evolutions of λ.

We first investigate the effects of network robustness F and
assortativity r on ES through ξ δ (F ) and ξ δ (r) on the network
with 〈k〉 = 6.0, respectively. Figure 1(a) shows the order
parameter � in dependence on the coupling strength λ for
the forward and backward synchronization on the initial SF
network. The special regions Je, Jb, and S mean the follow-
ing: Je = �e(λ(τe + 1)) − �e(λ(τe)) and Jb = �b(λ(τb)) −
�b(λ(τb − 1)) accordingly correspond to the maximal jump
size of � of the forward and backward synchronization,
where τe := arg maxτ [�e(λ(τ + 1)) − �e(λ(τ ))] and τb :=
arg maxτ [�b(λ(τ )) − �b(λ(τ − 1))], and

S = �λ

τe∑

τ ′=τb

[�b(λ(τ ′)) − �e(λ(τ ′))] (6)

denotes the hysteresis area, in which τ ′ ∈ N. Indeed [see the
red circle in Figs. 1(b)–1(d)], on the one hand, both S and J
vary over the network assortativity and are suppressed by large
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FIG. 1. The magnitude of synchronization � versus the coupling
strength λ for the forward and backward transitions in networks
with n = 103 and 〈k〉 = 6.0. (a) The initial SF network constructed
using the BA model with F = 0.197 and r = −0.067. The solid and
dashed lines, respectively, correspond to the forward and backward
transitions, and between them is the hysteresis area represented by
S . Also, the maximal jump sizes of them are denoted by Je and
Jb, accordingly. (b) r = 0.000 with F = 0.278 adjusted by ξ δ (r)
(red circle) and F = 0.250 with r = −0.033 through ξ δ (F ) (blue
square) on the initial SF network. (c) r = 0.050 with F = 0.354 and
F = 0.300 with r = −0.006. (d) r = −0.050 with F = 0.213 and
F = 0.150 with r = −0.077.

or small r, which agrees with the results in Refs. [13,14]. On
the other hand, a similar change of S and J can be achieved
through the adjustment of network robustness [see the blue
square in Figs. 1(b)–1(d)], which indicates that there is a
range of F within which S and J reach larger values. But,
in general, no matter which one between r and F we adjust,
the other one will positively increase or decrease.

Thus, we next fix either F or r and vary the other one
to further verify the dependence of ES on the network ro-
bustness and assortativity. Figure 2 illustrates the forward
and backward synchronization on networks with different r
under three values of F , 0.100, 0.200, and 0.350. Note that
ξ δ (r|ξ δ (F )) means that we first enhance or weaken the net-
work robustness F and then adjust the network assortativity r
to a certain value by keeping F constant. As manifested in
Figs. 2(a)–2(d), though r can narrow the hysteresis area S
and decrease the jump size J , both S and J still exist, even
r taking a much larger or smaller value (0.150 and −0.200)
when F = 0.200. In contrast [Figs. 2(e)–2(h)], the change of
F sharply decreases the size of S and J , and in some cases
they even disappear, which indicates that we can control S and
J through the interaction of r and F .

In Fig. 3 we show the results of the impacts of the in-
teraction of the network assortativity and robustness on the
jump size and hysteresis area of ES, as well as F of r with
ξ δ (r) and r of F with ξ δ (F ). Without loss of generality,
we also consider the cases of SF networks with n = 103 and
〈k〉 = 6.0. Due to the limitation of n, networks constructed by
the BA model are a little disassortative, and their F is slightly
less than 0.200. Therefore, we employ ξ δ (r|ξ δ (F ) ≡ 0.200)
to reconstruct the paradigmatic SF networks to generate our
experimental networks. As a result, all networks used for
further study in this simulation are with 〈k〉 = 6.0, F =
0.200, and r = 0.000 (the differences of both F and r among
those networks are within 1 × 10−5). Finally, based on those
networks, we derive Fig. 3 through ξ δ (r|ξ δ (F )), which means
that ξ δ (F ) and ξ δ (r|F ) are successively used to adjust the
network structure.

From Fig. 3 we infer the following conclusions: (1) the ex-
plosive synchronization is more likely in assortative networks
with an enhancement of robustness compared to those with
disassortativity and weak robustness; (2) extreme values of r
and/or F will refrain the jump size J and hysteresis area S;
(3) the existence range of J is much larger than that of S; (4)
Je is larger than Jb in assortativity networks, but smaller in
disassortativity networks; and (5) there is an area within which
both J and S reach peaks under the interaction of r and F .
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FIG. 2. The magnitude of synchronization � versus the coupling strength λ for forward and backward transition on networks with n = 103

and 〈k〉 = 6.0 under different assortativity r and robustness F . (a–d) ξ δ (r|ξ δ (F ) ≡ 0.20). (e, g) ξ δ (r|ξ δ (F ) ≡ 0.35). (f, h) ξ δ (r|ξ δ (F ) ≡ 0.10).
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FIG. 3. The jump size J and hysteresis area S of the network robustness F and assortativity r. (a) The forward synchronization Je. (b) The
backward synchronization Jb. (c) S . The solid and dashed curves correspond to F of r with ξ δ (r) and r of F with ξ δ (F ), respectively. Each
result is the average of 20 network realizations.

In detail, the solid curve in Fig. 3 represents the influence
of r on J and S without the control of F , which is related
to Refs. [13–15]. In addition, F shoots up with the increase
of r for r > 0, but slowly falls when r decreases if r < 0.
This means that J actually remains in the similar range of
assortativity and disassortativity if F is unfixed. With respect
to S , we have similar results to Ref. [14], namely, S reaches
its maximum in weak assortativity networks and vanishes
quickly as networks become disassortative. A contrary trend
of r is observed in the process of ξ δ (F ) (see the dashed lines
in Fig. 3), under which J and S disappear dramatically with
the decrease of F and stay in a large range of increasing F .

We further validate the above conclusions in a much larger
network with n = 104 and 〈k〉 = 6.0. Figs. 4(b), 4(i), and 4(j)
and Figs. 4(b)–4(d), 4(k), and 4(l) show how ES is influenced
by varying F or r, while the other one is fixed: making a
network fragile is more likely to collapse ES than enhancing
the network’s robustness, and a larger S can be observed

in assortative networks compared to disassortative networks.
When r is not fixed [Figs. 4(e) and 4(f)], J and S disappear
in a high speed with decreasing F and stay in a large range
for increasing F . Moreover, in these cases, S = 1.979 reaches
its maximum when r = 0.000 and F = 0.200, and it is also
much larger than that in the network with n = 103.

IV. DISCUSSION

By now, we have presented our results of ξ δ (r|ξ δ (F ) ≡
F0), namely, the network robustness F is initially given for a
certain value F0, and then the network assortativity is further
adjusted with the constraint F ≡ F0. But what would hap-
pen when we use ξ δ (F |ξ δ (r) ≡ r0) to modify the network?
Figure 5 shows the corresponding results of ξ δ (F |ξ δ (r))
on the same network as in Fig. 2. The strongest difference
between them is in Fig. 2 and Figs. 5(c), 5(d), 5(g), and 5(h),
where the hysteresis area vanishes in one network, while it
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FIG. 4. The magnitude of synchronization � versus the coupling strength λ for forward and backward transition on networks with n = 104

and 〈k〉 = 6.0 for different r and F . The result of the paradigm network from the BA model is reported in panel (a).

012312-4



EFFECTS OF NETWORK ROBUSTNESS ON EXPLOSIVE … PHYSICAL REVIEW E 100, 012312 (2019)

0.0

0.2

0.4

0.6

0.8

1.0
(a)

r
0.000
F

0.200

(b)

r−0.050
F

0.200

(c)
r

0.150
F

0.200

(d)

r−0.200
F

0.200

0.5 1.5 2.5
0.0

0.2

0.4

0.6

0.8
(e)

r
0.000
F

0.350

0.5 1.5 2.5

(f)
r

0.000
F

0.100

0.5 1.5 2.5

(g)

r−0.050
F

0.350

λ
0.5 1.5 2.5 3.5

(h)

r−0.050
F

0.100

ξ
δ(F|r)

FIG. 5. The magnitude of synchronization � versus the coupling strength λ for forward and backward transition on networks with n = 103

and 〈k〉 = 6.0 under different assortativity r and robustness F . (a, e, f) ξ δ (F |ξ δ (r) ≡ 0.000). (b, g, h) ξ δ (F |ξ δ (r) ≡ −0.050). (c) ξ δ (F |ξ δ (r) ≡
+0.150). (d) ξ δ (F |ξ δ (r) ≡ −0.200).

still exists in the corresponding other one, even though they
both have the same r and F . One reason may be ascribed to
the fact that both r and F are disturbed heavily in Figs. 2(g)
and 2(h) and Figs. 5(c) and 5(d); e.g., for Fig. 5(c), F will
considerably increase with the rise of r and then be dragged
back to 0.200 (also see the solid line in Fig. 3). This can be
verified in a similar way as in Fig. 3.

Another interesting difference is that the hysteresis area
in Fig. 2(a) is much larger than that in Fig. 5(a) (also see
Fig. 8 below). The main distinct process between them is that
in the change trend of F , i.e., for ξ δ (r|ξ δ (F )) [Fig. 2(a)],
F undergoes only an increasing process (ignore the tiny
adjustment), while it first increases with the rise of r and
then decreases to 0.200 through ξ δ (ξ δ (F )|r) [Fig. 5(a)]. Thus,
how do the increasing and decreasing behaviors influence the
ES? Figure 6 shows S of the perturbations of r and F . For
a convenient description, we employ r(Pt ) and F (Pt ) to be
associated with the perturbation step Pt . In detail, at each step

(Pt ), the associated property (r and/or F) is either increased
[ξ+(g)] or decreased [ξ−(g)] (assuming 104 times of the cut-
add strategy), and then adjusted back to the given value, i.e.,
networks for each data point have similar properties. Also,
we here set odd steps (Pt = 1, 3, . . .) as the decreasing pro-
cess and even steps (Pt = 2, 4, . . .) as the increasing process.
Considering Fig. 6(e) as an example, we first employ ξ−(r)
(104 times of the cut-add strategy) to reduce the network
assortativity and then adjust it to r(1) ≈ r(0) through ξ δ (r)
to obtain the network for Pt = 1. Based on this network, we
further use ξ+(r) to enhance the network assortativity and
then tune it back to r(2) ≈ r(1) ≈ r(0) to get the network for
Pt = 2, etc. In this manner, we continually disturb r but at
each data point r(Pt ) ≈ r(0), Pt = 1, 2, 3 . . ..

As shown in Figs. 6(a)–6(d), the hysteresis area S de-
creases with the increase of Pt if we disturb the network
assortativity when keeping F constant, and it undergoes
a slight fluctuation by ξ δ (F |r). Note that the perturbation
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FIG. 6. The hysteresis area S versus the perturbations of network assortativity r and robustness F on networks with 〈k〉 = 6.0, n = 103

(the same initial network as Fig. 2) for (a, b, e–h) and n = 104 (the same initial network as in Fig. 4) for (c, d). (a, b) Respectively for ξ δ (r|F )
and ξ δ (F |r) with r(0) = −0.067 and F (0) = 0.197. (c, d) Respectively for ξ δ (r|F ) and ξ δ (F |r) with r(0) = −0.029 and F (0) = 0.187.
(e, g) ξ δ (r) with r(0) = 0.000 and r(0) = 0.050, accordingly. (f, h) ξ δ (F ) with F (0) = 0.197 and F (0) = 0.250, accordingly.
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process is different from that in Fig. 3. Also, we might focus
the utmost interest on Figs. 6(e)–6(h), where we consider only
the perturbation from either r or F . For both cases, S peri-
odically fluctuates in the evolution of Pt . Specifically, when
disturbing r, S negatively changes as the network robustness
evolves, while it is positively correlated to r through ξ δ (F ).
In addition, the fluctuation between two adjacent Pt is very
large. This suggests that quite different S will be obtained
even though two networks have almost similar r or F .

To further demonstrate the results of Figs. 6(e)–6(h), we
show the hysteresis area S and the network robustness F (or
assortativity r) against the forward and backward evolutions
of r (or F) in Fig. 7. For the backward evolution of r
[Fig. 7(a)], we first disturb r through ξ δ (r) until the net-
work reaches a stable state (assuming Pt ∈ [1, 100]), where
�10 000/Pt is conducted for the cut-add strategy at each
perturbation step. After this, r is increased to 0.15 and then
gradually decreased to −0.15, during which we capture the
temporary networks with an interval of around 0.01 of r.
We independently repeat this process 20 times and obtain
the backward transition of r, which is shown as the green-
dotted-circle curve in Fig. 7(a). The forward evolution of r
is gathered in a similar way but with the process that r is
decreased to −0.15 and then gradually increased to 0.15. The
similar strategy is also conducted to evolve F .

As illustrated in Fig. 7, there is a gap of F or r between
ξ−(·) and ξ+(·). This gap changes the place of the peak of S ,
which indicates that δ of ξ δ (·) truly plays an important role in
S . Moreover, the magnitude of synchronization � versus the
coupling strength λ for the forward and backward transitions
on networks with the same 〈k〉, r and F is demonstrated
in Fig. 8. These results are also twofold. On the one hand,
there might be a maximum of S achieved by appropriate
adjustments of r and F . On the other hand, the order of the
adjustment plays quite a vital role, which means that r and F
are not the only two properties influencing ES. By and large,
this problem is still open and needs further research.
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FIG. 8. The magnitude of synchronization � versus the coupling
strength λ for forward and backward transition on networks with
〈k〉 = 6.0, r = 0.000 and F = 0.200 for (a) n = 103 and (b) n =
104. ξ δ (r|ξ δ (F |r)) here means that F is first adjusted to 0.200 by
keeping r constant and then change r to 0.000 with fixed F ≡ 0.200.

V. CONCLUSION

The robustness of networks as a fundamental problem
in network science has been widely studied during the past
decade [17]. Those studies mainly consider how the structure
of networks influences their robustness. In this paper, we view
the network robustness F as a property of networks and use
it to capture the change of networks’ structure. More specif-
ically, we have numerically studied effects of the network
robustness as well as its interaction with network assortativity
r on explosive synchronization and have found that both
extreme values of F and r would suppress ES, especially the
hysteresis area between the forward and backward transitions.
In particular, for a network constructed by the BA model,
there is a maximum of hysteresis area achieved by appropriate
adjustments of F and r. In addition, our discussion reveals
that the change trends of both the network robustness and
assortativity play important roles on ES. In other words,
different behaviors of ES are found in networks with similar F
and/or r if the networks undergo different change processes,
which leaves the problem of effects of the network structure
on ES still partly open.
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