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Global benefit of randomness in individual routing on transportation networks

Tak Shing Tai and Chi Ho Yeung*

Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong

(Received 4 March 2019; revised manuscript received 4 July 2019; published 24 July 2019)

By introducing a simple model based on two-dimensional cellular automata, we reveal the relationship
between the routing strategies of individual vehicles and the global behavior of transportation networks. Specif-
ically, we characterize the routing strategies by a single parameter called path-greediness, which corresponds
to the tendency for individuals to travel via a shortest path to the destination. Remarkably, we found that the
effective dimension of the system is reduced when the congested states emerge. We also found that a high
individual tendency to travel via the shortest path does not necessarily shorten the average journey time, as the
system may benefit from less greedy routing strategies in congested situations. Finally, we show that adaptive
routing strategies outperform controlled strategies in the free-flow state but not in the congested state, implying
that controlled strategies may increase coordination among vehicles and are beneficial for suppressing traffic
congestion.
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I. INTRODUCTION

Traffic congestion is severe in many urban areas especially
in cosmopolitan cities. Methods have been proposed to reduce
traffic congestion and one of them is to optimize traffic flow as
limited by the fixed infrastructure of roads. To reduce traffic
congestion and to optimize traffic flow, route coordination is
considered, as vehicles can make the best use of roads in the
networks [1,2]. In this case, some road users are diverted to
longer paths to reduce the load on major routes, and thus
to reduce traffic congestion. However, strategies to distribute
users to longer paths correspond to a tradeoff of traveling time
between individual drivers and all drivers in the network, i.e.,
a nontrivial balance between the social and the global opti-
mum [3]. It is also known that vehicles do not always follow
their shortest paths in the optimal or the user equilibrium state
in traffic assignment [4,5]. A study to understand and illustrate
the impact of individual routing strategies on the macroscopic
traffic condition is thus warranted.

Since experiments on real transportation networks would
affect the daily movement of citizens, models are often em-
ployed to study the dynamics of vehicles. One seminal model
for the study of vehicle interaction is the cellular automaton
(CA) transportation model suggested by Nagel and Schreck-
enberg [6]. Many variants of the model exist, such as the
particle hopping models which were simplified models repro-
ducing some of the observed traffic dynamics [7,8] and the
model with two lanes and bidirectional traffic which reveals
the interaction between vehicles [9]. Others have applied the
CA model to understand vehicle dynamics, for instance, to
study lane changing [10] and to explain traffic breakdowns
and the characteristics of different transportation states [11].
Probabilistic CA models with single lanes are also introduced
[12]. Similar to CA models, cell transmission models [13,14]
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are applied to study transportation networks and to reveal the
relationship among metrics such as traveling time, average
vehicle speed and traffic flow [15]. All these models contribute
to our increasing understanding of transportation networks.

Other than microscopic vehicle dynamics, there are studies
to utilize models to connect microscopic factors with macro-
scopic behavior in transportation networks. For instance, a
mathematical model was introduced to study human factors
in driving behavior [16], analogous to models introduced to
understand human behavior [17,18]. There are also studies
which integrate real data with simulation to study human be-
havior [19,20]. In transportation, the so-called efficient hierar-
chical control strategies were developed to predict the travel-
ing time and to identify traffic equilibrium [21]. Mathematical
models were also introduced to understand user equilibrium
[22–24]. In other studies, methods are introduced to predict
traffic conditions. For instance, the functional principal com-
ponent analysis was employed to forecast the traveling time
between specific locations [25]; a framework was introduced
to evaluate the network performance with different pricing
conditions [26]; pricing systems were applied to study flow
patterns [27,28]. The above studies showed that transportation
networks are complex systems and each individual factor has
important impacts on the system.

While transportation networks are dependent on many
factors, one crucial factor is the routing strategy of individual
drivers. To study the impact of routing strategies, two-lane
or multiple-lane routing strategies have been studied and the
benefit of these strategies are examined in different network
scenarios [29–32]. Uncertainty in routing is another important
factor, and was modeled in Refs. [13,33]; a choice model of
stylized stochastic user equilibrium was employed to study
two different routing scenarios to reduce traffic congestion
[34]. Other related studies include the introduction of a station
sensitivity index to predict passenger flows [35], and the
application of stochastic differential equations to study traffic
flow and phase transitions [36]. These studies showed that
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routing strategies and random noise in routing have significant
impacts on transportation networks.

In this paper, we will reveal the impact of individual
preferences to travel through the shortest path on the global
behavior of transportation networks. We will introduce a
model based on cellular automata on square lattices, where
individual drivers either route through the shorter path, or
intentionally move to a random direction and travel through
a longer path to the destination, according to a parameter
called path-greediness. Based on the model, we will reveal
characteristics of the system such as phase transitions and the
effectiveness of different routing strategies in reducing traffic
congestion.

II. MODEL

Specifically, we consider a model of transportation net-
works on a two-dimensional L × L square lattice with peri-
odic boundary condition, where each lattice site is labeled
by the coordinate (x, y), with x, y = 1, . . . , L. There are a
total of N vehicles, labeled by i = 1, . . . , N , running on the
network by hoping between neighboring sites. Each site can
be occupied by at most one vehicle. We denote the density of
vehicles on the network to be ρ = N/L2. Before the simula-
tion starts, a pair of random origin and destination are drawn
for each vehicle. Each vehicle i then travels from its origin
to its destination (Xi,Yi ); after it arrives at its destination, a
new random destination is drawn and the vehicle starts to
travel again. This transportation network is thus analogous
to a system of two-dimensional lattice gas of which particles
correspond to vehicles interacting with an individual time-
varying potential.

To model the vehicle movement, we denote the coordinate
of vehicle i at time t to be (xt

i , yt
i ), its speed to be vi and the

speed limit of the network to be vmax, such that vi � vmax for
all vehicle i. At each time step, one vehicle i is picked ran-
domly and moves to a new coordinate (xt+1

i , yt+1
i ) according

to its adopted routing strategy. The simulation repeats for t
steps, and various quantities of interest in the system such
as the average vehicle speed and the number of completed
journeys are measured.

A. Routing strategy

To examine the impact of random noise on the choice
of routes, we define a probabilistic routing strategy
where vehicles occasionally move in a direction away from
the destination. For the sake of clarify in the discussion, here
we consider the case of vmax = 1 and discuss the cases with
general vmax in Appendix A. For a vehicle i with coordinate
(xt

i , yt
i ) at time t , its coordinate is updated by(

xt+1
i , yt+1

i

) = (
xt

i , yt
i

) + ηt
i

(
�xt

i ,�xt
i

)
, (1)

where (�xt
i ,�yt

i ) corresponds to the intended movement
of vehicle i. Since each site can be occupied by at most
one vehicle, the variable ηt

i = 0 if the site of the next in-
tended movement is already occupied by another vehicle, and
otherwise ηt

i = 1. In other words, ηt
i is given by

ηt
i =

{
0, if

(
xt

i , yt
i

)+(
�xt

i ,�yt
i

)=(
xt

j, yt
j

)
, ∃ j,

1, otherwise.
(2)

Next, we describe how the intended movement (�xt
i ,�yt

i )
is decided by vehicle i, since it is related to its routing
strategy. To incorporate random noise in the path-selection
process of drivers, we introduce a parameter g which we
call path-greediness, whereas 0 � g � 1. With a probability
(1 + g)/2, a vehicle tends to move closer to its destination;
with a probability (1 − g)/2, the vehicle tends to move away
from the destination. The path-greediness g � 0 as vehicles
have a tendency to go to the destination; with g = 1, vehicles
always tend to move closer to the destination, and with g =
0, vehicles move randomly. In other words, when vehicle i
has not yet arrived at neither the x nor y coordinate of its
destination (i.e., xt

i �= Xi and yt
i �= Yi), we draw (�xt

i ,�yt
i )

according to

(
�xt

i ,�yt
i

) =

⎧⎪⎪⎨
⎪⎪⎩

(0,�ỹ), with a probability 1+g
4 ,

(�x̃, 0), with a probability 1+g
4 ,

(0,−�ỹ), with a probability 1−g
4 ,

(−�x̃, 0), with a probability 1−g
4 ,

(3)

where �ỹ and �x̃ are the greedy directions

�ỹ = sgn
(
Yi − yt

i

)
sgn

(
L

2
− ∣∣Yi − yt

i

∣∣), (4)

�x̃ = sgn
(
Xi − xt

i

)
sgn

(
L

2
− ∣∣Xi − xt

i

∣∣), (5)

with the sign function sgn(x) = 1 when x � 0, and otherwise
sgn(x) = 0. The first sign function in Eqs. (4) and (5) deter-
mines, respectively, the x and y direction of the destination
from the present location, while the second sign function
reverses the movement direction as it is closer to move via
the periodic boundary condition.

On the other hand, when vehicle i has arrived at either the
x or y coordinate of its destination (i.e., xt

i = Xi and yt
i �= Yi,

or xt
i �= Xi and yt

i = Yi), we assume that the vehicle moves in a
direction toward the destination with a probability (1 + 3g)/4.
For instance, if xt

i = Xi, then the intended movement is given
by

(
�xt

i ,�yt
i

) =

⎧⎪⎪⎨
⎪⎪⎩

(0,�ỹ), with a probability 1+3g
4 ,

(1, 0), with a probability 1−g
4 ,

(0,−�ỹ), with a probability 1−g
4 ,

(−1, 0), with a probability 1−g
4 .

(6)

Similarly, if yt
i = Yi, then

(
�xt

i ,�yt
i

) =

⎧⎪⎪⎨
⎪⎪⎩

(�x̃, 0), with a probability 1+3g
4 ,

(0, 1), with a probability 1−g
4 ,

(−�x̃, 0), with a probability 1−g
4 ,

(0,−1), with a probability 1−g
4 .

(7)

In cases with path-greediness g = 1, vehicles are only directed
toward their destinations and are always on a path with the
shortest distance; vehicles follow a random zigzag trajectory
to their destinations, which is one of the shortest paths. With
path-greediness g = 0, the movement of vehicles is com-
pletely random regardless of the location of their destinations.
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B. Quantities of interest

We assume that the simulation starts at time t = 0 and
equilibrate at time t = Te, i.e., when all the quantities of
interest become steady. We terminate the simulation at time
t = T . Several quantities will be measured to characterize the
behavior of the system, which include the average vehicular
speed v̄, the average arrival count per time step n̄arrival (i.e.,
the average number of vehicles arriving at their destination per
time step), the average journey time and the average journey
distance between origins and destinations.

Another crucial quantity of interest which characterizes the
state of a transportation network is the average movement
count n̄movement, i.e., the average number of vehicle move-
ments per time step per site, given by

n̄movement = 1

(T − Te)

T∑
t=Te

N∑
i=1

ηt
i . (8)

We note that the average movement count per site
n̄movement/L2 = ρv̄, and one may interpret the quantity
n̄movement/L2 as the average traffic flow, conventionally given
by ρv̄ [15]. As defined in the fundamental diagram of traffic
flow, when traffic flow f increases with increasing vehicle
density ρ, the system is in a free-flow state; however, when
f decreases with increasing ρ, the system is in a congested
state [15].

Nevertheless, as vehicles with g < 1 in our model may
detour from their shortest path toward the destination, and
some random movement may be unnecessary and may not
directly contribute to the arrival at destinations. In this case,
a high movement count does not necessarily imply a high
traffic flow for vehicles moving toward their destination, as
vehicles may be making unnecessary detour. Thus, one may
measure the average arrival count n̄arrival instead to quantify
the effectiveness of vehicles arriving at destination. Neverthe-
less, we will see from our results that detour movements are
not completely unnecessary, and a higher n̄movement is related
to a higher n̄arrival. As a result, both average movement count
and average arrival count are of interest to study.

III. RESULTS

With our model, we employ computer simulations to reveal
various macroscopic phenomena in transportation networks.
Since our goal is to study the relationship between routing
strategies and traffic congestion, we will focus on the system
behavior and its dependence on the vehicle density ρ and the
path-greediness g, while keeping all other factors constant. In
other words, we characterize routing strategies in our model
by a single parameter g.

A. The free-flow, the congested-flow, and the congested states

As in other existing studies of transportation cellular au-
tomata, we first examine the dependence of the average ve-
hicle speed v̄ on vehicle density ρ. As shown in Fig. 1, v̄

decreases abruptly at a specific value of ρc, as ρ increases.
We remark that the decrease of v̄ is also observed in the
fundamental model of cellular automata on a ring when ρ

increases beyond a threshold, but the decrease of v̄ is more
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FIG. 1. The simulation results of the average vehicle speed v̄ as
a function of ρ with path-greediness g = 0.6 on square lattices with
various length L. The results are obtained with T = 3 × 106 and
an equilibration time Te = 2.5 × 106, averaged over 1000 instances.
The cases with different L become congested as vehicle density ρ

increases beyond a critical value.

gentle in the ring topology [6]. We also found that the decrease
of v̄ at ρ = ρc becomes more abrupt when L increases, sug-
gesting that a first-order phase transition from a free-flow state
to a congested state occurs at ρ = ρc. These results imply
that a first-order phase transition may occur on transportation
cellular automata with a dimension larger than one; additional
results pointing to its relevance to the system dimension
will be discussed later. The first-order phase transition also
implies that congestion may abruptly emerge in grid-like road
networks given the slightest increase in vehicle density. Since
the focus of this subsection is phase transition, we will further
discuss the behavior of average speed v̄ in the next subsection.

Conventionally, the traffic flow f increases with the vehicle
density ρ in the free-flow state, but f decreases with ρ in the
congested state [15]. As we can see in Fig. 2(a), in cases with
a small path-greediness such as g = 0 or g = 0.2, i.e., when
routing strategies are very random, the average movement
count n̄movement increases to a peak and then decreases. If one
interprets n̄movement as traffic flow, then this result is consistent
with the conventional pictures. On the other hand, with a
large value of path-greediness such as g = 0.6 or g = 0.8, the
average movement count n̄movement increases with ρ when ρ <

ρc, implying that the free-flow state emerges when ρ < ρc.
As shown in Fig. 3(a), in the free-flow state, the vehicles can
freely flow so that their average speed is high.

Nevertheless, unlike other conventional studies from which
the traffic flow f decreases with ρ beyond the free-flow state,
we see in Fig. 2(a) that for cases with a large path-greediness
such as g = 0.6 or g = 0.8, the average movement count
n̄movement slightly increases in a range of values of ρ with ρ >

ρc. To better illustrate the phenomenon, we show specifically
n̄movement as a function of ρ with g = 0.6 in Fig. 4(a). As we
can see, n̄movement increases slightly in the range of ρ1 < ρ <

ρ2, which emerges beyond the free-flow state. Although ρ1 �=
ρc, we expect ρc and ρ1 to coincide when the system size L
increases. The results of increasing average movement count
n̄movement beyond ρc are not observed in other conventional
studies.
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FIG. 2. (a) The simulation results of the average movement count
n̄movement as a function of ρ with L = 20 and various values of g.
(b) The simulation results of n̄arrival, i.e., the average arrival count
per time step, as a function of ρ with L = 20 and various values of
g. The results are obtained with T = 3 × 106 and an equilibration
time Te = 2.5 × 106, averaged over 1000 instances. The average
movement count n̄movement and the average arrivals count per time
step n̄arrival show that the cases with smaller g become congested as
vehicle density increases beyond ρ > ρc.

As we have discussed in Sec. II B, a high movement count
does not necessarily imply a high traffic flow, as vehicles
in cases with g < 1 may be making unnecessary movements

which do not contribute to the arrival at destinations. In this
case, we examine the average arrival count n̄arrival as a function
of ρ for various cases of path-greediness g in Fig. 2(b). As we
can see, the average arrival count n̄arrival decreases abruptly
at ρ = ρc for cases with g = 0.4, 0.6 and 0.8, similar to the
results we observed for n̄movement in Fig. 2(a). With ρ > ρc,
n̄arrival continues to decrease monotonically with increasing ρ,
without the slight increase we observed for n̄arrival in Fig. 2(a).
These results on the average arrival count are consistent with
the fundamental diagram where traffic flow monotonically
decreases with vehicle density in the congested state.

Although a high movement count does not necessarily
imply a high traffic flow, it can be a contributing factor
facilitating vehicle arrival at destinations. As we can see in
the inset of Fig. 2(b), the arrival count of the case of g = 0.6
is higher than that of g = 0.8, while Fig. 2(a) shows that the
former has a higher movement count. These results suggest
that some of the random detour movements may contribute to
the higher arrival count in the system.

To further quantify the behavior of movement count in
the congested state, we denote the value of ρ at the second
peak of n̄movement for g = 0.4, 0.6, and 0.8 to be ρ2 as shown
in Fig. 4(a), and call the range ρ1 < ρ < ρ2 with the small
increase in of n̄movement the congested-flow state. In this case,
as shown in Fig. 3(b), a congested cluster emerges and block
the pathways of many vehicles. The cluster emerges since the
destinations of vehicles are randomly assigned, and vehicles
with a greedy routing strategy slowly gathered around the
cluster if their destinations fall into the clustered region.
Vehicles can still freely travel in the uncongested area. We
remark that the emergence of three phases is also observed in
some transportation models [11,37,38].

Finally, the system emerges into a congested state in which
the average movement count n̄movement decreases with ρ. For
cases with small g, the congested state emerges with ρ > ρc

as shown in Fig. 2; for cases with large g, the congested
state emerges with ρ > ρ2 as shown in Fig. 4(a). As shown
in Fig. 3(c), the system is completely congested in both
dimensions, leaving only a small central region for vehi-
cle movement. A phase diagram summarizing the free-flow
state, the congested-flow state and the congested state as a

FIG. 3. An example of the snapshots of vehicle location on a 20 × 20 square lattice, with g = 0.6 and (a) ρ = 0.1, (b) ρ = 0.4, and
(c) ρ = 0.66. Filled sites are occupied by vehicles while unfilled sites are empty. (a) The system is in the free-flow state and vehicles are
roughly evenly distributed on the lattice. (b) The system is in the congested-flow state and most vehicles are stuck in the congested cluster,
except vehicles at the cluster periphery. (c) The system is in the congested state, and the congested cluster increases to a size which spans the
system.
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FIG. 4. (a) The simulation results of the average movement count n̄movement as a function of ρ with L = 20 and g = 0.6. Three states are
shown: the free-flow state with ρ < ρc, the congested-flow state with ρ1 < ρ < ρ2 and the congested state with ρ < ρ2. (b) The phase diagram
showing the three states as a function of ρ and g.

function of vehicle density ρ and path-greediness g is shown
in Fig. 4(b). The dependence of the threshold values of ρc and
ρ2 on system size L2 is shown in Appendix B.

The emergence of the congested states may be advocated to
the reduction of the system dimension from two dimensions to
one dimension due to congestion. To reveal this phenomenon,
we attempt to reveal the effective dimension of the system by
examining how the average movement count n̄movement scales
with the system size L in the free-flow and the congested
states. In Fig. 5(a), the rescaled average movement count
n̄movement/L2 obtained from systems of different size collapse
in the free-flow state, i.e., with density ρ < ρc. These results
imply that the system is effectively a two-dimensional system
in the regime with ρ < ρc.

On the other hand, as shown in Fig. 5(b), the results of
rescaled average movement count n̄movement/L with different
L collapse in the congested-flow state and the congested state,
i.e., in the regime with ρ1 < ρ � 1, suggesting that the system
is reduced to an effectively one-dimensional system.

In other words, the average movement count scales as

n̄movement ∝
{

L2, (Free-flow state)
L, (Congested-flow and congested state).

(9)

These results lead to an interpretation of the free-flow and
congested states in terms of dimensions: the free-flow state
is characterized with two-dimensional degree of freedom
inherited from the dimension of the original system; it is
then reduced to the congested states which are effectively
one-dimensional systems.

B. The greediness in routing

After examining the emergence of various states in the
system, we go on to reveal the system dependence on routing
strategies.

We first examine the dependence of average speed v̄ on the
path-greediness g. As shown in Fig. 6(a), the maximum av-
erage vehicle speed v̄ = vmax is only observed at the smallest
vehicle density ρ ≈ 0, and v̄ decreases linearly even in the
free-flow state (i.e., ρ < ρc) as ρ increases. It is because for

each vehicle, its probability to run into another vehicle is ρ in
the two-dimensional space even without congestion, resulting
in an average speed of v̄ = 1 − ρ in the free-flow state. These
results are different from the one-dimensional case of ring,
where the average speed v̄ = vmax is constant in the whole
free-flow state. As we can see in Fig. 6(a), the results in cases

FIG. 5. The simulation results of the system traffic flow F =
f L2, rescaled as (a) n̄movement/L2 and (b) n̄movement/L as a function of
ρ with g = 0.6 and various values of L. Data collapse is observed
in the regime of the free-flow state (i.e., ρ < ρc) in (a), and the
congested-flow and the congested state (i.e., ρ > ρc) in (b).
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FIG. 6. (a) The average vehicle speed v̄, (b) the average journey time and (c) the average journey distance between the origin and destination
of vehicles, as well as (d) the average arrival count per time step as a function of vehicle density ρ, for L = 20 and various values of path-
greediness g. The corresponding results for the cases with adaptive path-greediness are also shown. The results are obtained with T = 3 × 106

and an equilibration time Te = 2.5 × 106, averaged over 1000 instances. Insets: the enlarged plots of the average journey time and distance
in the regime with small density ρ are shown in the insets of (d) and (c). As we can see, the cases with higher path-greediness g have higher
tendency to be congested than the cases with lower g at the same vehicle density, or in other words, a lower critical density ρc beyond which
congestion occur.

with g = 0, i.e., the cases of random routing, are consistent
with the theoretical prediction of v̄ = 1 − ρ for all ρ.

For cases with path-greediness g � 0.4, v̄ decreases
abruptly to a small value as ρ increases beyond the threshold
density ρc as shown in Fig. 6(a), indicating the emergence of
congestion as we have discussed in Sec. III A. The decrease
of average vehicle speed is less for cases with smaller g, i.e.,
when vehicles move more randomly. This is consistent with
the observations of larger average arrivals count per time, i.e.,
higher values of n̄movement, in cases with smaller g as shown in
Fig. 2, implying that a less greedy strategy results in a larger
flow at all values of ρ. Nevertheless, since vehicles may move
in a random direction, a higher average speed v̄ or flow f does
not necessary correspond to a higher arrival count, or a short
time or distance to the destination as we will discuss below.

Next, we examine the dependence of the arrival count on
path-greediness. As shown in Fig. 6(d), the arrival count per
time step increases with ρ in the free-flow state with ρ < ρc.
It implies that the system can accommodate the commutation
of more vehicles as density ρ increases. When ρ = ρc, the
number of arrivals attains its maximum value and the arrival
count no longer increases, but instead decreases when there
are more vehicles. On the other hand, when path-greediness
g increases, i.e., when vehicles have a higher preference to
travel via the shortest path to their destinations, we see that (i)

the maximum arrival count per time step increases, implying
that the system can accommodate more commutations, but (ii)
the threshold density ρc decreases, implying that congestion
emerge at a lower vehicle density.

C. The average journey time and distance

Other than the average vehicle speed and the arrival count,
we examine the most important metrics, i.e., the average
journey time and the average journey distance between the
origin and the destination of vehicles. As shown in Fig. 6(b)
and the inset of Fig. 6(d), at a specific value of path-greediness
g, the average journey time is roughly constant when ρ < ρc.
It then abruptly increases at ρ = ρc and continues to increase
with increasing ρ. Similarly as shown in fig Fig. 6(c) and its
inset, when the system enters the congested state, the average
journey distance greatly increases, implying that vehicles are
often blocked and have to travel more in random directions to
move.

We note that both the average journey time and journey
distance increase abruptly in the congested state. The reason
is that in the congested state, vehicles are stopped for a large
number of steps before spaces are spared for them to move.
In particular, the average journey distance increases abruptly
when congestion occur, as vehicles need to travel for many
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unwanted or unnecessary steps. If the destinations of vehicles
are in the congested cluster, then they have to move around the
cluster to find a route into the cluster. A lot of movements are
used for attempts and to retrieve from their unsuccessful trials.
When the density of vehicles is well beyond the threshold den-
sity, i.e., ρ � ρc, the congested cluster becomes larger, and
unsuccessful attempts are more frequent so that the average
journey distance increases drastically.

Next, we examine how the average journey time and dis-
tance are affected by the path-greediness. As we can see in
Fig. 6(a), the average vehicle speed v̄ is higher in cases with
small g, which indicates that the system is less congested.
Nevertheless, it does not necessarily imply that vehicles have
a shorter journey time, since the movements of vehicles are
random at small g. This can be shown by the average journey
time in the inset of Fig. 6(d), when the vehicle density is small,
the smaller the value of g, the more random the path, and
the longer the time it takes for the vehicles to arrive at their
destinations. Remarkably, these expected results are true only
at small vehicle density ρ. In contrast to our common belief,
as shown by Fig. 6(b), at large ρ the average journey time
is shorter with smaller values of g; this suggests that a less
greedy routing strategy at large vehicle density ρ would lead
to a short average journey time.

Similarly, as we can see in the inset of Fig. 6(c), the greedy
cases (i.e., large g) have a shorter average journey distance
than the less greedy cases (i.e., small g) in the free-flow state,
but the opposite is true in the congested state at large ρ as
shown by Fig. 6(c). Similar to our observations on the average
journey time, the results on the average journey distance
imply that a less greedy (or more random) routing strategy is
beneficial at large vehicle density ρ, i.e., in highly congested
states.

Furthermore, from the results of Fig. 6(d), there exist a
value of path-greediness g for each density ρ which maxi-
mizes the arrival count. One interesting interpretation of the
results in Fig. 6(d) is that when the vehicle density ρ increases
beyond ρc, one can keep the system in the free-flow state
by decreasing the path-greediness of the system. It means
that if some vehicles can travel via longer paths, the whole
system benefits as the average journey time and distance in the
free-flow state are always shorter than those in the congested
state.

Although one may relate these results to the Wardrop
principle of user equilibrium in traffic systems [4], where all
vehicles minimize their own cost and lead to equal traveling
times on all used routes and longer traveling times on any
unused routes, our results are obtained based on weaker
assumptions. In our case, vehicles make decisions based only
on path-greediness, i.e., a probability to follow the shortest
path regardless of the con-current traffic condition, or other-
wise move to a random direction. As we can see, even with
such a simple and uncoordinated routing strategy, our results
show that all vehicles traveling on longer routes is globally
beneficial.

D. Vehicles with adaptive path-greediness

To further reveal the impact of routing strategies on the
macroscopic behavior of transportation networks, finally we

 0
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adaptive g

FIG. 7. The simulation results of the optimal value of g identified
in the controlled case for each density ρ, compared with the average
value of g in the adaptive case, on 20 × 20 square lattices with
T = 3 × 106 and an equilibration time Te = 2.5 × 106, averaged
over 1000 instances. Compared to vehicles in the controlled case,
vehicles in the adaptive case self-adapt to a higher g value in the
free-flow state and are globally beneficial as shown by Fig. 6; this is
not true in the congested state.

examine a case in which individuals can self-adjust their own
path-greediness. In this scenario, each vehicle i is assigned the
same initial value of gi. When simulations start, vehicle i first
follows the initial gi in movements. Then, gi increases by �g
when vehicle i has moved successfully for P consecutive steps
without being blocked by the other vehicles. This corresponds
to the case that vehicle i perceives the network as in the free-
flow state and a higher greediness would shorten the time to
the destination. However, gi decreases by �g if vehicle i has
been stopped for P consecutive steps, as it prefers a longer
route when the shorter routes are congested. For simplicity,
we set �g = 0.04 and P = 3 in simulations. In this adaptive
case, we observe that the equilibrium state of the system is
independent of the initial value of g.

For comparison, we call the original case with a universal
constant g the controlled case, while the case with an in-
dividual adaptive g the adaptive case. In general, we found
that the adaptive case outperforms the controlled case in the
free-flow state with ρ < ρc, but not in the congested state with
ρ < ρc. For instance, as shown in the insets of Figs. 6(c) and
6(d), the adaptive case has a lower average journey time and
distance than those in the controlled case. In other words,
vehicles are able to adjust their g to shorten their journey time
and distance in the free-flow state. Furthermore, in Fig. 6(d),
the arrival count in the adaptive case is always higher than
that of the controlled case when the vehicle density is low.
Nevertheless, with large values of ρ, the adaptive case has a
larger average journey time and distance as well as a smaller
arrival count compared with those of the controlled case,
implying that the adaptive case does not perform as well as
the controlled case in the congested state.

To better compare the controlled and the adaptive cases,
for each value of vehicle density, we identify the optimal
value of g in the controlled case which maximizes the arrival
count in Fig. 6(d). In Fig. 7, we compare the optimal value
of g in the controlled case with the average g in the adaptive
case as a function of ρ. As we have discussed above, the
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adaptive case outperforms the controlled case in terms of the
arrival count in the free-flow state; Fig. 7 shows that vehicles
self-adapt to a higher g value in the adaptive case than that in
the controlled case with small ρ, implying that a distribution
of path-greediness among vehicles are beneficial in the free-
flow state, since those vehicles in the less-crowded region can
adopt a higher g to shorten their journey time and distance.

Nevertheless, the opposite is true in the congested state. In
this case, the controlled case outperforms the adaptive case,
and the controlled values of g are higher than those in the
adaptive case. These results suggest that in the congested case,
a controlled environment leads to a better coordination among
vehicles, and hence a higher arrival count than that of the
adaptive case.

IV. CONCLUSION

In this paper, we introduced a model of transportation net-
works which is based on two-dimensional cellular automata.
In the model, individual vehicles travel to their respective
destinations with a routing strategy characterized by a single
parameter called path-greediness, which corresponds to their
tendency to travel via the shortest paths to the destinations.

As in conventional traffic models, the free-flow state and
the congested state emerge. In cases with a high path-
greediness, a congested-flow state where the movement count
of vehicle increases with the vehicle density even in the
presence of congestion. One may advocate the emergence of
congested states with the reduction of the effective dimension
of the system, as shown by our rescaled results. Moreover, a
high tendency to travel to the destination via the shortest path
does not necessarily increase the total arrival count or shorten
the average journey time; contrary to our common belief, a
less greedy routing strategy may be beneficial in the congested
state. Finally, by comparing cases where vehicles self-adjust
their own path-greediness to cases with a globally controlled
path-greediness, we found that adaptivity is only beneficial in
the free-flow state, but not in the congested state. These results
imply that coordination among vehicles may be induced by a
universal path-greediness, which is beneficial for suppressing
congestion.

In summary, our results imply that a small tendency to
travel via the shortest path and a centralized control in this
tendency on the shortest path are beneficial to transportation
networks with congestion. Our results point to the importance
in the relation between individual route choices and traffic
congestion, which further shed light on the mitigation of
congestion via coordination of individual routes. These in-
sights may be relevant to the rapidly developing technologies
with enhanced control on the routes of individual vehicles,
including the present real-time navigation devices and the
future self-driving cars.
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APPENDIX A: THE CASES WITH NONUNITY
SPEED LIMIT

Here we consider the cases with speed limit vmax > 1.
In this case, vehicles are able to hop more than once in a
single time step. We thus divide a single time step into vmax

substeps labeled by n = 0, 1, . . . , vmax and define the substep
time interval to be δt = 1/vmax. We randomly pick a vehicle
i at time t and denote the coordinates of vehicle i at the
nth substep to be (xt+nδt

i , yt+nδt
i ); when n = 0, the vehicle

is in coordinate (xt
i , yt

i ) and when n = vmax, the vehicle is
in coordinate (xt+1

i , yt+1
i ). The coordinate of vehicle i at the

(n + 1)th substep is updated by(
xt+(n+1)δt

i , yt+(n+1)δt
i

) = (
xt+nδt

i , yt+nδt
i

)
+ ηt+nδt

i

(
�xt+nδt

i ,�yt+nδt
i

)
, (A1)

where (�xt+nδt
i ,�yt+nδt

i ) corresponds to the intended move-
ment of vehicle i in the nth substep at time t , and ηt+nδt

i = 0 if
the site of the next intended movement is occupied by another
vehicle, and otherwise ηt+nδt

i = 1. In other words, ηt+nδt
i is

given by

ηt+nδt
i =

⎧⎨
⎩

0, if
(
xt+nδt

i , yt+nδt
i

)+(
�xt+nδt

i ,�yt+nδt
i

)
=(

xt
j, yt

j

)
, ∃ j

1, otherwise.

In this case, the movement of vehicle i from coordinate (xt
i , yt

i )
at time t to (xt+1

i , yt+1
i ) at time t + 1 is composed of vmax

single movements, as we can see by summing Eq. (A1) from
n = 0 to n = vmax − 1, i.e.,

(
xt+1

i , yt+1
i

) = (
xt

i , yt
i

) +
vmax∑
n=1

ηt+nδt
i

(
�xt+nδt

i ,�yt+nδt
i

)
,

(A2)

where each movement is denoted as ηt+nδt
i (�xt+nδt

i ,�yt+nδt
i )

with n = 1, . . . , vmax.
As discussed in Sec. II A, we express the intended move-

ment (�xt+nδt
i ,�yt+nδt

i ) in terms of path-greediness g. When
vehicle i has not yet arrived at the x nor y coordinate of
its destination (i.e., xt+nδt

i �= x̃i and yt+nδt
i �= ỹi), we draw

(�xt+nδt
i ,�yt+nδt

i ) according to(
�xt+nδt

i ,�yt+nδt
i

)

=

⎧⎪⎪⎨
⎪⎪⎩

(0,�ỹ), with a probability 1+g
4 ,

(�x̃, 0), with a probability 1+g
4 ,

(0,−�ỹ), with a probability 1−g
4 ,

(−�x̃, 0), with a probability 1−g
4 ,

(A3)

where �ỹ and �x̃ are the greedy directions

�ỹ = sgn
(
Yi − yt+nδt

i

)
sgn

(
L

2
− ∣∣Yi − yt+nδt

i

∣∣), (A4)

�x̃ = sgn
(
Xi − xt+nδt

i

)
sgn

(
L

2
− ∣∣Xi − xt+nδt

i

∣∣). (A5)
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On the other hand, when vehicle i has arrived at either the x
or y coordinate of its destination (i.e., xt+nδt

i = Xi and yt+nδt
i �=

Yi, or xt+nδt
i �= Xi and yt+nδt

i = Yi), we assume that the vehicle
moves in a direction toward the destination with a probability
(1 + 3g)/4, such that if xt+nδt

i = Xi, then

(
�xt+nδt

i ,�yt+nδt
i

)

=

⎧⎪⎪⎨
⎪⎪⎩

(0,�ỹ), with a probability 1+3g
4 ,

(�x̃, 0), with a probability 1−g
4 ,

(0,−�ỹ), with a probability 1−g
4 ,

(−�x̃, 0), with a probability 1−g
4 .

(A6)

Similarly, if yn = Yi, then
(
�xt+nδt

i ,�yt+nδt
i

)

=

⎧⎪⎪⎨
⎪⎪⎩

(�x̃, 0), with a probability 1+3g
4 ,

(0,�ỹ), with a probability 1−g
4 ,

(−�x̃, 0), with a probability 1−g
4 ,

(0,−�ỹ), with a probability 1−g
4 .

(A7)

In this case with vmax substeps in each time step, the average
arrival count per time n̄movement is given by

n̄movement = 1

(T − Te)L2

T∑
t=Te

N∑
i=1

vmax∑
n=1

ηt+nδt
i . (A8)

APPENDIX B: FINITE-SIZE EFFECT

In this section, we examine the dependence of the threshold
densities ρc and ρ2 on system size characterized by length
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FIG. 8. The simulation results of the threshold densities ρc and
ρ2 as a function of system size L2. Inset: the enlarged plots of the
average movement count in the regime with ρ ≈ ρ2. These results
show that the values of ρc and ρ2 converge as system size L2

increases.

L, since these system behaviors may depend strongly on
system size [39]. As shown in Fig. 8, when the system size
is small (i.e., L2 = 100), the critical vehicle density ρc for
the emergence of congestion is smaller compared with cases
with larger L2. When the system size increases, the values of
ρc converge. Similarly, as shown in Fig. 8 and its inset, the
vehicle density at which the congested-flow state becomes the
congested state also converge as system size L2 increases.
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