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Condensation of degrees emerging through a first-order phase transition in classical random graphs
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Due to their conceptual and mathematical simplicity, Erdös-Rényi or classical random graphs remain
as a fundamental paradigm to model complex interacting systems in several areas. Although condensation
phenomena have been widely considered in complex network theory, the condensation of degrees has hitherto
eluded a careful study. Here we show that the degree statistics of the classical random graph model undergoes
a first-order phase transition between a Poisson-like distribution and a condensed phase, the latter characterized
by a large fraction of nodes having degrees in a limited sector of their configuration space. The mechanism
underlying the first-order transition is discussed in light of standard concepts in statistical physics. We uncover
the phase diagram characterizing the ensemble space of the model, and we evaluate the rate function governing
the probability to observe a condensed state, which shows that condensation of degrees is a rare statistical event
akin to similar condensation phenomena recently observed in several other systems. Monte Carlo simulations
confirm the exactness of our theoretical results.

DOI: 10.1103/PhysRevE.100.012305

I. INTRODUCTION

Condensation occurs when a macroscopic number of de-
grees of freedom occupy a small region of the configuration
space. This is an ubiquitous phenomenon with manifestations
in physics, biology, and economics [1]. Classical examples
in physics are the familiar transition from a gas to a liquid
state of matter, the formation of a Bose-Einstein condensate in
large systems of noninteracting bosons [2], or the emergence
of a staggered magnetization in mean-field spin systems [3,4].
A crucial ingredient to observe condensation is the presence
of global constraints, since they introduce correlations among
the microscopic constituents of the system, and a condensed
state can be formed even in the absence of interactions. In this
context, Bose-Einstein condensation, where the total number
of particles is conserved, constitutes the prototypical example.

In the physical examples mentioned above, condensation
represents the typical or average behavior of a large system
in statistical equilibrium. More recently, it has been realized
that condensation may take place in a broader variety of
random systems when the ensemble space is probed away
from the typical fluctuations around the average. The term
condensation of fluctuations has been coined to describe such
condensed states that are triggered by large deviations of an
extensive random variable but whose typical behavior does
not necessarily show any sign of condensation. Examples
of random systems, where condensation emerges as a rare
event, include the Gaussian model [5], the Urn model [6],
and models of mass transport [7,8], to name just a few.
Condensation of fluctuations usually brings about a rich phe-

nomenology including phase transitions, giant responses to
small perturbations, and singularities in the full probability
distribution [9].

Here we study condensation of degree fluctuations in
classical random graphs, introduced a long time ago by
Solomonoff and Rapopport [10], and popularized a decade
later by the seminal works of Erdös and Rényi [11,12].
Due to their mathematical and conceptual simplicity, Erdös-
Rényi (ER) random graphs have an enormous number of
applications in areas such as complex networks, optimization
problems, spin glasses, and information theory [13,14]. An
instance drawn from the ER random graph ensemble consists
of a simple undirected graph of N nodes, where each pair of
nodes is connected by an edge with probability p ∼ O(1/N )
[14]. The degree ki is an integer random variable that counts
the number of edges attached to node i, with i = 1, . . . , N .
Since the edges are drawn independently, the degree distri-
bution along the graph follows a Poisson law in the large
N limit. Here we are precisely interested in condensation
phenomena triggered by rare configurations of the random
variables {ki}i=1,...,N .

The study of condensation in the topological structure of
complex networks or random graphs has attracted a lot of
interest during the last two decades [15]. In this context,
condensation refers to an aggregation phenomenon where
a macroscopic number of elementary structures or motifs
(edges, triangles, etc.) become mutually interconnected to
form a compact subgraph. Condensation of edges occurs
when a finite fraction of links becomes attached to an
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infinitely small fraction of nodes [16–20], producing one or
more hubs—densely connected nodes—in the graph structure.
Condensation has also been observed in exponential random
graphs [21–28], which are sampled from a statistical weight
with a Boltzmann form. The Hamiltonian of the exponential
model is built in order to incorporate certain graph features,
such as the total number of triangles [21–23,27] or two-stars
[24,25,28], i.e., paths of length two. Exponential random
graphs also display a condensed state characterized by a
large number of elementary structures (triangles or two stars)
clumped together into a highly interconnected cluster. These
different manifestations of the condensed phase are typically
characterized by large subgraphs with densely connected
nodes, which translates in a subset of degrees scaling with N .

Here we take a more elementary path and study the con-
densation of the degree sequence {ki}i=1,...,N in a limited do-
main of its available configuration space. Considering random
graph instances drawn from the classical ER ensemble, we
ask what is the fraction of nodes having degrees inside an
arbitrary interval [a, b], with b > a > 0. We provide an exact
solution to this problem by computing the full probability
distribution of the random variable FN [a, b] that counts the
fraction of degrees lying in [a, b]. Being more precise, by
calculating the cumulant generating function of FN [a, b], we
show that the ensemble of ER random graphs undergoes
a first-order phase transition between a Poisson-like phase,
where the degree distribution is closer to its typical behavior,
and a condensed phase, where the degree distribution exhibits
a prominent peak. We elucidate the physical and mathematical
mechanisms underlying the transition by using standard ideas
from statistical mechanics. We derive the phase diagram in
the ensemble parameter space, and we show it exhibits two
critical lines, each one surrounded by a metastable region
and terminating at a critical point. The critical lines define
the set of points in the parameter space at which the degree
distribution changes abruptly. We also compute the rate func-
tion characterizing the large deviation probability of FN [a, b],
whose striking property is the nonanalytic behavior. The
calculation of the rate function shows that condensation of
degrees is a rare statistical event in line with the condensation
of fluctuations exhibited by other random systems [9]. The
theoretical results for the rate function exhibit an excellent
agreement with Monte Carlo simulations.

In the next section we introduce the classical ensemble
of random graphs and define the counting random variable
FN [a, b]. Section III explains the calculation of the cumulant
generating function of FN [a, b] using standard techniques of
statistical mechanics. In Sec. IV we present the results for the
first-order condensation transition, the phase diagram, and the
rate function. We summarize our results and conclusions in
Sec. V.

II. THE CLASSICAL RANDOM GRAPH MODEL

The binary elements ci j ∈ {0, 1} of the N × N adjacency
matrix defining the ensemble of Erdös-Rényi (ER) random
graphs control whether there is an edge between pairs of nodes
[14]: if ci j = 1, nodes i and j are connected, while ci j = 0
means there is no link between i and j. Each instance of
the ER ensemble is a simple and undirected graph (ci j = c ji)

without self-edges (cii = 0). The ensemble of ER random
graphs can be defined by the following probability distribution
for the adjacency matrix:

PER({ci j}) =
∏
i< j

[ c

N
δci j ,1 +

(
1 − c

N

)
δci j ,0

]
, (1)

where the product
∏

i< j runs over all distinct pairs of nodes.
The degree of node i, defined as

k(N )
i =

N∑
j=1( �=i)

ci j, (2)

gives the number of edges connected to i in a single graph
realization. The random variable k(N )

i fluctuates from node to
node, and the average degree reads

c = lim
N→∞

1

N

∑
i=1

〈
k(N )

i

〉
, (3)

where 〈. . . 〉 represents the ensemble average over {ci j} with
the distribution in Eq. (1). Here we consider the sparse regime,
where c is finite and independent of N . Note that, in the above
definition of the ER ensemble, c is a control parameter that
plays the role of a soft constraint on the degrees, changing
dramatically the topological structure of the random graphs
generated from Eq. (1). Indeed, the ER model undergoes a
second-order percolation transition: for c < 1 the graph is
composed of many finite clusters, each one containing a total
number of O(1) nodes, while for c � 1 a giant cluster with
O(N ) nodes emerges continuously as a function of c [14].

Here we explore the condensation of degrees through the
random variable

FN [a, b] = 1

N

N∑
i=1

[
�
(
b − k(N )

i

)− �
(
a − k(N )

i

)]
, (4)

where �(x) is the Heaviside step function. Clearly, FN [a, b]
counts the fraction of nodes having degrees within the interval
[a, b]. In the limit N → ∞, its typical value becomes

ftyp ≡ lim
N→∞

〈FN [a, b]〉 =
∞∑

k=0

pc(k)I[a,b](k), (5)

with I[a,b](k) ≡ �(b − k) − �(a − k) an indicator function.
The quantity pc(k) is the well-known N → ∞ limit of the
degree distribution of ER random graphs, given by a Poisson
law with average c [14],

pc(k) = lim
N→∞

1

N

N∑
i=1

〈
δk,k(N )

i

〉 = e−cck

k!
, (6)

where the symbol δ denotes the Kronecker delta function.
It is straightforward to check that ftyp vanishes for c → ∞
and c → 0, whereas it has a maximum at some value of
c ∈ [a, b]. Thus, when ER random graphs with c 
 a, b are
sampled from Eq. (1), the fraction ftyp is typically very small.
However, in this particular situation, it is natural to ask what
is the probability that Eq. (1) generates samples with a large
subset of nodes with degrees in [a, b], in spite of c lying
far outside [a, b]. Here we tackle this problem by computing
exactly the full probability distribution of FN [a, b], which
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allows us to probe atypical, large fluctuations in the degree
statistics of ER random graphs. We show that the ensemble
space of ER random graphs have a surprisingly rich structure,
displaying a first-order transition to a condensed configuration
of {ki}i=1,...,N caused by rare fluctuations of FN [a, b] around its
typical value.

III. CALCULATION OF THE CUMULANT
GENERATING FUNCTION

The full statistics of FN [a, b] for large N is captured by the
cumulant generating function (CGF)

G[a,b](y) = lim
N→∞

1

N
lnZ (N )

[a,b](y), (7)

where

Z (N )
[a,b](y) ≡ 〈eyNFN [a,b]〉. (8)

All cumulants of FN [a, b] are obtained by taking derivatives
of Eq. (7) with respect to y. The leading contribution to the
probability P (N )

[a,b]( f ) of observing a fraction 0 � f � 1 of
nodes with degrees in [a, b] decays, for large N , according
to the large deviation principle [29]

P (N )
[a,b]( f ) � exp [−N�[a,b]( f )], (9)

with the rate function �[a,b]( f ) given by the Legendre-Fenchel
transform of G[a,b](y)

�[a,b]( f ) = supy∈R[y f − G[a,b](y)], (10)

where we have considered the Legendre-Fenchel transform to
be invertible. There is a natural analogy between the canon-
ical ensemble of statistical mechanics and the framework
introduced above. The control parameter y plays the role of
inverse temperature, yG[a,b](y) is the free-energy per degree
of freedom, and Z (N )

[a,b](y) is the partition function. As we
will show below, the behavior of G[a,b](y) and its derivative
allows us to clearly identify a first-order phase transition. As
can be noted from Eq. (8), y is responsible for biasing the
configurations of the ER ensemble: positive (negative) values
of y favor configurations corresponding to large (small) values
of FN [a, b]. Thus, for a fixed value of y, we have a measure
from which to derive the relevant statistical properties of the
biased ensemble describing atypical graph realizations. In
particular, the degree distribution of the constrained ensemble
is simply given by

py(k) = lim
N→∞

〈
1
N

∑N
i=1 δk,ki e

yNFN [a,b]
〉

〈eyNFN [a,b]〉 . (11)

Let us proceed to the calculation of the CGF. The partition
function can be rewritten as

Z (N )
[a,b](y) =

N−1∑
k1,...,kN =0

ey
∑N

i=1 I[a,b] (ki )PN (k1, . . . , kN ), (12)

where

PN (k1, . . . , kN ) ≡
〈

N∏
i=1

δki,
∑N

j=1 ci j

〉
(13)

is the joint distribution of degrees, which are correlated ran-
dom variables. In Appendix A we explain how to recast the

CGF in the following integral form:

G[a,b](y) = lim
N→∞

1

N
ln

[∫ ∞

−∞
dμ eNF[a,b] (μ|y)

]
, (14)

where

F[a,b](μ|y) = c

2
− 1

2
cμ2 + ln

[ ∞∑
k=0

pc(k)eyI[a,b] (k)μk

]
. (15)

In the limit N → ∞, the integral in Eq. (14) is dominated
by the global maximum of F[a,b](μ|y) with respect to the
order parameter μ, and the integral can be solved through
the Laplace method. Defining μg as the global maximum of
F[a,b](μ|y), we obtain

G[a,b](y) = F[a,b](μg|y), (16)

where μg is determined from the solution of the fixed-point
equation

μ =
∑∞

k=0 pc(k)eyI[a,b] (k+1)μk∑∞
k=0 pc(k)eyI[a,b] (k)μk

(17)

that corresponds to the global maximum of the function
F[a,b](μ|y) given by Eq. (15). The fixed-point equation (17)
is derived by requiring that F[a,b](μ|y) is stationary with
respect to μ, i.e., dF[a,b] (μ|y)

dμ
= 0. In principle, F[a,b](μ|y) may

have more than a single maximum depending on the control
parameters (c, y). The rate function follows from Eq. (10),

�[a,b]( f ) = y f − F[a,b](μg|y), (18)

where the fraction 0 � f � 1 is obtained from the first deriva-
tive of the CGF f = ∂F[a,b] (μg|y)

∂y , namely,

f =
∑∞

k=0 pc(k)I[a,b](k)eyI[a,b] (k)μk
g∑∞

k=0 pc(k)eyI[a,b] (k)μk
g

. (19)

In a similar manner, one can show that the degree distribution
of the constrained ensemble, defined in Eq. (11), takes the
following form:

py(k) = pc(k)eyI[a,b] (k)μk
g∑∞

k=0 pc(k)eyI[a,b] (k)μk
g

. (20)

By combining Eqs. (17) and (20), we obtain

μ2 = 1

c

∞∑
k=0

kpy(k), (21)

which provides the physical meaning of the order para-
meter μ.

For y = 0, we obtain μ = 1, which implies that f and
py(k) reduce to their standard expressions arising from typical
fluctuations of ER random graphs [see Eqs. (5) and (6)]. Equa-
tions (16)–(21) constitute the main analytical results of this
work, as they determine completely the statistical properties
of the random variable FN [a, b] for ER random graphs.

IV. FIRST-ORDER TRANSITION AND
CONDENSATION OF DEGREES

In order to understand the mechanism underlying the
first-order transition, we start investigating the behavior of
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FIG. 1. The quantity F[a,b](μ|y) as a function of the order param-
eter μ for average degree c = 13, a = 1, b = 3, and increasing values
of y. The global maximum of F[a,b](μ|y) with respect to μ provides
the cumulant generating function [see Eqs. (14)–(16)]. The behavior
of F[a,b](μ|y) characterizes the emergence of a first-order transition:
for y approximately in the range (3.48,3.99), the function F[a,b](μ|y)
exhibits two maxima, which have the same height only at the critical
value yFT � 3.70. The function F[a,b](μ|y) has a single maximum for
y � 3.48 and y � 3.99.

F[a,b](μ|y) as a function of the order parameter μ. Here the
global maximum F[a,b](μg|y) yields the CGF, which is analo-
gous to the (equilibrium) free energy in statistical mechanics.
Figure 1 depicts the typical functional form of F[a,b](μ|y)
for high c and increasing values of y. For small y, closer
to the typical case y = 0, F[a,b](μ|y) has a single maximum.
Increasing the value of y leads to the emergence of a second
maximum, which means that Eq. (17) admits three fixed-point
solutions: two maxima and one minimum. The portion of the
phase diagram where F[a,b](μ|y) has two maxima defines a
metastable region, within which the global maximum yields
the leading contribution to the integral in Eq. (14). Finally,
the heights of F[a,b](μ|y) corresponding to the two different
maxima become even only at yFT , and both fixed-point solu-
tions for μ contribute equally to the saddle-point integral in
Eq. (14). The set of critical values (cFT, yFT) in the parameter
space, where both solutions contribute equally to the CGF,
defines a first-order transition line.

Figure 2 illustrates F[a,b](μ|y) as a function of μ for some
values of (cFT, yFT). As we move along the critical line in
the parameter space, the two maxima of F[a,b](μ|y) gradually
approach each other, until they finally merge into a single
maximum at a critical point, marking the end of the critical
line. This physical picture is analogous to the Van der Waals
liquid-gas phase transition or the ferromagnetic mean-field
transition in the presence of an external field, with the proviso
that our current exact analysis is not a mean field theory for
a more complex underlying model. As a consequence, the
metastable region cannot be promoted to a coexistence region.

In light of the aforementioned discussion, the CGF G[a,b](y)
is necessarily a continuous function of (c, y). However, the
derivative of G[a,b](y) with respect to y, which renders the
fraction f , exhibits a jump when crossing the transition line.
Figure 3 shows the discontinuous behavior of f as a function
of y which emerges at sufficiently large values of c in com-
parison to the interval [a, b]. Such discontinuity of the first
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=

=

FIG. 2. The quantity F[a,b](μ|y) as a function of the order param-
eter μ for a = 1, b = 3, and different values of the average degree c
along the upper critical line (see Fig. 5). The two maxima have the
same height and thus contribute equally to the cumulant generating
function, which features the coexistence of phases. The two maxima
merge into a single maximum right at the critical point.

derivative of G[a,b](y) is the hallmark of a first-order phase
transition. As illustrated in Fig. 3, the discontinuity becomes
more prominent for increasing c 
 1, whereas below a certain
value of c the fraction f increases smoothly with y.

Let us now characterize the different phases by studying
the behavior of the degree distribution py(k) across the tran-
sition line. Figure 4 shows the average 〈k〉y and the variance
σ 2

k = 〈k2〉y − 〈k〉2
y of py(k) for c = 13 and increasing values

of y. Clearly, the degree statistics changes abruptly at the
critical point yFT, with both 〈k〉y and σ 2

k exhibiting a discon-
tinuous behavior. For y < yFT, the random graph instances
have a wider range of degrees, and the distribution py(k)
is closer to a Poisson law with average c. For y > yFT, the
random graph instances become more homogeneous, since the
majority of nodes have degrees within [a, b]. Accordingly, the
variance σ 2

k becomes smaller than 〈k〉y and the distribution
py(k) has a peak at a certain k ∈ [a, b], closer to the degree
distribution of a random regular graph. In fact, if we choose

=

=

=

=

=

FIG. 3. Fraction f of degrees within the interval [1,3] as a
function of y for different values of the average degree c. For large
values of c, f has a discontinuous behavior at a critical value yFT,
marking the first-order phase transition.
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FIG. 4. Average 〈k〉y (dashed line) and variance σ 2
k (solid line)

of the degree distribution py(k) [see Eq. (11)] characterizing rare
graph samples generated from Eq. (1), with c = 13, and conditioned
to have a certain fraction f of degrees inside the interval [1,3]. The
concurrent behavior of f as a function of y is presented in Fig. 3.
The inset shows the typical profile of the degree distribution in each
phase. The quantities 〈k〉y and σ 2

k have a discontinuous behavior that
features the abrupt change of the degree statistics along the first-order
phase transition.

an interval [a, b] such that it contains a single degree K ,
Eq. (11) converges to py(k) = δk,K for y → ∞. The degree
distribution py(k) in each phase is shown as an inset in Fig. 4.
In summary, ER random graphs undergo a topological first-
order transition between an heterogeneous phase, identified
by a broader spectrum of degrees, to an homogeneous phase,
where the degrees condensate in the interval [a, b].

The above results are summarized in the phase diagram of
Fig. 5, where a density plot for the fraction f on the parameter
space (c, y) is presented in a logarithmic color scale. There
exist two first-order critical lines, indicated by dashed lines,
for small and large values of the average degree c. Each
critical line terminates at a critical point (solid yellow circles).
The black solid curves surrounding each critical line delimit
the metastable regions around each first-order transition line,
within which Eq. (17) has three fixed-point solutions. As we
can appreciate from Fig. 5, by fixing y > 0 sufficiently large,
the first-order transition appears for c large in comparison to
[a, b], when we simultaneously require that samples have a
large average degree and a large fraction f . By setting y < 0,
with |y| sufficiently large, the first-order transition appears
for c ∈ [a, b], which is incompatible with a small fraction f .
Thus, the appearance of two first-order phase transitions is due
to the existence of two distinct situations where conflicting
constraints are imposed on the generation of random graph
samples.

Finally, we compute the rate function �[a,b]( f ) controlling
the large deviation probability of having values of f away
from its typical value ftyp [see Eq. (9)]. According to Eq. (10),
the rate function is the Legendre-Fenchel transform of the
CGF with respect to y. The fact that the CGF has a nonanalytic
behavior in its first derivative dG[a,b] (y)

dy results in an affine
Legendre-Fenchel transform. Consequently, the rate function
has a linear behavior between two values of f , whose slope is

FIG. 5. Phase diagram showing the fraction f of degrees lying
in [1,3] for each combination of parameters (c, y). The values of
− log( f ) are displayed in a density plot according to the color scale.
The red dashed curves denote first-order critical lines. The black
solid lines surrounding each critical line delimit the regions of the
phase diagram where the saddle-point Eq. (17) has three fixed-point
solutions. The solid yellow circles, located at the end of each critical
line, represent critical points at which the two maxima of F[a,b](μ|y)
merge into a single one (see Fig. 2).

equal to the value of y at which the CGF is nondifferentiable
[30]. This is confirmed by Fig. 6, where we show �[a,b]( f )
as a function of f for different values of c, in particular the
appearance of the linear behavior of �[a,b]( f ) for c = 2, which
corresponds to the point where the CGF is nondifferentiable.
Since the condensed phase is characterized by a very small
fraction f in the case of c = 2, Fig. 6 clearly shows that
condensation of degrees is a rare statistical event. By expand-
ing the rate function around its minimum �[a,b]( ftyp) = 0, we
obtain

�[a,b]( f ) = 1

2

( f − ftyp)2

σ 2
f

, (22)

with

σ 2
f = c

[ ∞∑
k=0

pc(k)I[a,b](k + 1) − ftyp

]2

+ ftyp(1 − ftyp).

(23)

This implies that the typical fluctuations of f around ftyp are
described by a Gaussian distribution with variance σ 2

f .
In order to confirm the exactness of our theoretical find-

ings, we have performed a reweighted Monte Carlo method
to estimate the rate function [31]. The algorithm employed
to generate rare graph samples from our biased ensemble is
explained in Appendix B. In our particular case, one must be
careful when estimating the rate function for parameters (c, y)
within the metastable region, as the Monte Carlo simulation
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)

−

=

=

=

FIG. 6. Rate function �[a,b]( f ), characterizing the large devia-
tion probability of Eq. (9), as a function of the fraction f of nodes
with degrees within the interval [1,3]. We show the rate function for
different values of the average connectivity c. The function �[a,b]( f )
has a minimum at the typical value f = ftyp [see Eq. (5)]. For the
case c = 2 (solid blue line with triangles), we also show the presence
of two nonanalytic points (light red squares) at which the second
derivatives of the rate function are discontinuous. By the construction
of the Legendre-Fenchel transform [30], these points are connected
by a straight line (solid red line with triangles). The dashed blue line
is the rate function obtained from choosing the metastable solution
for the order parameter μ when calculating the CGF. The different
symbols (triangles, pentagons, and rhombuses) are simulation results
obtained through a reweighting Monte Carlo method of graphs with
a total of N = 100 nodes (see Appendix B).

may be trapped in the metastable solution. However, this
problem is easily surmounted by choosing the appropriate
initial conditions. The simulation results for N = 100 and
their comparison with our theoretical findings are shown
in Fig. 6, where we have also included the estimation of
the rate function obtained from the metastable branch. The
comparison between our theory and simulations shows a very
good agreement.

V. CONCLUSIONS

In this work we have studied the large deviation proper-
ties of the degree sequence characterizing the Erdös-Rényi
ensemble of random graphs. By studying the fluctuations of an
elementary observable, namely, the fraction f of degrees lying
in a given interval, we have shown that the ensemble space of
ER random graphs exhibit rich critical phenomena, with the

presence of two first-order critical lines marking a topological
transition in the degree statistics. As the transition lines are
crossed, we have shown that the degree distribution changes
abruptly from a Poisson-like profile, characteristic of typical
samples from the ER ensemble, to a peaked distribution. The
latter degree distribution identifies a phase where degrees
are condensed or concentrated in a limited sector of their
configuration space and, consequently, random graph samples
corresponding to this phase have a rather homogeneous struc-
ture, similar to regular random graphs. Nevertheless, conden-
sation of degrees in the ER ensemble is an extremely rare
event, as confirmed by our computation of the rate function
describing the large deviation probability for the fraction f .
Such rate function exhibits two nonanalytic points akin to the
presence of the first-order transition. We point out that similar
properties have been identified in the probability distributions
describing the condensation of fluctuations in other disordered
systems [5,9]. Our theoretical results for the rate function are
fully confirmed by Monte Carlo simulations.

There are an interesting number of questions to be ex-
plored. First, one wonders whether the metastable region
might become a coexistence phase for a different system
for which our solution would correspond to its mean-field
approximation. In this regard studies on Euclidean graphs
[32] seem to be the most natural candidate. Second, in the
same manner that the percolation transition is inherited in the
magnetic properties of the Ising model on random graphs,
it is pertinent to ask what is the impact on the magnetic
properties of the topological first-order transition we have
observed here. In a similar context, it would be also interesting
to study whether large deviations in the degree sequence can
trigger the decay of the metastable states found in coupled ER
random graphs [33]. Finally, in light of recent advances in the
study of large deviations on diluted random matrices [34–36],
we should consider the spectral properties corresponding to
the constrained graph ensemble studied here. Some of these
questions are currently under consideration. As a last remark,
we point out that the techniques introduced here can be also
useful to study exponential random graphs [14,24,28], since
the approach of Sec. III can be readily generalized to the case
where the indicator function is replaced by any other arbitrary
function of a single degree.
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APPENDIX A: CALCULATION OF THE CUMULANT GENERATING FUNCTION

Here we explain how to derive the expression (14) for the CGF. By introducing the integral representation of the Kronecker
delta function

δki,
∑N

j=1 ci j
=
∫ 2π

0

dui

2π
exp

⎛
⎝iuiki − iui

N∑
j=1( �=i)

ci j

⎞
⎠, (A1)
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Eq. (12) is rewritten as

Z (N )
[a,b](y) =

N−1∑
k1,...,kN =0

∫ (
N∏

i=1

dui

2π

)
exp

(
i

N∑
i=1

uiki

)
exp

[
y

N∑
i=1

I[a,b](ki )

]〈
exp

[
− i

∑
i< j

ci j (ui + u j )

]〉
. (A2)

The ensemble average in Eq. (A2) is readily computed, leading to the following expression for large N :

Z (N )
[a,b](y) =

N−1∑
k1,...,kN =0

∫ (
N∏

i=1

dui

2π

)
exp

(
i

N∑
i=1

uiki

)
exp

⎡
⎣y

N∑
i=1

I[a,b](ki ) − cN

2
+ c

2N

(
N∑

i=1

e−iui

)2
⎤
⎦, (A3)

where we have retained only the leading terms of O(N ) in the exponent. The above equation couples the variables ui on different
nodes, which prevents the calculation of the integrals over ui. However, by employing the Hubbard-Stratonovich transformation∫ ∞

−∞
dμ exp

(
−1

2
Ncμ2 + cJμ

)
=
√

2π

cN
exp

( c

2N
J2
)

(A4)

in Eq. (A3), with J = ∑N
i=1 e−iui , we are able to integrate over u1, . . . , uN and obtain Eq. (14).

APPENDIX B: THE REWEIGHTING
MONTE CARLO METHOD

In this section we discuss the algorithm used to obtain
the rate function using Monte Carlo simulations [31]. Let
us consider the distribution PER({ci j}), from which we want
to estimate the distribution ρ( f ) = Prob[FN [a, b] = f ] of the
fraction FN [a, b] ≡ FN [a, b]({ci j}). The latter is given by

ρ( f ) =
∑
{ci j}

PER({ci j})δFN [a,b], f . (B1)

This distribution is concentrated around the typical value ftyp,
and, by generating graph samples from PER({ci j}), we are able
only to observe statistical events that are close to the center of
the distribution ρ( f ) in a reasonable computation time.

In order to induce the simulation to naturally explore rare
events of the random variable FN [a, b], we must bias the
graph configurations, so that rare events become typical ones.
This is mathematically achieved by introducing the following
auxiliary distribution:

P(y)
ER ({ci j}) = 1

Z (y)
PER({ci j})eyNFN [a,b]({ci j}), (B2)

where y plays a role analogous to a fictitious inverse tem-
perature. We can use this auxiliary distribution to derive the
distribution of FN [a, b] constrained to a fixed y:

ρ (y)( f ) =
∑
{ci j}

P(y)
ER ({ci j})δFN [a,b], f . (B3)

If we perform a Monte Carlo simulation on P(y)
ER ({ci j}) and

estimate ρ (y)( f ), the latter distribution will be concentrated
around a different typical value ftyp(y), which will be larger

(smaller) than the original value ftyp when y > 0 (y < 0).
However, our aim is to estimate the original distribution ρ( f ).
Fortunately, by plugging Eq. (B2) into Eq. (B3) we obtain the
equation

ρ (y)( f ) = eyN f

Z (y)
ρ( f ), (B4)

which allows us to obtain ρ( f ) from ρ (y)( f ).
The idea of a reweighted Monte Carlo simulation works

as follows. For a given value of y, we perform a standard
Metropolis Monte Carlo simulation of P(y)

ER ({ci j}), consisting
of proposing a change {ci j} → {c′

i j} of the adjacency matrix
during each algorithmic step, which is then accepted with rate

r = min

{
1,

P(y)
ER ({c′

i j})

P(y)
ER ({ci j})

}
. (B5)

Once this stochastic process has relaxed towards the stationary
state, the corresponding Monte Carlo Markov chain can be
used to estimate ρ (y)( f ). Finally, all the histograms obtained
for different values of y, or alternatively their rate functions,
are glued together according to Eq. (B4), yielding the his-
togram for ρ( f ). It is important that two consecutive values
of y have overlapping histograms, so that we do not need to
estimate the normalization factor Z (y).

We have used this method to generate the rate function
reported in Fig. 6, where we have chosen y ranging from −3
to 3 in steps of 1. In the particular case of c = 2, for which
we have a metastable branch, the correct solution is captured
by sampling an initial graph configuration with an average
connectivity 〈k〉y compatible with the expected value obtained
from the theory. This little trick usually renders the Monte
Carlo simulation in the appropriate branch.

[1] M. R. Evans and T. Hanney, J. Phys. A 38, R195 (2005).
[2] R. Pathria and P. Beale, Statistical Mechanics (Elsevier Science,

Burlington, 1996).
[3] T. H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952).
[4] L. F. Cugliandolo and D. S. Dean, J Phys. A 28, 4213 (1995).

[5] M. Zannetti, F. Corberi, and G. Gonnella, Phys. Rev. E 90,
012143 (2014).

[6] F. Corberi, J. Phys. A 48, 465003 (2015).
[7] M. R. Evans, T. Hanney, and S. N. Majumdar, Phys. Rev. Lett.

97, 010602 (2006).

012305-7

https://doi.org/10.1088/0305-4470/38/19/R01
https://doi.org/10.1088/0305-4470/38/19/R01
https://doi.org/10.1088/0305-4470/38/19/R01
https://doi.org/10.1088/0305-4470/38/19/R01
https://doi.org/10.1103/PhysRev.86.821
https://doi.org/10.1103/PhysRev.86.821
https://doi.org/10.1103/PhysRev.86.821
https://doi.org/10.1103/PhysRev.86.821
https://doi.org/10.1088/0305-4470/28/15/003
https://doi.org/10.1088/0305-4470/28/15/003
https://doi.org/10.1088/0305-4470/28/15/003
https://doi.org/10.1088/0305-4470/28/15/003
https://doi.org/10.1103/PhysRevE.90.012143
https://doi.org/10.1103/PhysRevE.90.012143
https://doi.org/10.1103/PhysRevE.90.012143
https://doi.org/10.1103/PhysRevE.90.012143
https://doi.org/10.1088/1751-8113/48/46/465003
https://doi.org/10.1088/1751-8113/48/46/465003
https://doi.org/10.1088/1751-8113/48/46/465003
https://doi.org/10.1088/1751-8113/48/46/465003
https://doi.org/10.1103/PhysRevLett.97.010602
https://doi.org/10.1103/PhysRevLett.97.010602
https://doi.org/10.1103/PhysRevLett.97.010602
https://doi.org/10.1103/PhysRevLett.97.010602


FERNANDO L. METZ AND ISAAC PÉREZ CASTILLO PHYSICAL REVIEW E 100, 012305 (2019)

[8] J. Szavits-Nossan, M. R. Evans, and S. N. Majumdar, J. Phys.
A 47, 455004 (2014).

[9] F. Corberi and A. Sarracino, Entropy 21, 312 (2019).
[10] R. Solomonoff and A. Rapoport, Bull. Math. Biophys. 13, 107

(1951).
[11] P. Erdös and A. Rényi, Publ. Math., Debrecen 6, 290

(1959).
[12] P. Erdös and A. Rényi, Publ. Math. Inst. Hung. Acad. Sci., Ser.

A 5, 17 (1960).
[13] M. Mézard and A. Montanari, Information, Physics, and Com-

putation, Oxford Graduate Texts (Oxford University Press,
Oxford, 2009).

[14] M. Newman, Networks: An Introduction (Oxford University
Press, Oxford, 2010).

[15] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Rev.
Mod. Phys. 80, 1275 (2008).

[16] P. L. Krapivsky, S. Redner, and F. Leyvraz, Phys. Rev. Lett. 85,
4629 (2000).

[17] G. Bianconi and A.-L. Barabási, Phys. Rev. Lett. 86, 5632
(2001).

[18] S. Dorogovtsev, J. Mendes, and A. Samukhin, Nucl. Phys. B
666, 396 (2003).

[19] S. N. Dorogovtsev, J. F. F. Mendes, A. M. Povolotsky, and A. N.
Samukhin, Phys. Rev. Lett. 95, 195701 (2005).

[20] K. Anand, D. Krioukov, and G. Bianconi, Phys. Rev. E 89,
062807 (2014).

[21] D. Strauss, SIAM Rev. 28, 513 (1986).

[22] Z. Burda, J. Jurkiewicz, and A. Krzywicki, Phys. Rev. E 69,
026106 (2004).

[23] Z. Burda, J. Jurkiewicz, and A. Krzywicki, Phys. Rev. E 70,
026106 (2004).

[24] J. Park and M. E. J. Newman, Phys. Rev. E 70, 066146
(2004).

[25] J. Park and M. E. J. Newman, Phys. Rev. E 70, 066117 (2004).
[26] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, Phys. Rev. E 69,

046117 (2004).
[27] J. Park and M. E. J. Newman, Phys. Rev. E 72, 026136 (2005).
[28] A. Annibale and O. T. Courtney, J. Phys. A 48, 365001 (2015).
[29] H. Touchette, Phys. Rep. 478, 1 (2009).
[30] H. Touchette, Legendre-Fenchel transforms in a nutshell (un-

published).
[31] A. K. Hartmann and M. Mézard, Phys. Rev. E 97, 032128

(2018).
[32] E. Gilbert, J. Soc. Indust. Appl. Math. 9, 533 (1961).
[33] M. Bolfe, L. Nicolao, and F. L. Metz, J. Stat. Mech. (2018)

083404.
[34] F. L. Metz and I. Pérez Castillo, Phys. Rev. Lett. 117, 104101

(2016).
[35] I. Pérez Castillo and F. L. Metz, Phys. Rev. E 98, 020102(R)

(2018).
[36] I. P. Castillo and F. L. Metz, Phys. Rev. E 97, 032124 (2018).

Correction: The affiliation listing for author I.P.C. required
reformatting and has been fixed.

012305-8

https://doi.org/10.1088/1751-8113/47/45/455004
https://doi.org/10.1088/1751-8113/47/45/455004
https://doi.org/10.1088/1751-8113/47/45/455004
https://doi.org/10.1088/1751-8113/47/45/455004
https://doi.org/10.3390/e21030312
https://doi.org/10.3390/e21030312
https://doi.org/10.3390/e21030312
https://doi.org/10.3390/e21030312
https://doi.org/10.1007/BF02478357
https://doi.org/10.1007/BF02478357
https://doi.org/10.1007/BF02478357
https://doi.org/10.1007/BF02478357
https://doi.org/10.1103/RevModPhys.80.1275
https://doi.org/10.1103/RevModPhys.80.1275
https://doi.org/10.1103/RevModPhys.80.1275
https://doi.org/10.1103/RevModPhys.80.1275
https://doi.org/10.1103/PhysRevLett.85.4629
https://doi.org/10.1103/PhysRevLett.85.4629
https://doi.org/10.1103/PhysRevLett.85.4629
https://doi.org/10.1103/PhysRevLett.85.4629
https://doi.org/10.1103/PhysRevLett.86.5632
https://doi.org/10.1103/PhysRevLett.86.5632
https://doi.org/10.1103/PhysRevLett.86.5632
https://doi.org/10.1103/PhysRevLett.86.5632
https://doi.org/10.1016/S0550-3213(03)00504-2
https://doi.org/10.1016/S0550-3213(03)00504-2
https://doi.org/10.1016/S0550-3213(03)00504-2
https://doi.org/10.1016/S0550-3213(03)00504-2
https://doi.org/10.1103/PhysRevLett.95.195701
https://doi.org/10.1103/PhysRevLett.95.195701
https://doi.org/10.1103/PhysRevLett.95.195701
https://doi.org/10.1103/PhysRevLett.95.195701
https://doi.org/10.1103/PhysRevE.89.062807
https://doi.org/10.1103/PhysRevE.89.062807
https://doi.org/10.1103/PhysRevE.89.062807
https://doi.org/10.1103/PhysRevE.89.062807
https://doi.org/10.1137/1028156
https://doi.org/10.1137/1028156
https://doi.org/10.1137/1028156
https://doi.org/10.1137/1028156
https://doi.org/10.1103/PhysRevE.69.026106
https://doi.org/10.1103/PhysRevE.69.026106
https://doi.org/10.1103/PhysRevE.69.026106
https://doi.org/10.1103/PhysRevE.69.026106
https://doi.org/10.1103/PhysRevE.70.026106
https://doi.org/10.1103/PhysRevE.70.026106
https://doi.org/10.1103/PhysRevE.70.026106
https://doi.org/10.1103/PhysRevE.70.026106
https://doi.org/10.1103/PhysRevE.70.066146
https://doi.org/10.1103/PhysRevE.70.066146
https://doi.org/10.1103/PhysRevE.70.066146
https://doi.org/10.1103/PhysRevE.70.066146
https://doi.org/10.1103/PhysRevE.70.066117
https://doi.org/10.1103/PhysRevE.70.066117
https://doi.org/10.1103/PhysRevE.70.066117
https://doi.org/10.1103/PhysRevE.70.066117
https://doi.org/10.1103/PhysRevE.69.046117
https://doi.org/10.1103/PhysRevE.69.046117
https://doi.org/10.1103/PhysRevE.69.046117
https://doi.org/10.1103/PhysRevE.69.046117
https://doi.org/10.1103/PhysRevE.72.026136
https://doi.org/10.1103/PhysRevE.72.026136
https://doi.org/10.1103/PhysRevE.72.026136
https://doi.org/10.1103/PhysRevE.72.026136
https://doi.org/10.1088/1751-8113/48/36/365001
https://doi.org/10.1088/1751-8113/48/36/365001
https://doi.org/10.1088/1751-8113/48/36/365001
https://doi.org/10.1088/1751-8113/48/36/365001
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1103/PhysRevE.97.032128
https://doi.org/10.1103/PhysRevE.97.032128
https://doi.org/10.1103/PhysRevE.97.032128
https://doi.org/10.1103/PhysRevE.97.032128
https://doi.org/10.1137/0109045
https://doi.org/10.1137/0109045
https://doi.org/10.1137/0109045
https://doi.org/10.1137/0109045
https://doi.org/10.1088/1742-5468/aad6c7
https://doi.org/10.1088/1742-5468/aad6c7
https://doi.org/10.1088/1742-5468/aad6c7
https://doi.org/10.1103/PhysRevLett.117.104101
https://doi.org/10.1103/PhysRevLett.117.104101
https://doi.org/10.1103/PhysRevLett.117.104101
https://doi.org/10.1103/PhysRevLett.117.104101
https://doi.org/10.1103/PhysRevE.98.020102
https://doi.org/10.1103/PhysRevE.98.020102
https://doi.org/10.1103/PhysRevE.98.020102
https://doi.org/10.1103/PhysRevE.98.020102
https://doi.org/10.1103/PhysRevE.97.032124
https://doi.org/10.1103/PhysRevE.97.032124
https://doi.org/10.1103/PhysRevE.97.032124
https://doi.org/10.1103/PhysRevE.97.032124

