
PHYSICAL REVIEW E 100, 012304 (2019)

Real-space visualization of quantum phase transitions by network topology
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We demonstrate that with appropriate quantum correlation function, a real-space network model can be
constructed to study the phase transitions in quantum systems. For a three-dimensional bosonic system, a
single-particle density matrix is adopted to construct an adjacency matrix. We show that a Bose-Einstein
condensate transition can be interpreted as a transition into a small-world network, which is accurately captured
by a small-world coefficient. For a one-dimensional disordered system, using the electron diffusion operator
to build the adjacency matrix, we find that Anderson localized states create many weakly linked subgraphs,
which significantly reduces the clustering coefficient and lengthens the shortest path. We show that the crossover
from delocalized to localized regimes as a function of the disorder strength can be identified as a loss of global
connection, which is revealed by the small-world coefficient as well as other independent measures such as
robustness, efficiency, and algebraic connectivity. Our results suggest that quantum phase transitions can be
visualized in real space and characterized by network analysis with suitable choices of quantum correlation
functions.
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I. INTRODUCTION

Complex network models have been employed to investi-
gate various real-world systems such as social networks, in-
formation systems, biological systems, and physical systems
[1,2]. Generally speaking, the architecture and dynamics of
complex networks could be represented by graphs containing
nodes and links. A number of measures calculated from
network models have been proposed to reveal the internal
structures of graphs, which offers valuable insights for the
real-world interacting systems of our interest. In the pioneer-
ing work done by Watts and Strogatz [3], the concept of the
small-world network is introduced to describe systems whose
nodes are highly clustered like regular lattices but have path
lengths between nodes as small as random graphs. It has been
shown that the small-world network has many advantages,
such as fast information transmission, high synchronizability,
etc., and many real-world systems such as human social
groups, Internet world in cyberspace, and biological systems
have been shown to exhibit small-world characteristics [4–9].
It is remarkable that all these radically different systems could
be described by the same network model, regardless of the
microscopic origins of the interactions that build up these
systems.

Phase transitions in quantum systems have been one of the
most important subjects in physics. By varying some physical
parameters, the ground state could change abruptly so that the
system could exhibit very distinct physical properties. In the
field of network science, it has been shown that some network
models could be mapped into certain quantum systems, and
consequently the nature of the network properties could be
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understood using the same ideas developed in quantum
physics. For example, the model proposed by Bianconi and
Barabási [10] is shown to follow Bose statistics and even
undergo Bose-Einstein condensation. Fermi-Dirac statistics
is shown to emerge in growing Cayley trees with thermal
noise [11], and a class of generalized statistics for networks
has been proposed [12]. While there is growing interest in
applying ideas from quantum systems to explore the rela-
tions in networks [13–19], the possibility of using network
science to explore the nature of phase transitions in quantum
systems attracts much less attention [20–22]. The key issue
is the absence of an intuitive way to define nodes and links
representing phase transitions in quantum systems. Recently,
Chou [23] demonstrated that the topological phase transition
in a p-wave superconductor can be characterized by network
science using a pairing amplitude to construct an adjacency
matrix. This analysis, however, is based on the mean-field
Hamiltonian that assumes the existence of superconductivity,
thus it cannot be used to describe general cases of phase
transition in quantum systems.

In this paper, we demonstrate that the phase transitions
in quantum systems can be studied by network models with
suitable quantum correlation functions defined in real space.
We test this idea in two cases that can be solved exactly. For
a three-dimensional noninteracting bosonic system, a single-
particle density matrix is exploited to define the adjacency
matrix for the weighted network. We show that the Bose-
Einstein condensate can be viewed as a small world in our
network model due to the presence of off-diagonal long-
range order (ODLRO) [24]. For a one-dimensional disordered
system, a weighted network is constructed using an electron
diffusion operator [25]. We find that Anderson localized states
create many weakly linked subgraphs in our network model,
which greatly reduce the clustering coefficient and lengthen
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the shortest path. We show that the crossover from delocalized
to localized regimes with varying disorder strength can be
reflected by a loss of global connection in the corresponding
graphs, which can be clearly seen in the small-world coeffi-
cient as well as other independent network measures such as
robustness, efficiency, and algebraic connectivity. Our results
suggest that quantum phase transitions can be visualized
in real space and characterized by network topology with
suitable quantum correlation functions.

II. BOSE-EINSTEIN CONDENSATE IN A
NONINTERACTING THREE-DIMENSIONAL

BOSONIC SYSTEM

Consider a three-dimensional free boson system with fixed
particle density n. The Hamiltonian can be written as

H =
∫

d�r ψ̂†(�r)

(
h̄2∇2

2m
− μ

)
ψ̂ (�r), (1)

where ψ̂†(�r) [ψ̂ (�r)] creates (annihilates) a boson at po-
sition �r. Introducing the Fourier transformation of b̂�k =

1√
V

∫
d�r e−i�k·�rψ̂ (�r), we can diagonalize the Hamiltonian as

H =
∫

d�k
(2π )3

[E (�k) − μ]b̂†
�kb̂�k, (2)

where E (�k) = h̄2k2

2m , and the particle density n can be
evaluated by

n = n0 + ne,

ne = 1

(2π )3

∫
d�k

eβ[E (�k)−μ] − 1
. (3)

n0 is the particle density occupying the ground state, while ne

is the particle density occupying all other states. The Bose-
Einstein condensate (BEC) is identified by μ being equal to
the ground-state energy and the emergence of off-diagonal
long-range order (ODLRO) (n0 �= 0) [24], which occurs at a
temperature below the critical temperature Tc of

kBTc = 4π
h̄2

2m

[
n

ζ (3/2)

] 2
3

. (4)

ζ (s) is the Riemann zeta function.
Our goal is to build a real-space network model to capture

the BEC transition. A natural choice is the single-particle
density matrix defined as

ρi j ≡ 〈ψ̂†(�ri)ψ̂ (�r j )〉 = n0 + f (�ri − �r j ), (5)

where

f (�ri − �r j ) ≡
∫

d�k e−i�k·(�ri−�r j )

eβ[E (�k)−μ] − 1
. (6)

Clearly, f (�ri − �r j ) goes to 0 as |�ri − �r j | → ∞. In general,
ρi j describes the probability of a boson hopping from �r j to
�ri, which serves as a good quantity to represent the “link”
between different positions. Here we choose N points along

the x direction with equal spacing of lc = 1√
4π

( ζ (3/2)
n )

1/3
. In

other words, the position of the ith point is �ri = (ilc, 0, 0),
where i = 1, 2, . . . , N . We emphasize that the system is still

three-dimensional, and we just choose points along the x
direction. Different choices of the set of points might give
different values for the network measures, but the behavior
as a function of temperature will be exactly the same. Now
we can construct a network model with these N points being
the nodes, and the adjacency matrix can be constructed based
on a single-particle density matrix as

Ai j = 0, i = j,

= |ρi j |
max(|ρi j |) , i �= j. (7)

The graph built by Eq. (7) has weighted links bounded within
[0,1]. For the network properties, we have used N = 50 in all
the calculations presented below.

We start from the local clustering coefficient that deter-
mines the connectivity of a given node in the graph. Following
Ref. [26], we define the local clustering coefficient of the ith
node as

Ci = 1

ki(ki − 1)

∑
j,k∈{Ni}

Ajk, (8)

where {Ni} is the set of neighboring nodes around the ith
node, and ki is the number of nodes in {Ni}. In an unweighted
binary graph, {Ni} is defined as the set of nodes j with Ai j = 1.
Since our graph is a complete graph with weighted links, {Ni}
should just be the set of all the nodes other than i, which
means ki = N − 1 for every node. Equation (8) can naturally
reproduce the clustering coefficient for an unweighted binary
graph proposed in Ref. [3]. It is noted that this definition
places more emphasis on the connections between neigh-
boring nodes around the ith node without input from direct
links to the ith node, which is different from another popular
definition [23,27] of

CO
i = 1

ki(ki − 1)

∑
j,k∈{Ni}

(Ai jA jkAki )
1/3. (9)

CO
i counts the number of triangles attached to the ith node

with an effective intensity of (Ai jA jkAki )1/3, and consequently
the direct links to the ith node are as important as the links
between its neighbors. Nevertheless, we find that general
trends of the network properties are the same regardless of the
choice of definition for the clustering coefficient. To measure
the clustering of the entire graph G, we can compute the
average clustering coefficient as

C(G) = 1

N

∑
i

Ci. (10)

Note that in our definition, 0 � C(G) � 1 and C(G) = 1 only
occurs in a complete graph with Ai j = 1 for every i �= j.

Another important quantity in the network science is the
shortest path between two nodes, which posts a subtle issue
using the adjacency matrix Ai j defined in Eq. (7). In the net-
work theory, if Ai j is the weighted link between the ith and jth
nodes, its value is usually expected to be proportional to the
“distance” between these two nodes. This is, however, in con-
tradiction to the meaning of the single-particle density matrix,
which is proportional to the probability of a boson hopping
from �ri to �r j . In other words, in our graph, the larger Ai j is, the
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FIG. 1. (a) The average clustering coefficient, (b) average short-
est path, and (c) small-world coefficient of the three-dimensional
noninteracting boson system as a function of the normalized Boltz-
mann factor defined as β = 1/t, t = T/Tc.

shorter the “distance” between �ri and �r j should be. As a result,
we follow Ref. [23] to use the “inverse” of the adjacency
matrix Ai j to represent the “direct” distance between nodes
i and j, denoted as Di j = 1/Ai j . The shortest path between
nodes i and j, namely di j , is defined as the minimal length be-
tween i and j on the matrix of Di j , which can be found by the
Dijkstra shortest path algorithm [28]. The global path length
feature of the entire graph G can be revealed by averaging the
shortest path

L(G) = 1

N (N − 1)

∑
i �= j∈G

di j . (11)

Figure 1 presents C(G) and L(G) as a function of normalized
Boltzmann factor β = 1/t with t = T/Tc. It can be seen

clearly that as the system enters the BEC region from the
normal state (β < 1), C(G) increases and L(G) decreases
abruptly at β = 1, exhibiting the BEC transition. The kink
at β = 1 associated with the BEC transition can be further
amplified in the small-world coefficient defined as

S(G) = C(G)

L(G)
, (12)

which is shown in Fig. 1(c).
These results can be well understood by the existence of

ODLRO given in Eq. (5). In the normal state (β > 1), n0 = 0
and f (�ri − �r j ) goes to zero as |�ri − �r j | → ∞. Consequently,
many elements in the adjacency matrix are very small, and
the normal state network tends to have a small C(G) and
long L(G). In the BEC state (β < 1), every element in the
adjacency matrix has the same order of magnitude due to the
ODLRO (n0 �= 0), and the BEC network naturally has a large
C(G) and short L(G), which are the key properties necessary
for the small-world network.

To visualize the network constructed from Eq. (7), we draw
the force-directed graphs obtained by the Kamada-Kawai cost
function with the code developed by NetworkX [29]. In the
force-directed graphs, repulsive interactions similar to the
electrical Coulomb interaction are introduced among every
pair of nodes, and an attractive interaction between two nodes
resembling the spring force is added with a spring constant
depending on the value of Ai j . The balance of these forces
determines the positions of nodes in a two-dimensional plane,
which is shown in Fig. 2. The change of the graph topology
can be seen directly as β varies across the BEC transition.
Compared to the graphs in the normal state, the distance be-
tween nodes is much more equal in the BEC graph [Fig. 2(d)],
which is a clear signature for the small-world network. Based
on the above analysis, we conclude that the BEC transition
corresponds to the transition into a small-world network in
the graph representation.

III. ANDERSON LOCALIZATION IN 1D
FERMIONIC SYSTEMS

In this section, we employ the same idea to explore the
properties of the real-space network representing the disor-
dered fermionic system. For a proof of concept, we con-
sider a one-dimensional periodic fermionic system with a

FIG. 2. The force-directed graphs of the network model using the adjacency matrix defined in Eq. (7) for the three-dimensional
noninteracting boson system as a function of normalized Boltzmann factor defined as β = 1/t, t = T/Tc for (a) β = 0.85, (b) β = 0.89,
(c) β = 0.94, and (d) β = 1.04.
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FIG. 3. (a) The average clustering coefficient and (b) the average
shortest path for the graph representing a 1D disordered system as a
function of disorder strength W .

Hamiltonian written as [30]

Ĥ = −t
∑
〈i, j〉

ĉ†
i ĉ j +

∑
i

[W εi − μ]ĉ†
i ĉi, (13)

where ĉ†i (ĉ j) creates (annihilates) a fermion at site i, t is the
nearest-neighbor hopping integral, W is the disorder strength,
μ is the chemical potential, and εi is a random number
bounded between [− 1

2 , 1
2 ]. We set t = 1 in the following

calculations.
To construct the adjacency matrix, we use the diffusion

operator [25] defined as

�(i, j; ω) ≡ 〈
GR

i j (ω/2)GA
ji(ω/2)

〉
dis. (14)

Note that 〈· · · 〉dis denotes the average over different disorder
configurations, and GR,A

i j (ω) are the retarded and the advanced
Green’s functions between sites i and j,

GR,A
i j (ω) = 〈i|[(ω ± iη)Î − Ĥ ]−1| j〉. (15)

�(i, j; ω = 0) is a real and positive quantity that can be
interpreted as the probability of an electron diffusing between
sites i and j and is consequently a useful quantity to detect the
degree of localization in a disordered system [25]. As a result,
we set up the adjacency matrix as

Âi j = �(i, j; 0)

Max(�(i, j; 0))
. (16)

By symmetry, Âi j = Â ji and we have transformed the 1D
disordered system to a network model with undirected but
weighted links. We can therefore use the same definitions of
the clustering coefficient, the shortest path, and the small-

FIG. 4. (a) The small-world coefficient and (b) the efficiency
for the graph representing a 1D disordered system as a function of
disorder strength W .

world coefficient introduced in the preceding section. We
solve the model Hamiltonian given in Eq. (13) with 500 sites.
We fix the chemical potential to be μ = 0 and study the
evolution of the graph as a function of the disorder strength W .
For each disorder strength, we obtain �(i, j; 0) by averaging
over 5000 different disorder configurations.

The average clustering coefficient and the average shortest
path calculated based on the adjacency matrix in Eq. (16)
are presented in Fig. 3 as a function of the disorder strength
W . Clearly, the clustering coefficient C decreases as the
disorder gets stronger, which can be understood by the nature
of localization. Because of the Anderson localized states,
electrons are more likely trapped in localized states near
particular sites as the disorder strength gets stronger. In the
network model constructed from Eq. (16), the reduction of
the clustering coefficient with the increase of W is attributed
to many weakly connected subgraphs resulting from localized
states. Moreover, since the probability of electron hopping
between different localized regions is generally small, the
global average shortest path is expected to increase as a
function of W , which is clearly shown in Fig. 3(b).

We shall mention that because a one-dimensional system is
always in the localized regime in the presence of any disorder
strength, we would not see a sharp transition as seen in the
case of BEC. However, since we consider a finite-size system
of 500 sites, we do see a crossover into a regime in which
the localization length of every single-particle eigenstate is
shorter than the system size. The critical disorder strength
(Wc ∼ 1.2t) for this crossover can be better characterized in
the small-world coefficient plotted in Fig. 4(a). An intrigu-
ing feature in Fig. 4(a) is that the small-world coefficient
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FIG. 5. (a) The robustness R and (b) the algebraic connectivity
for the graph representing a 1D disordered system as a function of
disorder strength W .

becomes almost zero as W > Wc. This feature indicates that
the system is no longer globally connected in the strong dis-
order limit, consistent with the fact that all the single-particle
eigenstates have a localization length shorter than the system
size, and consequently the electron diffusion is exponentially
suppressed for any state.

We can further study the loss of global connection using
other network measures. For example, the reciprocal shortest
distance matrix is used in calculating graph invariants such
as the Harary index [31,32], which has been employed to
measure the compactness of molecular structures. A measure
similar to the Harary index introduced in Ref. [33] has been
exploited to indicate the efficiency of the graph, which is
defined as the average of the inverse of the shortest path,

Eff(G) = 1

N (N − 1)

∑
i �= j∈G

1

di j
. (17)

Higher Eff(G) corresponds to the increased ability of each
node in the graph to disperse information simultaneously. We
plot Eff(G) as a function of W in Fig. 4(b), which demon-
strates the increased difficulty in transferring information
between sites in the strong disorder regime. Another quantity
to analyze is the robustness R defined as [23,34–37]

R(G) = ln

(
1

N

∑
i

eλi

)
, (18)

where {λi} is the set of eigenvalues of the adjacency matrix
Âi j . R can be understood as a measure for the ability of the
network to withstand nodes being removed without the global
network features being affected. Generally speaking, a highly

FIG. 6. The force-directed graphs for the 1D disordered system
in (a) delocalized (W = 0.5) and (b) localized (W = 1.5) regimes.
For the best quality, we only plot 50 out of 500 nodes so that the
distances between nodes can be clearly seen.

and globally connected graph tends to have a large value of
R, meaning that removing a few nodes from the graph would
not change the global properties of the graph significantly.
The robustness R as a function of W is shown in Fig. 5(a).
It can be seen that R goes to zero in the strong disorder
regime, which can again be attributed to the loss of the global
connection. In the strong disorder regime, there are many
weakly linked subgraphs due to the localized states. As a
result, removing a few nodes could disconnect completely the
links between some subgraphs, and the connections between
these affected subgraphs could be completely lost, which
explains the vanishing value of R.

Lastly, we analyze the algebraic connectivity proposed by
Fiedler [38], which is another gauge of the connectedness of a
graph [39]. To obtain the algebraic connectivity, we introduce
the degree matrix as

Ki j = 0, i �= j,

=
∑

k

Aik, i = j. (19)

The Laplacian matrix of the graph can therefore be con-
structed by

L̂ = K̂ − Â, (20)

It can be shown that the smallest eigenvalue of L̂ is always
zero for any graph, which corresponds to the eigenvector of
(1, 1, 1, . . . )T . The second smallest eigenvalue, identified as
the algebraic connectivity, is nonzero if and only if the graph
is connected, and its value is proportional to the degree of the
connectedness in a graph [39,40]. The algebraic connectivity

012304-5



SHEHTAB ZAMAN AND WEI-CHENG LEE PHYSICAL REVIEW E 100, 012304 (2019)

for the graph representing the disorder system is plotted in
Fig. 5(b), which shows the same trends as the small-world
coefficient, the robustness, and the efficiency.

To directly visualize the subgraphs in our network, we
draw the force-directed graphs [29] in Fig. 6. In the delocal-
ized regime [Fig. 6(a) for W = 0.5], nodes are more evenly
distributed, indicating no tendency to form subgraphs. On the
other hand, in the localized regime nodes tend to stay closer to
particular neighbors, and consequently a lot of subgraphs can
be observed directly in the plot [Fig. 6(b) for W = 1.5].

IV. CONCLUSIONS

In this paper, we have studied two cases of phase transitions
in quantum systems using real-space network models. The
key step is to choose a suitable quantum correlation function
to construct the adjacency matrix, and the natural choice
is the one encoding the “probability” of quantum particles
moving from one place to another in real space. For a three-
dimensional bosonic system we have chosen a single-particle
density matrix, while for a one-dimensional disordered system
we have chosen an electron diffusion operator. We have shown
that phase transitions in these model systems can be accurately
captured by a number of network measures, which allows
us to visualize the quantum phase transitions in real space
in terms of network science. For example, the clustering
coefficient measures the tendency of the neighbors around
a node to connect, and the shortest path determines how
fast information can travel from one node to another. In the
Bose-Einstein condensate (BEC), the off-diagonal long-range
order provides global links between every node in the graph.
As a result, the clustering coefficient increases and the shortest
path decreases dramatically as the system undergoes the BEC

transition, and in our network model the BEC transition can
be characterized as a transition into a small-world network.
For the one-dimensional disordered system, because of An-
derson localized states, our network has many weakly linked
subgraphs that greatly reduce the clustering coefficient and
lengthen the shortest path. We have shown that the crossover
from a delocalized to a localized regime as a function of
disorder strength can be well captured by the small-world
coefficient as well as other independent measures such as
robustness, efficiency, and algebraic connectivity.

Our formalism can be easily generalized to study quantum
phase transitions in other systems. For example, quantum
phase transitions in interacting fermionic systems can be ana-
lyzed by network models constructed by two-particle density
matrices [24] such as the spin-spin correlation function for
magnetism, the Cooper-pairing correlation function for super-
conductivity, and the density-density correlation function for
charge ordering. A similar idea was presented in Refs. [41,42],
in which a quantum mutual information matrix constructed
from one and two point correlators is introduced to study
quantum phase transitions in the Ising spin chain. Our results
demonstrate that quantum phase transitions can be visualized
in real space and characterized by network topology with
suitable quantum correlation functions.
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