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Emergence of patterns in random processes. III. Clustering in higher dimensions
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Newman et al. [Phys. Rev. E 86, 026103 (2012)] showed that points uniformly distributed as independent and
identically distributed random variables with nearest-neighbor interactions form clusters with a mean number of
three points in each. Here, we extend our analysis to higher dimensions, ultimately going to infinite dimensions,
and we show that the mean number of points per cluster rises monotonically with a limiting value of four.
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I. INTRODUCTION

The identification of patterns from observational data in
the natural sciences and other disciplines remains a funda-
mental challenge. This is particularly true when there is no
well-defined quantitative theory available for describing the
underlying processes in complex environments. For example,
the psychologist Gilovich [1] provides numerous and effective
illustrations of the misperception and misinterpretation of
random data, including what he calls the “clustering illusion”
pertaining to random sequences of events. Psychologists have
observed how we tend to “project” patterns onto familiar
objects, the classic example being the so-called constella-
tions of the zodiac as noted by the art historian Gombrich
(Ref. [2], pp. 105–107). Psychologists have also coined the
terms Apophenia to describe the experience of seeing patterns
or connections in random or meaningless data, as well as
pareidolia to describe the ability to see shapes or make
pictures out of randomness. While the astrological example
is almost universally regarded as an illusion, it points to a
seeming inner need to associate some form of order to what
we see. Is it possible, on the other hand, for random data to
present the appearance of pattern?

As an illustration, consider situations in which measure-
ments are made of some quantity that corresponds to a
variable that itself is the sum of multiple random variables.
Thanks to the central limit theorem [3], for example, the
data will appear to be normally (i.e., Gaussian) distributed.
However, there is no fundamental “physics” in that claim, and
we observe a form of pattern lacking any causal connection.
Instead, the central limit theorem is a statement that the obser-
vations belong to a class whose randomness by “mathematical
necessity” conforms with a well-defined statistical distribu-
tion function. Could the impression that data are spatially or
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temporally clustered be an artifact of mathematical principles,
of which we are unaware, and not of any underlying physical
process?

Zaliapin et al. [4] introduced the concept that in two
and presumably higher dimensions, points could provide the
sense of forming clusters by virtue of their proximity to
each other. In attempting to identify a pattern among earth-
quake epicenters, they sought to identify for each epicenter
in an earthquake catalog the epicenter in the catalog that
was “closest,” i.e., the nearest-neighbor epicenter. In essence,
the authors of Ref. [4] drew an arrow from each epicenter
to its nearest neighbor and observed that the directed graph
that was produced revealed sets of points that were mutually
connected, calling these associations “clusters.”

Newman et al. [5] considered spatial clustering in one
dimension where the points are selected from a uniformly
distributed uncorrelated distribution, i.e., they are independent
and identically distributed random variables (i.i.d.). In their
derivation, they also established a one-to-one correspondence
between the behavior of such points and white-noise time
series. In so doing, they showed that the spatial distribution
of random points, where directed graphs are constructed
from each point to its Euclidean nearest neighbor, produces
disjoint “clusters” that do not share any points in common
and contain an average of three points per cluster. This result
is equivalent to white-noise time series producing a pattern
of peak-to-peak sequences with, on average, three events per
sequence.

In this paper, we return to the problem of spatial clustering
and proceed to the more challenging questions that emerge in
higher spatial dimension ultimately going to infinite dimen-
sion. The geometrical complexity present precludes the use of
the kind of combinatoric analysis that Newman et al. [5] were
able to employ in one dimension. We began by performing
computational simulations to obtain insight. We observed
there that the mean number of points per cluster increased
with the dimension n. This is somewhat intuitive inasmuch
as proceeding to a higher dimension introduces the possibility
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of new viable linkages arising from the higher-dimensional
space.

Nearest-neighbor interactions are ubiquitous in physics,
so the implications of clustering could be highly significant,
especially in the context of percolation phenomena. From
our understanding of percolation processes that are possibly
related, Kirkpatrick [6] has shown that there could exist a
critical dimensionality where there is a qualitative change
in the properties of such systems. Similar considerations
could also be relevant in higher-dimensional situations seen
in sociology, Milgram’s [7] “small-world conjecture,” and
the famous “six degrees of separation problem” and much
of contemporary network analysis [8]. Modern genome-scale
genetics interactions are mapped out in an overarching genetic
landscape [9]. Clustering phenomena present themselves in
fractal geometries in the form of trees [10–12]. Fractal net-
works and clustering are pervasive in biology [13] as well as in
geology [14]. The overarching issue is that high-dimensional
clustering is omnipresent and merits investigation. In this
paper, we will review briefly the role of directed graphs, how
probability theory can be adapted to address such problems
in two dimensions, and the emergence of conditional proba-
bilities. We will then proceed to higher and ultimately infinite
dimensions and consider the geometrical implications of the
clusters that emerge.

II. PROBLEM DESCRIPTION EMPLOYING DIRECTED
GRAPHS

As before, we consider a set of uniformly distributed
i.i.d. points, and we are most interested in nearest-neighbor
interactions between points. We construct directed graphs
by drawing an arrow (edge) from each point (vertex) to
its nearest-neighbor point. We observe that the ensemble of
points could be regarded as a distinct set of clusters whose
points are mutually connected, and that members of each
cluster were distinct or disjoint from other clusters.

We will begin by briefly reviewing some aspects of graph
theory and then proceed to a previously unrecognized feature
of cluster formation: nearest-neighbor directed-graph struc-
tures always contain a reflexive pair of points, i.e., two points
that are mutual nearest neighbors in whatever dimension space
that is being considered. In Fig. 1, we illustrate this situation.
We present an ensemble of random points, with no loss of
generality, in two dimensions. From each point, we drew
an arrow to its nearest neighbor, where we define “nearest”
in a Euclidean sense. In this way, we have constructed a
“directed graph” [15,16]. In graph theory, what we called
points—or events in our illustrative example—are referred
to as “vertices” or “nodes,” while the arrows are designated
as such or as “directed edges.” We note, given the visually
motivated rules that we established, that “loops” cannot occur.
Moreover, we note that all such directed graphs must include
one and only one “reflexive” pair of points, i.e., two nodes that
point to each other that are mutual nearest neighbors. Each of
the clusters present in Fig. 1 has one reflexive pair of points,
as expected. Finally, in two or higher dimensions, the directed
edges are related to the vertices insofar as they appear to be
coming in to a vertex or coming out from a vertex. The number
of arrows coming in to a vertex is referred to as the “indegree,”
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FIG. 1. Random ensemble of points in two dimensions with
associated directed graphs and cluster formation. The integers show
the “indegree” of each vertex, i.e., the number of other points that
identify with it as a nearest neighbor; the “outdegree” of each vertex
is, due to our rules of clustering, automatically one.

while the number of arrows coming out of a vertex is referred
to as the “outdegree” [16]. In our clustering description, the
outdegree of all vertices is automatically 1, while the indegree
can be 0, 1, 2, . . . . We now proceed to discuss some of the
attendant probabilistic issues.

III. PROBABILISTIC CONSIDERATIONS

Newman et al. [5] performed a probabilistic calculation
over a doubly infinite set of graphs resulting from a proba-
bilistic treatment of cluster formation, obtaining not only the
value of 3 for the mean number of points in a one-dimensional
cluster, but also the likelihood of obtaining clusters with two
points, three points, four points, and on to an infinite number
of points. Geometrical complexity precludes performing that
kind of analysis in higher dimension. We note that “loops”
cannot occur in nearest-neighbor configurations, as a con-
sequence of the triangle inequality in Euclidean geometry,
thereby assuring that all clusters contain a single pair of
points that are mutually nearest neighbors. (From another
perspective, clusters can be viewed as the confluence of two
trees, with the reflexive pair describing the two root nodes;
the edges in each of the trees are ordered in length due to
the nearest-neighbor progressions that emerge.) We turn our
attention now to a probabilistic formulation predicated on the
observation that all clusters contain one and only one reflexive
pair of points.

The question we wish to formulate is how to calcu-
late the probability that a given pair of points are mutual
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nearest neighbors. We begin exploring this problem in two
dimensions. We will assume that N is the number density of
points per unit area, points that are uniformly distributed i.i.d.
random variables in an arbitrarily large domain. We begin
by selecting one such point, and we will, without loss of
generality, move our coordinate origin to that point, which
we shall refer to as 1. We will employ the approach used by
Feller [3] in addressing this question, and in a manner that can
readily be generalized to arbitrarily high dimension.

Let P(r) identify the probability that the nearest neighbor
to point 1 is situated at a Euclidean distance greater than r
from it. We note that P describes a cumulative distribution
function and that the rate of reduction of P will be propor-
tional to the infinitesimal increment in area multiplied by the
number density of points N . In differential form, we write

dP(r) = −2πrdr N P(r), (1)

where we note that the differential 2πrdr is the infinitesimal
area enclosed in the annulus ranging from r to r + dr. Ac-
cordingly, the differential equation for the probability assumes
the form

dP(r)

dr
= −2πN r P(r), (2)

with the initial condition P(0) = 1, yielding the solution

P2(r) = exp(−Nπr2). (3)

We have now introduced a subscript 2 to the cumulative
probability function P to identify that this result applies to
n = 2 dimensions. Importantly, we note that the term πr2

contained within the exponential is the area contained within
a closed curve, namely a circle, whose radius is r. We will
return to analogous considerations when we proceed to higher
dimension.

IV. CONDITIONAL OR BAYESIAN ANALYSIS

We begin by assuming that the first point under consid-
eration, designated by 1, is situated at the origin. We then
ask, what is the differential probability that a second point,
designated by 2, is situated in the infinitesimal thin annulus
extending r to r + dr? It follows that this is 2πN rP2(r)dr.
For convenience, we will assume that we have rotated the
coordinate axes so that point 2 is to the right and horizontal
with respect to point 1. In Fig. 2, we illustrate this situation.
We have drawn a solid circle at radius r from point 1, calling
it A. We have also drawn a dashed line circle with radius r
with its origin at 2, calling it B. We observe that, for point
1 to be point 2’s nearest neighbor, all other members of the
cluster must reside outside circles A and B. It follows that we
can only consider locations such as the one labeled 3 that are
outside both circles and not locations such as that labeled 4
that reside outside B but are inside A. Thus, the probability that
a third point will not be too close to 2 must be established. It
must be conditioned by the requirement that the area in B not
include that already incorporated into circle A. The existence
of a condition of this sort is the sine qua non of Bayesian
probability.

We offer several salient observations evident from this
figure. We show five radial lines associated with both circles,
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FIG. 2. Geometry associated with Bayesian probability calcula-
tion. First point at 1 showing radius r of second point at 2 and the
circles A and B plus radial lines relevant to analysis.

with four originating at the center of one circle making a
60◦ angle with the horizontal and ending at the intersection
of that circle with the other circle. The horizontal radial line
corresponds to the “edge” that is common to both points 1 and
2. We note that 60◦ or π/3 radian angles are ubiquitous—this
feature will permeate the extension of clustering to higher
dimensions. The two radial lines at 60◦ associated with point
1 establish a sector enclosing an area 1

3πr2. We can establish a
similar sector with respect to point 2, as shown. We can draw a
line from the upper intersection point of the two circles (call it
a) to the lower intersection point (labeled b). This line is called
a chord, and it divides each of the sectors into two parts. We
refer to the area bounded by the chord and the circular arc
lying between the chord’s end points as its segment. Finally,
we observe that the two segments together, sharing a common
chord, constitute the region of intersection of the two circles,
called for obvious reasons a lens. An elementary calculation
reveals that the area A enclosed within the lens is

A =
(

2π

3
−

√
3

2

)
r2. (4)

We will generalize this discussion shortly to accommodate
higher-dimensional problems.

We must now calculate the probability that the nearest
neighbor to point 2, apart from 1, is at a distance at least as
great as r. In principle, we could begin with a differential
form for the probability of the sort shown in Eq. (1). However,
that equation assumed that the range in azimuthal angle over
which the area integral was calculated was 2π . The situation
is now complicated because of the probability’s conditional
nature, and a Bayesian argument is in order. We move our
coordinate origin to point 2, and it follows that the radial
component of the differential preserves its algebraic form
but that the range in the azimuthal angle is now limited by
the intersection of circle B with A. In Fig. 3, we elaborate
on this situation. The probability P(r) that we calculated
in Eq. (3) corresponded to the likelihood that the nearest
neighbor was situated outside the area enclosed by circle A,
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FIG. 3. Venn diagram illustrating areas over which integration is
performed. In the first case, it is all the area enclosed by A, namely
the component in white and in light gray. In the second case, it is only
the area in dark gray corresponding to B less the area in the lens.

the white circle. However, in considering the probability that
the nearest neighbor to point 2, apart from point 1, is more
distant than r, the area that we must consider is solely the
dark gray region shown in the figure, namely the area in B
excluding the overlapping lens shown in light gray, namely
B\A, which reads as the content of B not contained in A. We
can now utilize the areal calculation we have performed for
the lens, namely Eq. (4), and note the probability PC (r) that
the next nearest neighbor to point 1 and, due to the conditional
nature of the problem, point 2 is

PC (r) = exp

{
−N

[
π r2 −

(
2π

3
−

√
3

2

)
r2

]}

= exp

{
−N

[(
π

3
+

√
3

2

)
r2

]}
. (5)

This again is the probability that a third point resides at
a distance beyond the first point and excludes the region
already established to be unoccupied by points. We evaluate
the probability density that a pair of points separated by a
distance r are reflexive and integrate over r from r = 0 to ∞
to obtain the probability P2, where the subscript “2” serves
to remind us that this is in two dimensions, and that any two
points are reflexive,

P2 = 1

2

∫ ∞

r=0
exp

{
−N

[(
π

3
+

√
3

2

)
r2

]}
×2πN rP2(r)dr

= 1

2

∫ ∞

r=0
exp

{
−N

[(
π

3
+

√
3

2

)
r2

]}
×2πN r exp

(−πr2N
)
dr

= 3π

8 π + 3
√

3
≈ 0.310 752 448 5. (6)

We have explicitly reduced our probability P2 by a factor of
2 in order to avoid “double counting,” i.e., beginning with
particle 2 and ending with particle 1 in contrast with beginning

with particle 1 and ending with particle 2. So, given that
this is the probability that two nearest-neighbor points form
a reflexive pair, its reciprocal is the mean number of points in
each two-dimensional cluster, or

8 π + 3
√

3

3π
≈ 3.217 995 561, (7)

confirming our intuition that the average number of points per
cluster will modestly exceed the one-dimensional value of 3.

V. PROCEEDING TO HIGHER DIMENSION

The approach we have employed in the previous section
was motivated by geometric and probabilistic considerations.
All three figures are relevant in higher dimension, when we
adjust our interpretation. For example, in three dimensions
we emerge with intersecting spheres, segments are referred
to as caps, and the chord is now replaced by a plane cutting
across the two intersecting spheres. The two caps combined
figuratively take on the more intuitive and recognizable as-
pect of a lens. As we proceed to still higher dimensions,
we will employ the terms “hyperspheres,” “hypercaps,” and
“hyperlenses,” albeit sometimes omitting the prefix “hyper.”
The probability calculations proceed analogously. In place of
an infinitesimally thin annulus in the calculation, we have
an infinitesimally thin spherical shell, and the role of area is
superseded by volume.

In higher dimension, extensions to surface area and to
volume have been established via induction, and they are often
a familiar exercise to undergraduate mathematics majors. We
will now adapt the meaning of the number density of points
N to represent the mean number of points per unit volume.
For example, Dirichlet [17] was possibly the first to do so
and obtained the now familiar formula for an n-dimensional
volume Vn(r) for an “n-sphere,” namely

Vn(r) = πn/2

�
(

n
2 + 1

) rn. (8)

This expression, remarkably, is valid for n = 1, 2, . . . , which
includes one dimension (length) and two dimensions (area)
as well. Many other derivations exist—for example, Huber
[18] exploited the properties of the � function to obtain this
result. Wang [19] derived volume relevant to measures of
distance using norms other than the Euclidean L2, such as
“diamonds” and “stars.” We proceed from here to calculate
the n-dimensional analog of Pn(r), where r is the Euclidean
radius.

Employing in n dimensions a derivation analogous to that
employed in two dimensions, it follows that

Pn(r) = exp [−NVn(r)]. (9)

Similarly, higher-dimensional forms of segments—which we
now identify as “caps” and denote symbolically by placing a
“wide hat” over the variable—are also amenable to induction
methods, as shown elegantly by Li [20],

V̂n(r) =
∫ θmax

0
Vn−1(r sin θ ) dr cos (θ ), (10)
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where the angle θmax is 60◦ or π/3 radians (as noted in Fig. 2).
Following Li’s derivation, we obtain

V̂n(r) = 2π (n−1)/2

�
(

n−1
2 + 1

) rn
∫ π/3

0
sinn θ dθ, (11)

with the volume of the corresponding lens being double this.
For n = 2, this general formula recovers our explicit result for
the lens area in two dimensions shown in Eq. (4).

We proceed now in precisely the same way as we did in
deriving Eq. (6), and we write for the general n � 2 case

Pn = 1

2

∫ ∞

r=0
exp{−N [Vn(r) − 2 V̂n(r)]}

× exp [−NVn(r)]N dVn(r)

dr
dr

= 1

2

∫ ∞

r=0
exp{−2N [Vn(r) − V̂n(r)]}

×N dVn(r)

dr
dr

= 1

4

∫ ∞

r=0
exp

{
−2NVn(r)

[
1 − V̂n

Vn

]}
× 2N dVn(r)

dr
dr. (12)

Before proceeding, we make two observations. First, the
quantity V̂n(r)/Vn(r) is a constant that depends upon n but
not upon the radial variable r whose dependence has canceled
out, and we have consciously omitted showing the no longer
relevant r dependence. Hence, we will regard the quantity
1 − V̂n (r)

Vn (r) as a constant that depends only upon n for n � 2.
Second, we make the substitution x = 2NVn(r), where x
intuitively refers to double the number of points expected to
reside within an n-dimensional radius r. Amalgamating these
results, the last integral in Eq. (12) becomes

Pn = 1

4

∫ ∞

r=0
exp

{
−x

[
1 − V̂n

Vn

]}
dx

= 1

4
[
1 − V̂n

Vn

] , (13)

where we no longer display the now ignorable dependence of
this result upon r. As before, the reciprocal of this expression,
which we shall call Nn, is the mean number of points in a
cluster in n-dimensional space, namely

Nn = 4

[
1 − V̂n

Vn

]
. (14)

As further examples, we observe that

N3 = 3
3

8
= 3.375 (15)

and

N4 = 20 π − 3
√

3 2F1(1/2, 5/2; 7/2; 3/4)

5 π

≈ 3.493 660 010. (16)

which incorporated a hypergeometric function representation
for the outcome of the integral over sinn θ .
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FIG. 4. Demonstration that V̂n/Vn converges geometrically to zero.

We confirmed the validity of these values for Nn for
n = 2, . . . , 4 using Monte Carlo simulations with 228 ≈
268 435 456 points employing an algorithm we shall describe
elsewhere. Our simulation results agreed to four significant
figures, which is what you would expect from random-walk
arguments based on a sample size of O(108). We observed,
nevertheless, that the sequence of Nn appeared to be mono-
tonically increasing with V̂n/Vn monotonically decreasing. We
verified this trend using computer algebra via MAPLE for
n = 1, . . . , 100 and observed that convergence was essentially
geometric with a rate of reduction of ≈√

3/2 each time we
increased n by 1. We illustrate this in Fig. 4. We will now
demonstrate this analytically for Nn as n varies from 1 to ∞,
thereby demonstrating that in infinite-dimensional Euclidean
space the mean cluster size is 4 having grown monotonically
from 3 in one dimension.

VI. TO INFINITY... AND BEYOND

Our objective is to evaluate the ratio of V̂n/Vn, again noting
the cancellation of the r-dependence in both quantities, We
combine Eqs. (8) and (10) and obtain the ratio

V̂n

Vn
=

2π (n−1)/2

�( n−1
2 +1)

∫ π/3
0 sinn θ dθ

πn/2

�( n
2 +1)

= 2√
π

�
(

n
2 + 1

)
�

(
n+1

2

) ∫ π/3

0
sinn θ dθ. (17)

Before proceeding with the evaluation of this expression, we
will make use of the identity, which can be proven inductively,
that ∫ π/2

0
sinn θ dθ =

√
π

2

�(1/2 + n/2)

�(n/2 + 1)
, (18)

whereupon we find

V̂n

Vn
=

∫ π/3
0 sinn θ dθ∫ π/2
0 sinn θ dθ

=
∫ π/3

0 sinn θ dθ∫ π/3
0 sinn θ dθ + ∫ π/2

π/3 sinn θ dθ
. (19)
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Using this latter expression, we can see that the ratio is
monotonically decreasing by identifying what happens when
n is increased by 1. Since the numerator is identical to the
first term in the denominator, we observe that multiplying
their integrands by an additional power of sin θ causes both
to decrease in precisely the same way. However, the second
term in the denominator, whose integrand is also multiplied
by sin θ , is not reduced as much because θ is in the range
(0, π/3) in the first integral and (π/3, π/2) in the second
where sin θ is larger. Therefore, the extent of the diminution
due to the sin θ term is less significant in the second integral
in the denominator. This establishes that the ratio is reduced
as n increases.

To obtain explicitly the rate of reduction in the ratio, we
return to Eq. (17) and evaluate it in terms of transcendental
functions, namely

V̂n

Vn
= 2√

π

�
(

n
2 + 1

)
�

(
n−1

2 + 1
) ∫ π/3

0
sinn θ dθ

= 1√
π (n + 1)

(
3

4

) n+1
2 �

(
n
2 + 1

)
�

(
n
2 + 1

2

)
× 2F1

(
1

2
,

n + 1

2
;

3 + n

2
;

3

4

)
. (20)

We can now dissect each of the terms as a function of n.
Importantly, we note the appearance of the term 3/4, which
is the sine of 60◦ or π/3 radians. The hypergeometric term
is relatively constant, albeit monotone, with respect to n,
and a bound can readily be obtained for it. The ratio of the
two � functions, using Stirling’s approximation, varies as√

n and is more than compensated by the 1/(n + 1) term
at the beginning of the equation, rendering their combined
influence a slowly decreasing 1/

√
n. Finally, we observe that

the dominant term in the expression for the ratio is the term
in (

√
3/2)

n
, which conforms with our observation obtained

by computer algebra. Hence, Nn converges to 4 as n → ∞.
We have completed our search for clustering in randomness,
proceeding from one-dimensional i.i.d. uniformly distributed
random points to infinite-dimensional space.

Before concluding this section, it is helpful to revisit the
geometrical nature of the clusters that form as the dimension-
ality of the Euclidean space approaches infinity. It is quite
remarkable that the mean number of points in the cluster is on
average 4. This implies that clusters with relatively few points
present low-dimensional structures. We illustrate this in the
following figure. In the minimal case of two points in a cluster,
they automatically form a reflexive pair and are intrinsically
one-dimensional. In the case of three points in a cluster, two
topologically equivalent structures occur including the one
that we display as well as its mirror image. Importantly, the
nonreflexive vertex and the edge associated with it can be at
an angle, but that angle is restricted by the requirement that
its vertex remains further away from the other (rightmost)
vertex in the reflexive pair. Accordingly, three-point clusters
are intrinsically two-dimensional. Finally, in the case of four
points in a cluster, we present three subcases, labeled (a),
(b), and (c), as well as their mirror-image equivalents. This
situation presents a greater degree of geometric complexity

2-Point Cluster 3-Point Cluster

4-Point Cluster

(a)

(c)

(b)

FIG. 5. Geometric configurations of clusters.

inasmuch as the structures formed are fundamentally three-
dimensional. It is conceptually simple but mathematically
complex to construct clusters with five or more constituent
points, which have the potential to generate four-dimensional
objects. In contrast with what Newman et al. [5] were able
to show in one dimension, the algebraic complexity of the
available configurations of clusters that can form in two
and higher dimensions makes it impossible to analytically
calculate the probability of obtaining all of the available
configurations such as the three that we show in Fig. 5. The ge-
ometrical implication of our calculation of the mean number
of points in a cluster and their attendant structural character
is clear: clusters formed via nearest-neighbor interactions are
both small in number and are typically three-dimensional in
character despite being derived from an infinite-dimensional
space.

VII. CONCLUSIONS AND DISCUSSION

This investigation was stimulated by considerations of
randomness that occurs in nature, and, in some sense, it
can provide illusory evidence of pattern or structure. The
search for spatial clustering based upon nearest-neighbor as-
sociations, for example in application to earthquake events,
resulted in our desire to explore the null hypothesis: can uni-
formly distributed randomly distributed points that pass tests
for being independently and identically distributed appear
to project a pattern. Indeed, manifestations of clustering in
high-dimensional data that do not conform with these i.i.d.
results would be a tell-tale sign of some nonrandom link
among points.

In earlier work, Newman et al. [5] proved in one spa-
tial dimension that the mean number of points in a cluster
would be 3. Furthermore, they showed that this result in one
dimension is formally equivalent to peak-to-peak statistics in
time series, apparently answering the time-honored maxim,
“why do good things come in threes”—three, evidently, is an

012302-6



EMERGENCE OF PATTERNS IN RANDOM PROCESSES. … PHYSICAL REVIEW E 100, 012302 (2019)

almost magic number that emerges from random processes
and bears no additional meaning. Intrigued by the study of
Zaliapin et al. [4] involving earthquake epicenter clustering,
we investigated clustering in two and higher dimensions.
We developed a simple Bayesian probability derivation for
the mean number of points in a cluster N as a function of
the dimension n, and we obtained steadily increasing values
beginning in two dimensions of 3.218, 3.375, 3.494, etc. and
speculated on the question of whether there could be an upper
bound, for example 4. As a pattern evolved in the probabilistic
calculations, we discovered—as we have shown here—that
this is indeed the case, and that an infinite-dimensional space
populated with i.i.d.uniformly distributed points with nearest-
neighbor connectivity will establish clusters with a mean

number of four points per cluster. Finally, these relatively
small clusters establish low-dimensional structures, e.g., a
four-point cluster conforms with a three-dimensional object.
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