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Exact relaxation dynamics and quantum information scrambling
in multiply quenched harmonic chains
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The quantum dynamics of isolated systems under quench condition exhibits a variety of interesting features
depending on the integrable/chaotic nature of system. We study the exact dynamics of trivially integrable system
of harmonic chains under a multiple quench protocol. Out of time ordered correlator of two Hermitian operators
at large time displays scrambling in the thermodynamic limit. In this limit, the entanglement entropy and the
central component of momentum distribution both saturate to a steady-state value. We also show that reduced
density matrix assumes the diagonal form long after multiple quenches for large system size. These exact results
involving infinite-dimensional Hilbert space are indicative of dynamical equilibration for a trivially integrable
harmonic chain.
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I. INTRODUCTION

The behavior of isolated quantum systems under nonequi-
librium conditions is of great interest from both the theoretical
[1–6] as well as experimental point of view [7–9]. A generic
method to reach a nonequilibrium regime is by a single or
multiple quenches of the system parameters. For noninte-
grable systems, the quench protocol often leads to thermal-
ization [2,4], although there can be subtleties depending on
the choice of initial states [10,11].

For integrable systems, the situation is not as unequivo-
cal. It is generally known that an isolated integrable system
does not thermalize [2,6], but can be described by a gen-
eralized Gibbs ensemble (GGE) [1,12–15]. However, it has
recently been found that the XXX Heisenberg spin chain,
integrable under the Bethe ansatz scheme, can exhibit weak
eigenstate thermalization for typical, but not necessarily all
eigenstates [16–18]. It is also known that certain finite-
dimensional systems exhibit comparable statistical relaxation
regardless of whether they are integrable or not [19]. Further-
more, an integrable Jaynes-Cummings model can show rapid
decoherence analogous to chaotic dynamics and the inability
to recover the purity at large times increases in the question
of dynamical relaxation thermodynamic limit [20]. For an
integrable system with infinite-dimensional Hilbert space,
Bogoliubov and Krylov showed that under certain assumption
about the thermal reservoir, the system relaxes to thermal state
in thermodynamic limit (see Ref. [21] and references therein).
In one-dimensional (1D) bosonic systems, a class of special
initial states thermalizes under integrable dynamics governed
by the Gross-Pitaevskii equation [18].
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Various physical quantities have been used to analyze
the onset of statistical relaxation following a quench. In
a quantum many-body system, the reduced density ma-
trix (RDM) carries important information regarding the
relaxation dynamics [22–28]. The entanglement entropy cal-
culated from the RDM measures the loss of information
and its dynamics describes how the quantum information
is spread. The one-body momentum distribution, also ob-
tained from the RDM, carries the signature of the dynamical
relaxation.

Recently, the out of time order correlator (OTOC) [29] has
gained prominence in the context of scrambling of quantum
information in nonequilibrium systems [30–39]. Although in-
formation scrambling is usually a property of chaotic systems,
the OTOC of certain nonlocal operators exhibit scrambling
even in an integrable Ising chain [34]. It has been further ar-
gued that scrambling could be independent of the integrability
of the Hamiltonian [40] and that mutual information in an
integrable spin chain can exhibit weak scrambling [41]. The
above list of examples, which is by no means exhaustive,
indicates that there are still many open questions in the
context of dynamical relaxation and information scrambling
in integrable systems.

In this paper we discuss two different dynamical aspects
of an integrable harmonic chain. The first point is to address
the question of dynamical relaxation to a steady state under
a multiple quench protocol. The second point is to analyze
the dynamics of information scrambling under a similar set of
quenches.

The main differences of our analysis with the existing
approaches in the literature are as follows.

(i) We consider a series of multiple global quenches with
no restriction to their number, in contrast to a single quench,
which is typical in the existing literature. As we will show,
the multiple quench protocol leads to important differences
compared to a single quench.
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(ii) Our analysis involves systems with infinite-
dimensional Hilbert space at each site and local Hermitian
operators. This is particularly relevant for information
scrambling and OTOC where majority of the existing
analyses involves finite spin systems and unitary operators.

(iii) The time development is treated in an exact analytical
fashion by solving TDSE using nonlinear Ermakov equation.
The total number of particles and the number of quenches can
be arbitrarily large and the analysis is valid for indefinitely
large time.

In order to achieve the above, we study the exact relaxation
dynamics following multiple global quenches in a harmonic
chain with N oscillators, which is trivially integrable. For this
system, the exact entanglement dynamics following a single
quench has been studied earlier [42]. Under a multiple quench
protocol, we show that the off-diagonal terms in the one-
particle RDM [22,26] vanish exponentially fast in time in the
limit of large N , while the diagonal terms saturate to a steady
value. The mixing of a large number of incommensurate and
irrational normal mode frequencies is responsible for this
feature. In contrast, for a single quench, the relaxation to the
steady state is much slower. Under the same conditions, the
momentum distribution and the entanglement entropy also
show the signatures of a steady state.

Universality of the small time behavior of OTOC in chaotic
systems and its relation with Lyapunov exponents has been
the focus of most of the studies [30–32,43]. Here we want to
focus on long time behavior much after the completion of the
quench protocol. The multiple quench protocol has important
consequences in the quantum information scrambling and
OTOC. While recurrences are characteristic feature of integra-
bility in OTOC, in contrast for this system, OTOC saturates to
a nonzero value under multiple quenches in thermodynamic
limit, which is indicative of scrambling [41]. As our exact
analysis is valid for arbitrarily large number of particles, we
can clearly demonstrate the finite-size effect by varying the
number of oscillators.

The harmonic chain under consideration can be experimen-
tally realized in various systems such as in optical tweez-
ers [44] and the tuning of individual coupling parameters
can be done using ultracold atoms [45] or Rydberg states
[46,47]. In particular, it can be simulated using Bose-Hubbard
model in the strong superfluid phase [48]. Various quench
protocols have already been experimentally realized for the
Bose-Hubbard model using cold atoms in optical lattices
[7–9]. It is thus plausible that the predictions of our work can
be empirically verified.

This paper is organized as follows. In Sec. II, we set
up the formalism for multiple quench protocol and obtain
the solutions of TDSE using nonlinear Ermakov equations.
In Sec. III, we discuss the time dependence of RDM and
show that the off-diagonal elements vanish for large time
and in the thermodynamic limit. In Sec. IV, we obtain
the momentum distribution and entanglement entropy using
the RDM and discuss their steady-state properties. Quan-
tum information scrambling is discussed in Sec. V and it
is shown that OTOC saturates to a nonzero steady value
for the case of multiple quenches in the same limit. We
conclude the paper in Sec. VI with a summary of results and
remarks.

II. HARMONIC CHAIN AND THE QUENCH PROTOCOL

We consider an isolated harmonic oscillator chain with
N oscillators and with periodic boundary condition. The
Hamiltonian is given by

H (t ) = 1

2

⎡
⎣ N∑

j=1

(
p2

j + ω2(t )x2
j

) + k(t )
N∑

j=1

(x j − x j+1)2

⎤
⎦

= 1

2

⎡
⎣ N∑

j=1

p2
j + X T .�(t ).X

⎤
⎦, (1)

where X = (x1, x2, ..., xN )T and � is an N × N real symmet-
ric matrix. Here the frequency ω and the nearest-neighbor
coupling k are explicit functions of time. A solution of the cor-
responding time dependent Schrödinger’s equation (TDSE)
[42,49,50]

i
∂

∂t
|ψ〉 = H (t )|ψ〉 (2)

can be written as

ψ (x1, ...., xN , t ) =
(

det
�

π

) 1
4

exp

⎡
⎣i

⎛
⎝X T b̃X −

N∑
j=1

Ejτ j

⎞
⎠

⎤
⎦

× exp

[
−X T �X

2

]
, (3)

where � = U T
√

�′DU , �′D
j j = �D

j j (0)

b4
j (t )

, b̃ = U T b̃DU, τ j =∫ t
0

dt ′
b2

j (t
′ ) , U is an orthogonal transformation, which transforms

the matrix � to its diagonalized form �D and b̃D is a diagonal

matrix with elements ḃ j (t )
2b j (t ) . Here b j (t ) satisfies the nonlinear

Ermakov equation [49–51] given by

b̈ j + λ j (t )b j = λ j (0)

b3
j

, (4)

where λ j’s are the normal mode frequencies of the Hamilto-
nian, which have the form

λ j (t ) = ω2(t ) + 2k(t ) − 2k(t ) cos(2π j/N ) (5)

with λ j = λN− j . We choose the initial condition as the ground
state of the time independent prequenched Hamiltonian of
the N oscillator chain, which requires that b(0) = 1 and
ḃ(0) = 0. Note that finding the solutions of the TDSE is
equivalent to finding the solutions of the Ermakov equations
(4). The normalization is determined by the condition that∫ ∞
−∞ ψ∗(x, t )ψ (x, t )dx = 1 [50].

Solution for series of quenches. Our quench protocol is
shown in Fig. 1. At time t = 0, the frequency ω(i) is quenched
to ω( f ) and k(=2) is left unchanged. This defines a single
quench. After a time T , the frequency ω( f ) is changed back
to ω(i), defining the second quench. This sequence is repeated
till the required number of quenches is achieved. Now we
will discuss the solution of Ermakov equations under n such
quenches. In terms of the variable

η j (t ) ≡ b2
j (t ), (6)
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FIG. 1. The schematic diagram of ω(t ) for multiple quench pro-
tocol. For all our calculations, we quench from ω(i) = 3 to ω( f ) =
20 and time interval between two quenches is taken as 4 s.

the Ermakov equations (4) can be written as

η̈ jη j − 1
2 η̇2

j + 2λ j (t )η2
j = 2λ j (0). (7)

The corresponding solutions are given by

η j,1(t ) = α j,1 cos(2
√

λ j (t )t ) + β j,1 sin(2
√

λ j (t )t ) + γ j,1

0 < t < T

η j,2(t ) = α j,2 cos(2
√

λ j (t )t ) + β j,2 sin(2
√

λ j (t )t ) + γ j,2

T < t < 2T

η j,i(t ) = α j,i cos 2(
√

λ j (t )t ) + β j,i sin(2
√

λ j (t )t ) + γ j,i

(i − 1)T < t < iT

...

η j,n(t ) = α j,n cos 2(
√

λ j (t )t ) + β j,n sin(2
√

λ j (t )t ) + γ j,n

(n − 1)T < t < ∞ (8)

where α j,i, β j,i, and γ j,i are the time-independent constants,
which are obtained from the boundary conditions on b or η.
Furthermore, using the above equation we could express η j

and its derivatives in a matrix form as

�η j (t ) =

⎛
⎜⎝

η j (t )

η̇ j (t )

η̈ j (t )

⎞
⎟⎠ = Aj (t )

⎛
⎜⎝

α j,i

β j,i

γ j,i

⎞
⎟⎠, (9)

where

Aj (t ) =

⎛
⎜⎝

cos(2
√

λ j (t )t ) sin(2
√

λ j (t )t ) 1

−2
√

λ j (t ) sin(2
√

λ j (t )t ) 2
√

λ j (t ) cos(2
√

λ j (t )t ) 0

−4λ j (t ) cos(2
√

λ j (t )t ) −4λ j (t ) sin(2
√

λ j (t )t ) 0

⎞
⎟⎠. (10)

The continuity of the wave function across the quenches
implies the continuity in η j (t ) and η̇ j (t ). �η j (t+), and �η j (t−)
defined just after and before any quench, respectively, are
related by

�η j (t
+) = Bj (t

+ ← t−)�η j (t
−), (11)

where the form of B matrix could be found using Eq. (7) as

Bj =

⎛
⎜⎝

1 0 0

0 1 0

2(λ j (t−) − λ j (t+)) 0 1

⎞
⎟⎠. (12)

The coefficient vectors with elements (α, β, γ ) j across the
quench are related as⎛

⎜⎝
α j,i+1

β j,i+1

γ j,i+1

⎞
⎟⎠ = A−1(t+)B(t+ ← t−)A(t−)

⎛
⎜⎝

α j,i

β j,i

γ j,i

⎞
⎟⎠, (13)

with the boundary condition,⎛
⎜⎝

α j,1

β j,1

γ j,1

⎞
⎟⎠ =

⎛
⎜⎜⎝

λ j, f −λ j,in

2λ j, f

0
λ j, f +λ j,in

2λ j, f

⎞
⎟⎟⎠. (14)

This gives a complete solution of the Ermakov equations for
the given quench protocol.

III. REDUCED DENSITY MATRIX

In this section we will discuss the time-dependent one-
body RDM obtained under a series of quenches in the

coordinate representation. This RDM would subsequently be
used to obtain the one-body momentum distribution and the
entanglement entropy.

In order to obtain the time-dependent one-body RDM, we
trace out the rest of the system except the ith site. The RDM
has the form

ρred(xi, x′
i, t ) =

∫ N∏
a=1
=i

dX adX ′aψ∗(X a, t )ψ (X ′a, t ). (15)

Using (3) in (15) and carrying out the integration, we get

ρred(xi, x′
i, t ) =

(
γ − β

π

) 1
2

exp
[
iZ

(
x2

i − x′2
i

)]

× exp

[
−1

2
γ
(
x2

i + x′2
i

) + xiβx′
i

]
, (16)

where Z , β, γ are given by

Z (t ) = b̃1×1 − b̃†
N−1×1�

−1
N−1×N−1�N−1×1,

γ (t ) = �1×1 − 1
2�

†
N−1×1�

−1
N−1×N−1�N−1×1

+ 2b̃†
N−1×1�

−1
N−1×N−1b̃N−1×1,

β(t ) = 1
2�

†
N−1×1�

−1
N−1×N−1�N−1×1

+ 2b̃†
N−1×1�

−1
N−1×N−1b̃N−1×1. (17)
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A generic off-diagonal element of the RDM has the form

ρred(xi, xi + �, t )

=
(

γ − β

π

) 1
2

exp[−iZ (�xi + �2)]

× exp

[
−(γ − β )

(
xi − �

2

)2

− �2

(
γ − γ − β

4

)]
,

(18)

where � denotes the distance from the diagonal axis of the
RDM and � = 0 corresponds to the diagonal elements of the
RDM. The equation (18) shows that the off diagonal elements
are shifted Gaussians with a time-dependent exponent. The ra-
tio r between the diagonal and a generic off-diagonal element
can be written as

r = ρred(xi, xi + �, t )

ρred(xi, xi, t )

= exp[−iZ (�xi + �2)] exp[−(γ − β )xi� − γ�2].

(19)

The exponents γ and (γ − β ) are plotted in Fig. 2 and
are found to be real positive for all time. This also follows
from the reality of the eigenvalues of the RDM, which is
Hermitian [42]. For a series of multiple quenches we find that
(γ − β ) rapidly saturates to a small positive value irrespective
of N . However, γ has very different behavior depending on
the value of N . For higher N , γ has a large value which
oscillates very little with time. For smaller N , the mean value
of γ is also high but the fluctuations are very big as well.
On the other hand, for a single quench, both γ and (γ − β )
show appreciable oscillations and the value of γ is much less
irrespective of the value of N .

In Eq. (19) we have given the ratio of the off-diagonal to the
diagonal elements of the RDM. We thus find that for multiple
quenches and in the thermodynamic limit, the off-diagonal
matrix elements of the RDM tend to zero. For a single quench,
the suppression of the off-diagonal matrix elements with time
is much less.

Hence, for multiple quenches with the large system size,
the RDM assumes a diagonal form at a time large compared
to the duration of the quenches. This can be qualitatively
understood as follows. The solution of the Ermakov equation
for each normal mode contains an irrational number given
by the square root of corresponding normal mode frequency
λ j . As the number of oscillators increases, a large number of
irrational and incommensurate frequencies start contributing
to the wave function and the RDM. The mixing of a large
number of such modes is responsible for the statistical relax-
ation of the quantities γ and (γ − β ) with time, which in turn
reduces the RDM to a diagonal form.

IV. MOMENTUM DISTRIBUTION AND ENTROPY

We derive the analytical expression of one-body momen-
tum distribution by taking the Fourier transform of (16), which

FIG. 2. Plot of γ and (γ − β ) as a function of time, for multiple
(five) quenches and a single quench. An order of magnitude higher
value of γ in case of multiple quenches for large N brings the RDM
to the diagonal form exponentially faster as compared to a single
quench. For smaller values of N , γ and correspondingly off-diagonal
elements of RDM oscillate in time. The (γ − β ) is of the same order
for both protocols but saturates near zero value in the multiple quench
scenario in contrast to approximately 8 for single quench.

is given by

n(p, t ) = 1

2π

∫
dxidx′

iρred(xi, x′
i, t )e−ip(xi−x′

i )

=
∫

dxidx′
i

(
γ − β

4π3

) 1
2

e[iZ (x2
i −x′2

i )−ip(xi−x′
i )] (20)

× e[− γ

2 (x2
i +x′2

i )+βxix′
i].
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0 200 400 600
t

0.0

0.1

0.2

0.3

n
(0

,t
)

N = 500

1 quench
5 quenches

FIG. 3. The central component of momentum distribution,
n(0, t ) is plotted as a function of time for single and multiple
quenches. The fluctuation decreases substantially with increasing
number of quenches.

After the integration, the momentum distribution takes the
form

n(p, t ) =
(

γ − β

π (γ 2 − β2 + 4Z2)

) 1
2

e
[ −p2 (γ−β )

γ 2−β2+4Z2 ]
. (21)

At time t = 0 just before the quench, the distribution (21)
is a Gaussian with mean at p = 0. In Fig. 3 the central
component of the momentum distribution is plotted with time
for both single and multiple quenches and with N = 500.
For a single quench, in the long time limit the momentum
distributions reaches a steady value but still shows appreciable
oscillations. For multiple quenches the value in the long time
limit is lower and the fluctuations are negligible. Thus in
the long time and in the thermodynamic limit, the higher the
number of quenches, the better is the relaxation of the system
to a steady state.

In order to study the entanglement entropy, we bipartite
the system into two parts of one oscillator versus N − 1
oscillators. The entanglement entropy of the smaller subsys-
tem calculated using the reduced density matrix (16) has the
form [42]

S(t ) = − log(1 − ξ (t )) − ξ (t )

1 − ξ (t )
log ξ (t ), (22)

where the ξ has the form given by

ξ (t ) =
β

γ

1 +
√

1 − β2

γ 2

< 1, (23)

β, γ are given in Eq. (17).

0 200 400 600
t

0

2

4

6

S
(t

)

N = 500

1 quench
5 quenches

FIG. 4. Evolution of entanglement entropy is plotted for single
and multiple quenches. Generation of higher entanglement for mul-
tiple quenches is explained using Eq. (22) and with the fact that γ

approaches β faster as compared to a single quench.

10−1 101 103

t

10−15

10−10

10−5

100

F
(5

,t
)

N = 500

1 quench

3 quenches

5 quenches

FIG. 5. OTOC for Hermitian operator x(t ) and p(0) between
sites 1 and 6 for different number of quenches are shown. The decay
for single quench rules out the scrambling. In contrast, for multiple
quenches it saturates to a nonzero value which increases with number
of quenches, indicative of scrambling.

The von Neumann entropy as a function of time is plot-
ted in Fig. 4. In a finite-dimensional system, the maxi-
mum entropy is proportional to the Hilbert space dimension.
The bound on entanglement entropy is saturated for generic
chaotic systems. Here the system being infinite dimensional,
there is no finite limit to the maximum entanglement entropy.
As in the case of the momentum distribution, higher number
of quenches leads to smaller fluctuations in the entanglement
entropy and a larger steady-state value. This can be qualita-
tively understood in terms of reduced variation in eigenval-
ues of RDM given by pn = (1 − ξ )ξ n, n = 0, 1, 2, . . . [42].
The variation in pn reduces as ξ → 1 or in other words as
(γ − β ) → 0 (see Fig. 2).

V. QUANTUM INFORMATION SCRAMBLING

The OTOC between two operators M and N separated by a
lattice distance l is defined as

F (l, t ) = 〈[Mi(t ), Nj (0)]†[Mi(t ), Nj (0)]〉, (24)

where l = j − i. For well-separated local operators, the
OTOC starts from a zero value and then increases as the
information propagates with Lieb-Robinson velocity.

Here we consider the OTOC between position and
momentum operators, which are local and Hermitian.
We choose Mi(t ) = xi(t ), Ni(0) = pi(0), which are
labeled by the site index. The expression for xi(t ) in
the Heisenberg picture for a single time-dependent
quantum harmonic oscillator with frequency ω(t ) is

10−1 101 103

t

10−15

10−10

10−5

100

F
(5

,t
)

5 quenches

N = 20

N = 100

N = 500

FIG. 6. OTOC as a function of time is plotted for different system
sizes with number of quenches fixed to 5. The finite-size effects and
quasirecurrences reduce with increasing N .
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given by [52]

x(t ) = x(0)b(t ) cos

(∫ t

0

ω(0)

b2(t ′)
dt ′

)
+ p(0)

b(t )

ω(0)
sin

(∫ t

0

ω(0)

b2(t ′)
dt ′

)
, (25)

where b(t ) is the solution of corresponding Ermakov equation. Using Eq. (25) with the canonical commutation relations
[xi, p j] = ih̄δi j we get,

F (l, t ) = 〈[xi(t ), p j (0)]2〉

=
(

N∑
m=1

U †
mibm(t ) cos

(
tan−1

√
λm(t )

λm(0)
tan(

√
λm(t ))

)
U †

m j

)†( N∑
m=1

U †
mibm(t ) cos

(
tan−1

√
λm(t )

λm(0)
tan(

√
λm(t ))

)
U †

m j

)
. (26)

In Fig. 5, OTOC is plotted for a fixed system size N =
500 and with different number of quenches. We observe that
OTOC saturates to a nonzero value with very small fluctuation
for the case of multiple quenches in contrast to a constant
slow decrease with large fluctuation for single quench. A
strong system size dependence on the OTOC is clearly seen
from Fig. 6. We find that even with multiple quenches, the
OTOC fluctuates enormously for smaller number of particles
and does not saturate to any steady value. In Fig. 5, the
quasirecurrence in the case of multiple quenches for N = 500
occurs at a time t ∼ N

vmax
where vmax is the Lieb-Robinson

velocity for this system with the given set of parameters after
quench. We also note that the quasirecurrences decrease in
the thermodynamic limit as well as with the higher number of
quenches.

The saturation of the OTOC to a nonzero steady value is
indicative of information scrambling. Even though the system
under consideration is integrable, we find that under multiple
quenches and in the thermodynamic limit, OTOC saturates
to a nonzero steady value. In this formalism, the saturation
can be attributed to the mixing of large number of modes
with incommensurate frequencies. In the conventional picture
of expanding the state as superposition of eigenfunctions
of postquench Hamiltonian, the multiple quenches would
amount to accessing larger proportions of Hilbert space. This
is also consistent with larger entanglement entropy with in-
creasing number of quenches.

VI. CONCLUSION

In this paper we have analyzed the relaxation dynam-
ics and quantum information scrambling in an isolated har-
monic chain under multiple quenches. The various physical
quantities show remarkably different nonequilibrium behavior
under the multiple quench protocol compared to a single
quench. The RDM has been shown to assume a diagonal
form exponentially fast compared to a single quench. The
entanglement dynamics and the momentum distribution also
show relaxation to a steady state. The exact analytical results
obtained here are valid for arbitrary number of particles. In

order to demonstrate the finite-size effects, we have graph-
ically exhibited our results for N = 20 and N = 500. It is
clearly seen that the quasirevivals of the physical observables,
characteristic of the finite-size effects, reduce remarkably as
N is increased.

The conclusions are similar for the quantum information
scrambling and OTOC. For a single quench and for a low
value of N = 20, the OTOC shows almost complete revival
and the scrambling is practically nonexistent. On the other
hand, for five quenches and with N = 500, the OTOC satu-
rates to a finite steady value with very little revival. It may be
noted that we have considered Hermitian operators to evaluate
the OTOC and the system has an infinite-dimensional Hilbert
space. This is very different compared to the usual finite spin
systems where the OTOC is normally evaluated using unitary
operators.

The above result indicates that for multiple quenches and
in the thermodynamic limit, the integrable harmonic chain
relaxes to a steady state and the OTOC exhibits quantum infor-
mation scrambling. In our formalism this has been achieved
using an exact solution of the TDSE valid throughout the
quench protocol and all the observables have been evaluated
using the exact solution. As the number N of the oscillators
is increased, a large number of irrational and incommensurate
normal mode frequencies start contributing to the observables
whose number is of the order of N . The mixing of these
incommensurate frequencies leads to the steady state and
saturating behavior of the various physical quantities.

One question that has not been addressed here is what
is the nature of the equilibrated state. For an integrable
harmonic chain, the emergence of GGE has already been
established [53]. Whether this happens for the system under
consideration with multiple quenches remains to be seen.
A related question is the emergence of weak eigenstate
thermalization, which has recently been observed for certain
integrable systems [16–18]. In this paper, we have focused
only on a single state of the TDSE whereas to address the
questions on thermalization, a more complete knowledge of
the time-dependent many-body spectrum would be needed.
This is beyond the scope of the present analysis, which we
hope to address these in future work.
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