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Simultaneous influence of additive and multiplicative noise on stationary dissipative solitons
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We investigate the simultaneous influence of spatially homogeneous multiplicative noise as well as of spatially
δ-correlated additive noise on the formation of localized patterns in the framework of the cubic-quintic complex
Ginzburg-Landau equation. Depending on the ratio between the strength of additive and multiplicative noise
we find a number of distinctly different types of behavior including explosions, collapse, filling in, and spatio-
temporal disorder as well as intermittent behavior of all types listed. Techniques used to analyze the results
include snapshots, x-t plots and plots of the spatially and temporally averaged amplitude as a function of the
strength of multiplicative noise while keeping the strength of additive noise fixed. Typically 50 realizations are
used for averaging to obtain the corresponding data points in these diagrams. For the widths of these distribution
as a function of additive noise we obtain a linear decrease in the limit of fairly large, but fixed values of the
multiplicative noise. To summarize our findings concisely we show three-dimensional plots of the mean pattern
amplitude and the generalized susceptibility as a function of the strengths of additive and multiplicative noise.
We critically compare the results of our investigations with those obtained in the two limiting cases of purely
additive and of purely multiplicative noise.
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I. INTRODUCTION

In driven, out-of-equilibrium macroscopic systems, noise
may play a constructive or destructive role. For instance,
biological systems can evolve in a way that they can take
advantage of natural fluctuations. There the influence of noise
ranges from the development of multicellular mechanisms
to population dynamics [1,2]. Escape of a system from a
metastable state is another example of the constructive role
of fluctuations. In electronics unwanted disturbances reflect
a nonconstructive role of noise. Sources of noise can be
internal, like thermal noise, which is unavoidable at nonzero
temperature, or external, like a fluctuating applied electric
voltage, a fluctuating temperature gradient, or input flux of
reactants. Systems involving rapid fluctuations can be mod-
eled by Langevin equations, that is, stochastic differential
equations for field variables [3–5]. Internal noise, typically,
appears as an additive contribution [6], whereas external noise
becomes multiplicative or both [7,8]. When the noise is only
additive, the maxima of the stationary probability distribution
correspond to the deterministic steady state of the system.
Experimentally, in a surface reaction, namely, the catalytic
oxidation of CO on Pd(111), probability distributions due
to intrinsic noise have been measured [9]. Different is the
scenario in the presence of multiplicative noise where systems
might exhibit noise-induced transitions. Indeed, experiments
have shown that a parametric oscillator exhibits an oscillatory
to nonoscillatory transition controlled by the noise intensity
[10]. The photon statistics of a dye laser has been obtained
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experimentally [11] and compared with the exact solution of
a laser model with fluctuating pump parameter [12]. In the
Brusselator, also subject to multiplicative noise but colored,
postponement of the supercritical Hopf bifurcation has been
studied, both theoretically [13] and experimentally [14]. The
response of the stochastic subcritical Hopf-like model is pre-
sented in Ref. [15].

So far, the above discussion has not involved spatial de-
grees of freedom. Out-of-equilibrium, spatially extended, and
stochastic systems are the framework of this article. The
catalytic CO oxidation on single-crystal surfaces offers an
excellent opportunity to study the influence of noise. On the
one hand, in a mean field approach, the reaction-diffusion
equations for certain metals are well established allowing
the numerical study since all kinetic coefficients are known
experimentally. On the other hand, experiments under UHV
conditions allow one to vary the temperature and the CO
fraction in the total input gas flux. Thus, the external noise
imposed on the system can become purely multiplicative [16]
or simultaneously additive and multiplicative [17].

Spatiotemporal patterns due to noise-induced phase transi-
tions, including nucleation and growth of islands, have been
studied for the CO oxidation reaction on Ir(111) [18–20].
We use throughout this paper the term noise-induced phase
transitions in the spirit of Ref. [21] for spatially extended
systems. The constructive role of noise becomes clear in
an excitable photosensitive BZ medium, which may rectify
external fluctuations into chemical waves [22], and by the
catalytic CO oxidation on Pt(110), where global noise can
suppress chemical turbulence [23]. A theoretical overview of
the mechanisms through which noise can induce, enhance, or
sustain ordered behavior is presented in Ref. [21].
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Rayleigh-Bénard convection is a paradigm within the
field of pattern-forming systems. Symmetry-breaking insta-
bilities lead to patterns (nonequilibrium dissipative structures
[24]). Initial stages of pattern formation have been exper-
imentally measured revealing the importance of stochastic
effects [25,26]. Electro-convection in nematic liquid crys-
tal is another example of a pattern-forming system. In a
thin layer fluctuations below the onset of electro-convection
were measured. Results indicate that fluctuations are due to
thermal noise [27]. In addition, experimentally it has been
found that spatially homogeneous multiplicative (parametric)
noise can shift or suppress the onset of pattern formation
[28,29].

From a theoretical point of view, near an instability, it
is possible to reduce the dynamics of the system to simpler
equations (compared to the full system) that have a universal
form. These envelope equations (including nonlinearities)
account for the modulation (in space and time) of the linear
unstable modes close to instabilities and reflect the underlying
symmetries of the system [30–32]. The complex cubic-quintic
Ginzburg-Landau equation (CQGLE) is an envelope equation
derived, in the context of convective binary fluids, near the
onset of a weakly inverted bifurcation to traveling waves
[33]. Owing to the coexistence of the zero and one homoge-
neous state this equation shows, inside this bistable region,
stable pulses as solutions, provided the feedback stabilization
mechanism occurs [34]. In binary fluid convection, when the
conductive state coexists with the convective state, localized
regions of traveling waves have been reported [35,36]. These
nonequilibrium localized structures are stabilized by a com-
plex balance between nonlinearity and dispersion as well as
between energy input and dissipation, extending the concept
of conservative soliton to a dissipative soliton (DS) [37]. The
examples of DSs transcend the convection systems. Indeed,
these include nonlinear optics [38–41], granular media [42],
surface reactions [43], and biology [44]. In addition to sta-
tionary pulses [34,45,46], the complex CQGLE exhibits peri-
odic, quasiperiodic, and chaotic solutions [47]. Furthermore,
asymmetric moving pulses, pulsating localized structures, and
a period-doubling sequence have been reported [48,49].

One striking form of DS is that obtained in a Kerr lens
mode-locked Ti:sapphire laser [50], and in an all-normal-
dispersion Yb-doped mode-locked fiber laser [51], which
had been predicted theoretically in the complex CQGLE in
an optical framework, for anomalous linear dispersion [52],
namely, exploding DSs. Because of spatiotemporal chaos
exhibited by the observed explosions, they become similar but
not identical, which leads to a distribution of times between
explosions.

The influence of noise on counterpropagating and single
DSs has been investigated, in particular, in the framework
of the complex CQGLE. On the one hand, it was shown
that weak additive noise can induce partial annihilation of
colliding pulses [53]. On the other hand, for single pulses
(either stationary or oscillatory) it was demonstrated that a
small amount of additive noise can induce explosions [54],
and for large additive noise the interaction of localization and
noise can lead to noisy localized structures [55]. Recently,
we have investigated the influence of spatially homogeneous
multiplicative noise on pulses. We found that for large enough

noise the formation of stationary, oscillatory and exploding
pulses is suppressed [56].

Here we study the question of stationary dissipative soli-
tons in the framework of the complex CQGLE under the
simultaneous influence of spatially homogeneous multiplica-
tive noise as well as of spatially δ-correlated additive noise.
As a function of the relative strength between additive and
multiplicative noise we find meandering exploding dissipative
solitons, collapse, spatio-temporal disorder behavior, and fill-
ing in as possible outcomes as well as intermittent behavior
of these various outcomes. To summarize the results obtained
in a concise fashion we present three-dimensional plots of
the mean pattern amplitude and its standard deviation as a
function of the strength of additive and multiplicative noise,
respectively.

The paper is organized as follows. In Sec. II we describe
the model and the techniques used to analyze the results. In
Sec. III we present the results and their discussion. In Sec. IV
a comparison of the results of the present paper to the cases
of purely additive and purely multiplicative noise is given. In
Sec. V we provide a general picture using noise-induced phase
transitions, and we end with conclusion and perspective.

II. THE MODEL

Of interest in our study are driven systems, which can
support dissipative solitons in contrast to systems in or near
equilibrium. Frequently the associated experimental investi-
gations are performed close to an instability such as the onset
of thermal convection in simple fluids or electroconvection in
nematic liquid crystals. Since our goal is to encourage more
systematic experimental work on the influence of additive and
multiplicative noise on DSs, we investigate here a minimal
model satisfying these requirements, namely, the CQGLE
with additive and multiplicative noise

∂t A = μA + (βr + iβi )|A|2A + (γr + iγi)|A|4A

+ (Dr + iDi)∂xxA + A ηm ξ (t ) + ηa ζ (x, t ), (1)

where A(x, t ) is a complex field, βr is positive, and γr is nega-
tive in order to guarantee that the bifurcation is subcritical but
saturates to quintic order. The stochastic force ζ (x, t ) denotes
white noise with the properties 〈ζ 〉 = 0, 〈ζ (x, t ) ζ (x′, t ′)〉 =
0 and 〈ζ (x, t ) ζ ∗(x′, t ′)〉 = 2δ(x − x′)δ(t − t ′), where ζ ∗ de-
notes the complex conjugate of ζ . The stochastic force
ξ (t ) denotes white noise with the properties 〈ξ 〉 = 0, and
〈ξ (t ) ξ (t ′)〉 = δ(t − t ′). That means we consider (a) additive
noise, which is δ-correlated in time and space, and (b) mul-
tiplicative noise, which is real and homogeneous in space.
In addition, we assume that there are no cross-correlations
between additive and multiplicative noise.

Multiplicative noise is experimentally frequently achieved
by superposing externally and spatially homogeneously noise
on the driving force. This means one superposes spatially ho-
mogeneous noise on the driving voltage in electroconvection
[29] in nematic liquid crystals, on the applied temperature
gradient in thermal convection, or on the mean temperature for
surface reactions [16]. Spatially homogeneous multiplicative
noise also arises in certain optical systems such as the dye
laser [11,12]. Applying spatially homogeneous noise on the
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FIG. 1. ηa = 0.01, ηm = 0.20, 〈A〉T = 0.287, T = 5000. The
ordinate of the figure on the right has the same scale as the ordinate
of the figure on the left.
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FIG. 2. ηa = 0.01, ηm = 0.25, T = 5000, (a) 〈A〉T = 0.1953,
(b) 〈A〉T = 0.2856,
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FIG. 3. ηa = 0.01, ηm = 0.40, 〈A〉T = 0.286, T = 5000.

gas flux impinging on a sample for surface reactions typically
leads to a combination of multiplicative and additive noise
as has been discussed and analyzed theoretically and exper-
imentally in Refs. [17–19]. The assumption of using additive
noise, which is δ-correlated in space and time, deserves a word
of caution. While this is surely well justifiable for thermal
fluctuations, it can only be considered to be an approximation
for noise that is nonthermal in origin, for example, related to
vibrations in the setup. Near the onset of an instability the
noise intensity found experimentally—compare, for example,
the case of fluctuations below the onset of Rayleigh-Benard
convection [25,26]—is several orders of magnitude larger
than expected from thermal noise. In fact, the first experimen-
tal observation showing a noise intensity comparable to what
is expected from thermal noise was reported by Rehberg et al.
[27] for the case of electroconvection in thin cells of nematic
liquid crystals near onset. Later it was also demonstrated near
convective onset in a simple fluid [57] that the noise level of
additive noise could be brought down to the level expected for
thermal noise.

In our numerical simulations we keep all deterministic pa-
rameters fixed, while we vary the strengths of additive noise,
ηa, and of multiplicative noise, ηm. The deterministic param-
eter values selected are for μ, the distance from linear onset,
μ = −0.266, for a large fraction of our studies, βr = 1, βi =
0.8, γr = −0.1, γi = −0.6, Dr = 0.125, and Di = 0.5 (pos-
itive) corresponding to an anomalous dispersion regime for
which exploding DSs can arise. Stable pulses can exist only
when the CQGLE becomes nonvariational. Thus, at least one
of the parameters (βi, γi, Di ) must be different from zero
[34,45,58,59]. We note that the value of μ has been chosen
such that stationary pulses are stable. Nevertheless this value
has been picked in a way that the transition of oscillatory DS
with one frequency is quite close so that the system becomes
more sensitive to noisy perturbations. To study the influence
of the distance from the saddle node for stationary pulses on
the one hand and from the onset of oscillatory DSs on the
other we also investigated μ = −0.726.

012214-3



CARTES, DESCALZI, AND BRAND PHYSICAL REVIEW E 100, 012214 (2019)

 0

1

2

3

4

 0 10 20 30 40 50

x

 0

 1

 2

 3

 4

 0  0.5  1  1.5  2  2.5

<A>

10
-3

 t

 0

1

2

3

4

 0 10 20 30 40 50

x

 0

 1

 2

 3

 4

 0  0.1  0.2  0.3  0.4

<A>

10
-3

 t

(a)

(b)

t

t

FIG. 4. ηa = 0.01, ηm = 0.50, T = 5000, (a) 〈A〉T = 2.168,
(b) 〈A〉T = 0.0285. Note the difference in scale on the abscissa
between panels (a) and (b).

In the discretized problem the stochastic force ξ (t ) associ-
ated with multiplicative noise is replaced by χr/

√
dt , where

χr corresponds to uncorrelated random numbers obeying a
standard normal distribution; the stochastic force associated
with additive noise, ζ (x, t ), is replaced by (λr + iλi)/

√
dtdx,

where λr and λi correspond to uncorrelated random numbers
obeying standard normal distributions.

Throughout this work we will use the physically mo-
tivated Stratonovich interpretation of stochastic processes
[3–5]. Surely, from a mathematical point of view, the Itô
interpretation is also well established and described in de-
tail in the literature for ordinary [60] as well as for partial
stochastic differential equations [21,61]. It requires, however,
that the rules of differential and integral calculus need to be
redefined. Here we follow the “physical procedure” outlined,
for example, in Ref. [4] and therefore use the Stratonovich
interpretation, which allows one to retain the usual rules of
differential calculus (compare, for example, Ref. [7] for zero-
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FIG. 5. ηa = 0.01, ηm = 0.70, T = 5000, (a) 〈A〉T = 2.504,
(b) 〈A〉T = 0.0950. Note the difference in scale on the abscissa
between panels (a) and (b).

dimensional multiplicative stochastic processes as applied to
statistical physics and nonlinear optics).

To perform the numerical simulations for Eq. (1) we
implemented a split-step pseudospectral method where the
differential operator is computed in Fourier space and the
nonlinear terms are computed in the time step by using a
fourth-order Runge-Kutta algorithm. The simulations were
performed using N = 625 Fourier modes ensuring that even
small scales are well solved.

This integration algorithm is similar to the stochastic
second-order Heun method, commonly discussed in the lit-
erature [21,61]; the only differences are the values for the
weight coefficients and the number of increments (four in-
stead of two), which are computed in exactly the same way.
Nevertheless, we used the fourth-order method because it
gave us similar results to Heun’s when integrating Eq. (1).
We also previously used this same higher order scheme for
the case with large additive noise [55] and a combination
of additive and multiplicative noise [56], always obtaining
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FIG. 6. ηa = 0.01, ηm = 0.80, T = 5000, (a) 〈A〉T = 1.7878,
(b) 〈A〉T = 0.9309. Note the difference in scale on the abscissa
between panels (a) and (b).
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FIG. 7. ηa = 0.01, ηm = 0.95, 〈A〉T = 1.4740, T = 5000.
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FIG. 8. Snapshot of spatio-temporal disordered behavior associ-
ated with Fig. 5(b): ηa = 0.01, ηm = 0.70, t = 833.

satisfactory results. Therefore we are confident that even if the
fourth-order method is not the most time-efficient algorithm,
it adequately solves Eq. (1).

To further ensure that our simulations were performed,
using the right numerical parameters, we tried different values
for the number of Fourier modes, from 256 to 2048, and the
results were always consistent. Control runs for dt = 0.005
and dt = 0.002 as well as for varying N have also been
performed to make sure that none of our results is sensitively
dependent on this choice.

In parallel we carried out extensive numerical computa-
tions with an independent simulator of partial differential
equations which uses as numerical method explicit fourth-
order Runge-Kutta finite differencing with a grid of 625 points
in x along a grid spacing of dx = 0.08 (corresponding to
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FIG. 9. Phase diagram for ηa = 0.01. ηm is varied from 0 to
1.00. Every open square corresponds to one run with T = 5000,
and the phase diagram is obtained for 50 runs for every value of
ηm. The black solid circles represent the Mean 〈A〉, the average over
all runs performed for a fixed value of ηm. We note a fairly broad
small-amplitude region for 〈A〉T versus ηm in the region around ηm ∼
0.40. As one can see for 0 < ηm < 0.55 and for 0.85 < ηm < 1.00
the black solid circles lie on a smooth curve, while for the interval
0.55 < ηm < 0.85 also the average over 50 runs leads to a somewhat
larger scatter in the averaged data.
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FIG. 10. ηa = 0.03, ηm = 0.20, 〈A〉T = 0.3667, T = 5000.

a box size L = 50) and typical time steps dt were dt =
0.005, 0.003, and 0.002. The corresponding values for μ are
μ = −0.24 and −0.70. We used a maximum integration time
T = 2 × 103.

The initial conditions used on our simulations were gen-
erated by solving Eq. (1) with its corresponding value for
μ(−0.266 or −0.726), without the stochastic forcing, for
a total integration time T = 2 × 103, to ensure the desired
stationary behavior.

Finally, to characterize the noisy patterns quantitatively, we
introduce 〈A〉t , the average of |A| in time and space:

〈A〉t = 1

Lt

∫ t

0

∫ L

0
|A| dx dt ′. (2)

To investigate the sensitivity of 〈A〉t the timescale of the
runs was varied by more than one order of magnitude between
T = 2 × 103 and T = 5 × 104. We verified that these changes
do not lead to any significant changes. 〈A〉T , averaged over

 0

1

2

3

4

 0 10 20 30 40 50

x

 0

 1

 2

 3

 4

 0.1  0.2  0.3  0.4

<A>

10
-3

 t

t

FIG. 11. ηa = 0.03, ηm = 0.30, 〈A〉T = 0.1676, T = 5000.
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FIG. 12. ηa = 0.03, ηm = 0.50, T = 5000, (a) 〈A〉T = 1.3120,
(b) 〈A〉T = 0.1147. Note the difference in scale on the abscissa
between panels (a) and (b).

a large number of realizations, which we will call Mean 〈A〉
throughout this paper, can thus be used as an order parameter,
which varies smoothly as a function of the noise strength.

III. RESULTS AND DISCUSSION

A. Results and discussion for μ = −0.266 and ηa = 0.01

We start with the presentation of x-t plots for the observed
types of behavior for ηa = 0.01 and a fixed timescale T =
5000 after applying both types of noise to the initial condi-
tions A(x). In all x-t plots we show the spatial coordinate,
x horizontally and the time, t , vertically, on the left and the
average amplitude, 〈A〉t as a function of t on the right. In all
x-t plots the ordinate of the figure on the right has the same
scale as the ordinate of the figure on the left.

In Fig. 1 we show that for ηm = 0.20 meandering explod-
ing dissipative solitons arise. This is also brought by the time
evolution of the averaged amplitude on the right, which is
almost constant.
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FIG. 13. ηa = 0.03, ηm = 0.60, 〈A〉T = 2.5081, T = 5000.

This picture changes when increasing the amplitude of
the multiplicative noise to ηm = 0.25. Now the final result of
the run after T = 5000 can either be the noisy zero attractor
shown in Fig. 2(a) or a meandering dissipative soliton shown
in Fig. 2(b).

This type of behavior is followed by an interval of noise
strengths for the multiplicative noise for which the noisy zero
attractor prevails as shown in Fig. 3.

As ηm is increased further, we find a transition either to the
noisy zero attractor or to filling in. This is shown in Fig. 4 for
ηm = 0.50. We emphasize the different scale used in Fig. 4(a)
and Fig. 4(b) for the abscissa showing 〈A〉t .

As ηm goes up further intermittent behavior between two
attractors (noisy zero and filled-in with noise or noisy zero
and noise-induced disordered in time and space) is obtained
as demonstrated in Fig. 5.
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FIG. 14. ηa = 0.03, ηm = 0.80, 〈A〉T = 2.1843, T = 5000.
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FIG. 15. ηa = 0.03, ηm = 0.90, 〈A〉T = 1.3249, T = 5000.

For larger values of ηm 0.75 < ηm < 1.00 one reaches
a rather complex state with strongly intermittent behavior
between noisy zero, disordered behavior in space and time,
and filling in with noise.

This is brought out by the x-t plots and the time evolution
of the averaged amplitude in Fig. 6 for ηm = 0.70 and in Fig. 7
for ηm = 0.95.

In Fig. 8 we show a snapshot of a short burst of disordered
spatio-temporal behavior for ηm = 0.70 for a fixed time.

In Fig. 9 we show the phase diagram of 〈A〉T for ηa = 0.01
as a function of the strength of multiplicative noise ηm. A
plateau-like region corresponding mainly to meandering ex-
ploding dissipative solitons is followed by an interval of mul-
tiplicative noise strengths for which collapse to the noisy zero
attractor prevails. For larger noise strengths there is clearly
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FIG. 16. Phase diagram for ηa = 0.03. ηm is varied from 0 to 1.
Every open square corresponds to one run with T = 5000, and the
phase diagram is obtained for 50 runs for every value of ηm. The
black solid circles represent the average over all runs performed for
a fixed value of ηm. As one can see for 0 < ηm < 0.55 and for 0.80 <

ηm < 1.00 the black solid circles lie on a smooth curve, while for the
interval 0.55 < ηm < 0.80 also the average over 50 runs leads to a
somewhat larger scatter in the averaged data.
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FIG. 17. Phase diagram for (a) ηa = 0.05 and (b) ηa = 0.07. ηm

is varied from 0 to 1. Every open square corresponds to one run
with T = 5000, and the phase diagram is obtained for 50 runs for
every value of ηm. The black solid circles represent the average over
all runs performed for a fixed value of ηm, that is, Mean 〈A〉. As
one can see there is no longer a minimum in the 〈A〉T versus ηm

curve, and the width of the small-amplitude plateau for small values
of ηm is shrinking with increasing strength of additive noise. Instead
a plateau for high amplitudes develops in the vicinity of ηm ∼ 0.60
and broadens.

a large dispersion in the data points reflecting the different
types of behavior between different runs. Only for large noise
strengths ηm does this dispersion decrease, indicating strongly
intermittent behavior as a typical outcome.

To sum up we obtain the following types of behavior for
μ = −0.266 and ηa = 0.01:

(1) 0 < ηm < 0.25: meandering of exploding solitons.
(2) 0.25 < ηm < 0.30: system can evolve to meandering

of exploding solitons or can go to the noisy zero attractor.
(3) 0.30 < ηm < 0.40: system goes to the noisy zero

attractor.
(4) 0.40 < ηm < 0.75: system exhibits large time intervals

in one of two noisy attractors: zero and filling in. Sometimes
short bursts of disordered behavior in time and space are
intercalated. Increasing Tmax does not guarantee a settling to
one attractor.

(5) 0.75 < ηm < 1.00: strongly intermittent behavior. The
system oscillates intermittently between the noisy zero at-
tractor, disordered behavior, and filling in on a timescale of
�T ∼ 500, . . . , 1000.
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FIG. 18. Phase diagrams for (a) ηa = 0.08 and (b) ηa = 0.10. ηm

is varied from 0 to 1. Every open square corresponds to one run with
T = 5000, and the phase diagram is obtained for 50 runs for every
value of ηm. The black solid circles represent the average over all
runs performed for a fixed value of ηm, that is, Mean 〈A〉. As one can
see the 〈A〉T versus ηm curve for ηa = 0.10 is now monotonically
decaying after a long flat plateau starting essentially at ηm = 0.

B. Results and discussion for μ = −0.266 and ηa = 0.03

To study the influence of a larger level of additive noise,
we investigate ηa = 0.03. For ηm = 0.20 we find a rapid
meandering of explosive dissipative solitons (Fig. 10), and for
ηm = 0.30 rapidly meandering dissipative solitons die fairly
quickly (Fig. 11).

For larger values of ηm, 0.30 < ηm < 0.50, the system
shows three types of behavior: it goes to the noisy zero
attractor very quickly and stays there; alternatively it exhibits
some degree of intermittency between disordered behavior
and the noisy zero attractor [Fig. 12(b)]. Third, it can jump
to the upper attractor. Once the upper attractor is reached
[Fig. 12(a)], and it stays there for T ∼ 5 × 104.

As ηm is increased further (0.5 < ηm < 0.7) the system
moves to the upper attractor and stays there (compare, for
example, Fig. 13).

Upon further increase of the strength of multiplicative
noise (0.7 < ηm < 1.0) the system oscillates intermittently
between the noisy zero attractor, disordered behavior, and
filling in with a typical timescale of �T = 300, . . . , 103

(compare Figs. 14 and 15).
In Fig. 16 we show the phase diagram of 〈A〉T for ηa =

0.03 as a function of the strength of multiplicative noise ηm.
As for ηa = 0.01 a plateau-like region corresponding mainly
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FIG. 19. Mean 〈A〉 versus ηm, for (a) ηa = 0.001 and (b) ηa =
10−7 (for μ = −0.266 and 50 runs for each value of ηm). The solid
lines are used to determine the jump location by extrapolation.

to meandering exploding dissipative solitons is followed by an
interval of multiplicative noise strengths for which collapse to
the noisy zero attractor prevails. We note that the latter region
has shrunk in size and that the larger value of ηa leads to
a nonzero value for 〈A〉T . As ηm increases there is clearly
a broader region with large dispersion in the data points
reflecting the easier access to different types of behavior
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FIG. 20. The location of the start of the finite amplitude branch
due to the presence of multiplicative noise is plotted as a function of
the strength of additive noise, ηa
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FIG. 21. The mean width of the amplitude is plotted as a function
of ηa in the limit ηm → 1.0.

between different runs for a larger level of additive noise. For
large noise strengths ηm this dispersion reduces again, but not
as much as for the case of weaker additive noise.

In summary we find the following types of behavior for
μ = −0.266 and ηa = 0.03:

(1) 0 < ηm < 0.25: rapid meandering of exploding soli-
tons.

(2) 0.25 < ηm < 0.30: system goes to the noisy zero at-
tractor before T = 5000.

(3) 0.30 < ηm < 0.50: system goes to the noisy zero at-
tractor very quickly and stays there; alternatively it exhibits
some degree of intermittency between disordered behavior
and the noisy zero attractor. Third, it can jump to the upper
attractor. Once the upper attractor is reached, it stays there for
T ∼ 5 × 104.

(4) 0.50 < ηm < 0.70: for time intervals up to T = 5000
the system moves to the upper attractor and stays there.

(5) 0.70 < ηm < 1.00: the system oscillates intermittently
between the noisy zero attractor, disordered behavior and
filling in with a typical timescale of �T = 300, . . . , 103.

C. Phase diagrams for 〈A〉 versus ηm as a function of ηa

In Figs. 9 and 16 we have presented the phase diagrams
〈A〉T versus ηm for fairly small values of the additive noise.
Here we present complementary results for ηa = 0.05 to
ηa = 1.00 in Figs. 17 and 18. With increasing strength of
the additive noise the plateau at small multiplicative noise
associated with meandering exploding DSs gradually disap-
pears and eventually around ηa ∼ 0.09 the transition to a
filling-in state with noise dominates even for small values
of multiplicative noise. The noisy zero solution observed for
moderate strengths of the multiplicative noise (near ηm ∼
0.40) is already gone for ηm = 0.05. Instead a broad plateau
associated with filling-in solutions starts to arise at ηa = 0.05
and eventually broadens and dominates even near ηm close to
zero corresponding to the transition to filling in for exploding
DSs for ηm = 0.
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FIG. 22. The average value of the amplitude, Mean 〈A〉 as well
as 〈A〉T for μ = −0.726 are plotted for two values ηa: (a) ηa = 0.01
and (b) ηa = 0.09.

D. The limit of small additive noise

From the studies of the effects of multiplicative noise
it is well known that the limit of small additional additive
noise is quite subtle [7,8]. Therefore we have looked into this
question for the case studied here, namely, the influence of
simultaneous multiplicative and additive noise on stationary
dissipative solitons.

To investigate these effects we varied ηa from ηa = 0.01 to
ηa = 10−7 and determined the resulting phase diagrams.

To analyze our data we have extracted the intercept for the
various values of ηa for which the finite amplitude branch as a
function of ηm is starting to grow. This procedure is indicated
in Fig. 19. We emphasize that the finite value for the plateau
in the amplitude for ηm → 0 is related to the existence of
exploding DSs and is therefore unrelated to the effects of
multiplicative noise dominant at a larger value of ηm,

In Fig. 20 we have plotted the location of the jump in slope
for multiplicative noise, ηm, as a function of the logarithm
of the strength of additive noise, ηa. We clearly see that this
plot has a linear negative slope: to trigger the onset of the
finite amplitude branch induced by multiplicative noise scales
with the logarithm of the amount of additive noise needed.
We interpret this result in the spirit of the Kramers picture
for the escape over a potential barrier, in our case for the
simultaneous influence of additive as well as multiplicative
noise on stationary DSs. A somewhat related result has been
found for the lifetime of a localized solution of any length
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FIG. 23. x-t plot (a) and snapshots for μ = −0.726, ηa =
0.09, ηm = 0.70, 〈A〉T = 0.2169, T = 5000. The two snapshots of
spatio-temporal disordered behavior are for (b) T = 1812 and
(c) T = 1958.

for the cubic-quintic Swift-Hohenberg equation with additive
noise [62].

Complementing the information given so far we have
plotted the mean width of the amplitude, 〈A〉T , as a function
of the strength of the additive noise, ηa, in the limit ηm → 1
in Fig. 21. The error bars are obtained by averaging over 50
runs of T = 5000 each. A linear decay of the mean width is
clearly discernible.
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FIG. 24. The mean amplitude, Mean 〈A〉 (a) and the susceptibil-
ity χ are plotted for μ = −0.266 as a function of the strength of
multiplicative noise ηm and additive noise ηa. We note the different
scales on the Mean 〈A〉 and χ axes.

E. Results and discussion for μ = −0.726: Phase diagrams

To discuss the influence of the distance from the saddle
node for DSs on the effects of multiplicative noise we have
chosen a value of μ = −0.726, which is about half way
between the μ value we have discussed (μ = −0.266) and
the location of the saddle node for the existence of stationary
DSs. While we have scanned the same range of values for
ηa as for the previous μ, we present in Fig. 22 the phase
diagrams for ηa = 0.01 and ηa = 0.09. From inspection of
Fig. 22 it emerges that the slope of the curve 〈A〉T versus the
strength of the multiplicative noise is much smaller than for
μ = −0.266 and that also the ηm value for which one starts
to get a significant contribution to 〈A〉T is much higher for
fixed ηa when going from μ = −0.226 to μ = −0.726. This
goes well with the intuition that the basin of attraction for the
finite amplitude branch is much deeper for μ = −0.726 than
for μ = −0.266.

For μ = −0.726 we expect qualitatively the same phase
diagram for normal dispersion because the μ−value is suf-
ficiently far away in μ from the occurrence of exploding
dissipative DSs.

In Fig. 23 we present a typical x-t plot for ηa = 0.09
and two snapshots taken from this run demonstrating spatio-
temporal disorder, which appears intermittently.
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FIG. 25. The mean amplitude, Mean 〈A〉 (a) and the susceptibil-
ity χ are plotted for μ = −0.726 as a function of the strength of
multiplicative noise ηm and additive noise ηa. We note the different
scales on the Mean 〈A〉 and χ axes.

IV. COMPARISON OF THE RESULTS TO THE
CASES OF PURELY ADDITIVE AND PURELY

MULTIPLICATIVE NOISE

In this section we critically compare how the results for the
simultaneous presence of additive and multiplicative noise are
different from the observations known for purely additive or
purely multiplicative noise. Throughout this paper we have
focused on two values for the distance from the linear onset
of the instability, μ, namely, predominantly μ = −0.266 and
on μ = −0.726, which is located about half way between the
saddle node for deterministically stable stationary DSs and the
their transition to oscillatory DSs.

To set the stage we briefly summarize the phenomena
known for the separate effects of additive and multiplicative
noise on deterministically stable stationary DSs. First, it is
known [53] that a small amount of additive noise 10−7 < ηa <

10−2 can lead to the partial annihilation of colliding stationary
DSs, a phenomenon that has been experimentally observed
[43,63–65]. Second, we have shown [55] that large additive
noise applied to a system below the saddle node for stationary
DSs can be used to induce noisy localized solutions or filling
in as long as there is a spatially homogeneous finite amplitude
branch. Most relevant here for comparison purposes is the
case we have studied in Ref. [54]. A relatively small amount
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FIG. 26. The susceptibility χ is plotted for μ = −0.266 as a
function of the strength of multiplicative noise ηm for (a) ηa = 0.01
and (b) ηa = 0.03.

of additive noise ∼1% is able to induce chaotic explosions
for the regime of subcriticality, which is close to the onset of
temporally varying deterministic DSs but still shows station-
ary DSs. As for spatially homogeneous purely multiplicative
noise we have shown [56] that one can stabilize the noisy
zero solution for moderately large values of the strength of
multiplicative noise down to the saddle node for stationary
deterministic DSs. Also oscillatory DSs can be postponed in
their onset. For exploding DSs one can observe for spatially
homogeneous multiplicative noise collapse, filling in, and
persistent explosions as a function of the strength of ηm. We
note that we did not observe intermittent switching between
filling in and noisy zero for spatially homogeneous purely
multiplicative noise.

In this article we find as an additional scenario, for small
values of additive noise ηa ∼ 0.01 . . . 0.03 and the simulta-
neous presence of moderate values of spatially homogeneous
multiplicative noise, strongly intermittent behavior between
the noisy zero attractor, filling in, and spatio-temporal disor-
der. For fixed additive noise varying the strength of multiplica-
tive noise one can induce transitions from explosions to noisy
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FIG. 27. The susceptibility χ is plotted for μ = −0.266 as a
function of the strength of multiplicative noise ηm for (a) ηa = 0.05
and (b) ηa = 0.08.

zero and then to filling in as ηm increases. When increasing
ηa from 0.01 to 0.03 a rapid meandering of exploding DSs is
obtained.

The limit of small additive noise (or equivalently of a small
ratio ηa/ηm) is also quite subtle for the application of noise to
DSs. In this context it has been shown early on for the case
of spatially homogeneous systems that even a small amount
of additive noise leads to an exponential decay of correlation
functions, while for purely multiplicative noise an algebraic
decay of correlation functions emerges [8], thus indicating a
rather singular limit. For the case of stationary DSs we also
find a quite delicate behavior in the limit of small ηa/ηm. The
location for the onset of the finite amplitude branch due to
multiplicative noise depends logarithmically on the strength
of additive noise over more than five decades of ηa (from
about ηa ∼ 10−2 to ηa ∼ 10−7). In addition, as ηa grows,
the regime with noisy zero disappears and is replaced by
filling in: above ηa ∼ 0.07 meandering explosions disappear
altogether. It also appears worth notice that the width of the
finite amplitude branch decreases on the average linearly with
increasing values of ηa.
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Increasing the distance from linear onset to μ = −0.726
we have demonstrated that a much larger value for the am-
plitude of the multiplicative noise, ηm (for fixed strength of
the additive noise, ηa) is needed to reach the finite amplitude
(filling-in) branch. This behavior is closely associated with
the fact that the basin of attraction for deterministic stationary
DSs is becoming much deeper and narrower as the value of μ

is reduced.

V. GENERAL PICTURE: NOISE-INDUCED
PHASE TRANSITIONS

The aim of this section is to show a general picture of the
simultaneous influence of additive and multiplicative noise
on stationary dissipative solitons, which summarizes the main
features shown in the previous sections.

In nonequilibrium phase transitions the usual partition-
function methodology cannot be applied. However, measures
like order parameters and generalized susceptibilities can still
be calculated from statistical (spatial and temporal) averages
of the order parameter.

To characterize equilibrium phase transitions as well as
transitions far from equilibrium using the averaged order
parameter and the corresponding susceptibilities is a well-
documented approach in the literature. For details we refer,
for example, to Refs. [66,67] for the equilibrium case and to
Refs. [21,68] for nonequilibrium situations.

The order parameter we use is Mean 〈A〉, 〈A〉T averaged
over a large number of realizations. For the generalized sus-
ceptibility χ we have [6,21]

χ ∼ 〈(〈A〉T )2〉 − 〈〈A〉T 〉2. (3)

In Figs. 24 and 25 we give an overview of our results for Mean
〈A〉 and χ for μ = −0.266 and μ = −0.726. Figure 24(a) is
a three-dimensional plot showing Mean 〈A〉 for μ = −0.266
as a function of the strength of multiplicative noise ηm and
additive noise ηa. We observe that for small ηa and small ηm

the Mean 〈A〉 exhibits a plateau corresponding to meandering
exploding dissipative solitons (in Ref. [54] we have shown
that small additive noise can induce explosions), whose exten-
sion decreases monotonically giving rise to a noise-induced
phase transition to a noisy filling-in solution as ηa increases.

For small strengths of additive noise ηa one notices another
noise-induced phase transition: from the above-mentioned
plateau to the noisy zero solution by increasing the multi-
plicative noise ηm. Its collapse is reminiscent of the result
found in Ref. [56]; that is, large multiplicative noise can lead
to the suppression of dissipative solitons for zero additive
noise. This transition is clearly captured by the generalized
susceptibility χ , as is shown by the small peaks in Fig. 26.

A third noise-induced phase transition shown in this three-
dimensional plot is that from the noisy zero solution to filling
in, as ηm increases, for fixed additive noise. The large peaks
in Figs. 26 and 27 characterize these transitions. All the
above described noise-induced phase transitions are contin-
uous. Figure 24 offers a general picture (Mean 〈A〉 and the
generalized susceptibility χ ) of the phases and noise-induced
phase transitions in the (ηm, ηa) space for μ = −0.266.

For μ = −0.726, which is about half way between μ =
−0.266 and the location of the saddle node for the existence

of stationary DSs, Fig. 25 provides a general overview by
plotting the mean value of the amplitude and the generalized
susceptibility χ as a function of the strength of multiplicative
noise ηm and additive noise ηa. From Fig. 25(a) we see that
for the whole range of additive noise ηa the system starts
with a plateau corresponding to noisy stationary solitons.
When increasing the strength of the multiplicative noise ηm

the system experiences a noise-induced phase transition to a
noisy zero solution. As ηm is increased further, we find a tran-
sition to filling in. Transitions are captured by the generalized
susceptibility χ shown in Fig. 25(b). Qualitative differences
between Fig. 24 and Fig. 25 rely on the fact that the basin
of attraction for deterministic stationary dissipative solitons
becomes deeper when μ goes from −0.266 to −0.726.

VI. CONCLUSIONS AND PERSPECTIVE

In conclusion, we have investigated the simultaneous in-
fluence of spatially homogeneous multiplicative noise as well
as of spatially δ-correlated additive noise on the formation
of localized patterns in the framework of the cubic-quintic
complex Ginzburg-Landau equation. This study of driven
dissipative systems was motivated by the fact that one can
apply multiplicative noise in a controlled way to a broad
range of experimental systems including electroconvection
in nematic liquid crystals, thermal convection in fluids, and
chemical reactions on surfaces under ultrahigh vacuum condi-
tions. Additive noise of various sources and a strength which
can vary several orders of magnitude is always inevitable in a
real experimental system.

Depending on the ratio between the strength of additive and
multiplicative noise we find a number of distinctly different
types of behavior including explosions, collapse, filling in,
and spatio-temporally disordered behavior. In particular we
find, for fixed strengths of the additive and the multiplicative
noise, a type of intermittent behavior not described before:
filling in, the noisy zero solution, and a spatio-temporally
disordered patterns emerge and disappear as a function of time
indefinitely.

Techniques used to analyze the results include snapshots,
x-t plots, and plots of the spatially and temporally averaged
amplitude as a function of the strength of multiplicative noise
while keeping the strength of additive noise fixed. Typically
50 realizations were used for averaging to obtain the corre-
sponding data points in these diagrams. For the widths of
these distribution as a function of additive noise we obtain
a linear decrease in the limit of fairly large, but fixed values
of the multiplicative noise. We have critically compared the
results obtained with those obtained in the two limiting cases
of purely additive and of purely multiplicative noise. We have
demonstrated that spatially homogeneous multiplicative noise
can induce a transition to a noisy spatially homogeneous state
for a range of the bifurcation parameter for stationary DSs
in the presence of additive noise, while this is not possible
without additive noise.

In order to present a concise overall summary of our
investigations we have included three-dimensional plots of
the order parameter (the mean pattern amplitude) and the
generalized susceptibility χ as a function of the strength of
additive and multiplicative noise, respectively. To elucidate
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further the importance of the generalized susceptibility for the
characterization of the transitions between different patterns
we have also incorporated plots showing χ as a function of
the strength of multiplicative noise for various fixed values of
the strength of additive noise.

Clearly there are several directions into which the pre-
sented results can be generalized. As we have focused here
on spatial variations in one dimension, an obvious possibility
is to consider two-dimensional systems, which are also exper-
imentally relevant ranging from fluid dynamics over chemical
reactions to biological dynamics. In the present paper we have
concentrated on the effects of noise on stationary dissipative
solitons. Clearly time-dependent DSs as well as explosive DSs
are expected to be rather sensitive to noisy perturbations and
as such will be a natural field to investigate. This applies in
particular to the dynamics of explosive DSs whose determin-
istic dynamics has been characterized theoretically in one and
two spatial dimensions [69–73]. We note in passing that in this

connection the question of anomalous diffusion of DSs in the
complex CQGLE, in two spatial dimensions has been studied
[73,74] as well. Keeping in mind that in some fields (including
chemical reactions and nonlinear optics) other types of non-
linearities including saturation nonlinearities and nonlinear
gradient terms play a role, this area emerges naturally as
an additional direction to go into regarding the study of the
simultaneous presence of additive and spatially homogeneous
multiplicative noise, as it is typically applied experimentally
externally.
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