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We report the exact phase dynamics of Manakov bright and dark vector solitons in an inhomogeneous optical
system by means of a variable coefficient coupled nonlinear Schrödinger equation. To investigate the phase
dynamics, we have modified the Manakov system with a relation between two modes of propagation, that are
obtained by the Hirota bilinear method. The importance of the phase study in soliton interaction is revealed by
asymptotic analysis of two-soliton solutions. In contrast with the Manakov bright soliton, the time-dependent
dark vector soliton exhibits a gradual phase shift due to the blackness factor. The various inhomogeneous effects
on the soliton phase are investigated, with a particular emphasis on nonlinear tunneling. The intensity and
corresponding phase of the tunneling soliton either forms a peak or valley and retains its shape after tunneling.
Unlike the bright counterpart, the gain or loss term significantly affects the phase of the dark soliton. Apart from
the study of soliton intensity, the phase profile of bright and dark vector solitons and its dynamical features are
also explored. As the study is not limited to intensity description, the present study could serve as a reference for
the future studies on multisolitons phase dynamics in photonics and related fields.
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I. INTRODUCTION

One of the most elegant and simplest form of integrable
coupled nonlinear Schrödinger (CNLS) equation describ-
ing the copropagation of intense optical beams in the two-
components birefringent system is the so-called Manakov
model [1]. The effect of birefringence in a single-mode fiber
was first considered by Menyuk [2]. The formation and
different dynamical features of optical solitons, including
the possibility of soliton-driven large-scale communication
network, are widely discussed in Refs. [1–10]. The ideal
soliton propagation without any attenuation in monomode
optical fiber is governed by the nonlinear Schrödinger (NLS)
equation. Nevertheless, in many real situations, there exist
two different polarizations in single-mode fibers, which split
the injected soliton into two separate beams. The coupling of
this bimodal propagation of pulse results in many fascinating
phenomena, one of which is the vector soliton. Usually, the
walk-off effect due to the group-velocity mismatch between
the bimodal solitons cannot be neglected from the description
of two or more closely spaced optical pulses. However, the
copropagation of two orthogonally polarized solitons can be
realized by the soliton trapping mechanism [11–13]. This un-
split two-component soliton by the soliton trapping technique
is generally referred to as a vector soliton. The coupled NLS
equation provides a quantitative description of such coprop-
agating solitons via the cross-phase modulation mechanism
[14,15].
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The existence of two-component vector soliton in bire-
fringent Kerr medium was first proposed by Manakov [16].
The utility of these theoretical model can be employed under
a specific choice of nonlinear parameters, that is, the cross-
coupling coefficient must be equal to unity and the self-phase
modulation coefficients need to be equal for both polariza-
tions. It is a well-known integrable model of CNLS equa-
tion, which yields an explicit form of the stable multisoliton
solution in different fields. The experimental possibility of
the Manakov model with a specially fabricated birefringent
optical fiber has been discussed by Menyuk [14]. Following
the seminal work, several interesting experiments for the
physical realization of Manakov-like solitons were reported,
including photorefractive crystals [12,13,17–19], semicon-
ductor waveguide [20], quadratic media [21], optical fiber
[14], and Bose-Einstein condensates [22]. Also, polarization
modulation instability in a Manakov fiber system was studied
by Frisquet et al. in Ref. [23]. Recently, the Manakov vector
soliton has attracted renewed interest among the researchers
due to its important applications in optical fiber systems such
as optical switching and soliton dragging logic gates [24–28].
By deriving an explicit two-soliton solution for the Manakov
system, Radhakrishnan et al. [24] observed the intensity re-
distribution (energy-exchange) between the two component
fields. Experimentally, energy-exchanging collisions [17] and
information transfer [18] were also realized in photorefractive
crystals. Moreover, there exist several interesting theoretical
studies on Manakov solitons, including quantum theory of
Manakov solitons [29], multisoliton perturbation theory for
the Manakov equations [30], soliton trapping, and daughter
waves in the Manakov model [15].

Based on the different signs of group velocity dispersion
(GVD) parameter, the Manakov model mainly admits two
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kinds of vector soliton propagation, bright and dark, respec-
tively. The bright (dark) vector soliton in the anomalous
(normal) dispersion regime was thoroughly investigated in
many pioneering works [31,32]. The key features of the
Manakov bright-bright pair is the energy sharing collision
between the components of the interacting vector solitons.
But in the case of a dark-dark pair, it always exhibits an
elastic mode of interactions [33,34]. In most of the previous
studies reported in the context of the Manakov model, the
interaction dynamics and the discussion was primarily based
on the intensity description, only a little emphasize is paved
on the phase dynamics. In the present context, in addition
to the intensity based explanations, we highlight and discuss
the phase dynamics of the Manakov soliton for the first time
to the best of our knowledge. For a complete understanding
of the system dynamics, it would be interesting to reveal the
distinct properties of intensity and their corresponding phase
profile of Manakov bright and dark solitons. We further extend
the phase analysis to the case of multisoliton interactions and
highlight the variation of phase for different soliton types.

Most of the investigation on the Manakov model was based
on the coupled NLS under a consideration that the optical fiber
maintains the fiber parameters during the propagation of light.
However, in the realistic optical fiber under practical condi-
tions, the medium exhibits an inevitable inhomogeneous be-
havior. The variable coefficient CNLS equations (Vc-CNLSE)
serves as the practical model to describe the vector soliton
dynamics in inhomogeneous systems [35–37]. In this work,
we focus on the following Vc-CNLSE model of a two-coupled
system with distributed dispersion, nonlinearity, and gain or
loss which can also be referred as inhomogeneous Manakov
model [34,38–40]:

iq1z ± 1
2V (z)q1tt + R(z)(|q1|2 + |q2|2)q1 + ip(z)q1 = 0,

(1a)

iq2z ± 1
2V (z)q2tt + R(z)(|q2|2 + |q1|2)q2 + ip(z)q2 = 0,

(1b)

where q1(z, t ) and q2(z, t ) are the complex envelopes for the
two polarization components in Kerr medium. The variables
z and t represent the normalized spatial and temporal co-
ordinates. The group velocity dispersion, Kerr nonlinearity,
and gain or absorption effects are related to the respective
coefficient functions V (z), R(z), and p(z). By using Hirota’s
bilinear (HB) method, we analytically derived the exact solu-
tions for the Eq. (1), which also provides an explicit form of
multisoliton solutions. In this work, apart from the intensity,
we reveal the influence of inhomogeneity on the phase of
the Manakov solitons for the first time to the best of our
knowledge. The given model Eq. (1) has the capability to
handle many inhomogeneous behaviors in fiber such as pulse
gain or absorption, background oscillation, pulse compres-
sion, dispersion-managed transmission systems, and nonlin-
ear tunneling. The vector soliton phase has not been studied
analytically so far, and, being motivated by this fact, we paid
particular attention to soliton propagation and corresponding
phase change with constant or varying coefficients. Unlike
the bright counterpart, the phase of dark vector soliton gives

more intriguing results and the interaction scenario provides
interesting features which have not been reported so far.

The organization of the paper is as follows. In Sec. II, we
derive an exact bright and dark Manakov vector soliton solu-
tions by HB method. Section III describe the phase dynamics
of Manakov one-soliton solutions. A two-soliton solution
and soliton collision by employing asymptotic analysis are
presented in Sec. IV. A brief discussion about the various
physical effects in intensity and corresponding phase dynam-
ics of vector soliton propagation through an inhomogeneous
medium is reported in Sec. V. The paper concludes with a
summary of results in Sec. VI.

II. EXACT SOLITON SOLUTIONS BY HB METHOD

To obtain exact vector soliton solutions of Eq. (1), we use
the HB method [41–44], which is expected to give an explicit
form of bright and dark multisoliton solutions, as follows:

q1(z, t ) = g(z)
G

F
, (2a)

q2(z, t ) = g(z)
H

F
, (2b)

where G and H are complex functions and F is a real function.
By substituting this transformation into Eq. (1), the following
bilinear equations can be obtained,

[
iDz ± 1

2V (z)D2
t + λ(z)

]
(G · F ) = 0, (3a)[

iDz ± 1
2V (z)D2

t + λ(z)
]
(H · F ) = 0, (3b)

δ(|G|2 + |H |2) ∓ D2
t (F · F ) = 2λ(z)

V (z)
F 2, (3c)

where δ(z) = 2R(z)
V (z) g(z)2 and Dz and Dt are the bilinear differ-

ential operators [41] defined by

Dm
z Dn

t (g · f ) =
(

∂

∂z
− ∂

∂z′

)m(
∂

∂t
− ∂

∂t ′

)n

× g(z, t ) f (z, t )|z′=z,t ′=t .

With the condition gz(z) + g(z)p(z) = 0, we can choose
λ(z) = 0 for the bright soliton solution. But, for the dark
soliton case, λ(z) is an analytic function to be determined.

A. Bright one-soliton solutions

The bright multisoliton solutions of Eq. (1) can be gener-
ated by solving the above set of Eqs. (3) with the power-series
expansions of G and F as

G = ε1g1 + ε3g3 + ε5g3 + · · ·
H = ε1h1 + ε3h3 + ε5h3 + · · ·
F = 1 + ε2 f2 + ε4 f4 + ε6 f6 + · · ·

with ε as the formal expansion parameter. In order to get the
bright one-soliton solution, the power-series expansions for G,
H , and F are truncated corresponding to the lowest order in
ε as follows: G = g1, H = h1, and F = 1 + f2. Then, back to
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FIG. 1. The bright soliton propagation through a constant fiber
medium for parameters (a) k1 = 1 + i, α1 = 1 + i, β1 = 2 − i,
V (z) = 1, R(z) = 0.5, and p = 0. (b) Corresponding phase profile.

bilinear Eqs. (3), we obtain

g(z) = e− ∫
p(z)dz g1 = α1eθ1

h1 = β1eθ1 f2 = 
1eθ1+θ∗
1

θ1 = k1t − ω1

∫
V (z)dz + φ1 ω1 = − 1

2 ik2
1


1 = δ(|α1|2 + |β1|2)

2(k1 + k∗
1 )2

.

Thus, bright one-soliton solutions can be written as(
q1

q2

)
=

(
α1

β1

)
e− ∫

p(z)dz

2
√


1
e−iθ1I sech

(
θ1R + ln 
1

2

)
. (4)

From Eq. (4), we can analyze the characteristics of bright
one-soliton pulse in the inhomogeneous fibers. Here α1 and
β1 are the arbitrary complex parameters which determine
the amplitude of the bright soliton. k1R and k1I represent
the real and imaginary parts of the complex parameter k1,
which determine the amplitude and velocity of solitons. The
bright soliton propagation through constant fiber is depicted
in Fig. 1(a).

B. Dark one-soliton solutions

We obtain the dark one-soliton solution by truncated series
of G, H , and F to the lowest order in ε as follows: G =
g0(1 + εg1), H = h0(1 + εh1), and F = 1 + ε f1. Here we
assume

g0 = aeiφ h0 = beiφ

g1 = μ1eθ1 h1 = ν1eθ1

f1 = eθ1 g(z) = e− ∫
p(z)dz

φ = k0t − ω0

∫
V (z)dz θ1 = k1t − ω1

∫
V (z)dz + φ1.

Then, back to bilinear Eqs. (3), we obtain some associated
parameters related to one-soliton solutions as

λ = 1

2
δ(a2 + b2)V (z) ω0 = − λ

V (z)
− k2

0

2

μ1 = 2ω1 + 2k0k1 + ik2
1

2ω1 + 2k0k1 − ik2
1

μ1 = ν1

ω1 = k1

2

[−2k0 ±
√

2δ(a2 + b2) − k2
1

]
.
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FIG. 2. The dark soliton propagation through homogenous fiber
for parameters. (a) k1 = 1. (b) Corresponding phase profile. (c)
k1 = −1. (d) Corresponding phase profile. Other physical quantities
are a = b = 1 = k0 = V (z) = δ = 1.

The dark one-soliton solutions can be written as

(
q1

q2

)
=

(
a
b

)
(1 + μ1) + (μ1 − 1)tanh

(
θ1
2

)
2e

∫
p(z)dze−iφ

. (5)

From Eq. (5), one can analyze the dynamics of vector dark
one-soliton pulse in the inhomogeneous fibers. The propaga-
tion of dark one-soliton through the inhomogeneous fiber is
depicted in the Fig. 2.

1. Parametric region for black and gray soliton

The amplitude (Aj), blackness parameter (Bj), and back-
ground wave amplitude (a or b) are connected by a simple
relation A2

j + B2
j = a2(b2)e−2

∫
p(z)dz [7]. Based on the param-

eter Aj or Bj of the obtained solutions, the dark soliton can
be classified into black and gray mode of soliton. In principle,
the dark soliton with zero intensity at its center is referred
to as the black soliton [B2

j = a2(b2)e−2
∫

p(z)dz], all other dark
soliton cases with nonzero intensity at the pulse center are all
identified as [B2

j < a2(b2)e−2
∫

p(z)dz] as gray solitons [45–47].
In Fig. 3, we have plotted the black and gray soliton with
different blackness parameter.

To explore the dynamics of dark soliton propagation given
by Eq. (5), some of the physical quantities such as veloc-
ity [v = ω1

k1
V (z)], amplitude(A1

A2
) = (a

b)| (1+μ1 )
2e

∫
p(z)dz |, and blackness

factor (B1
B2

) = (a
b)| (μ1−1)

2e
∫

p(z)dz | are important. The dark vector soli-
ton energy associated with blackness factor can be written as
[47]

E1 =
∫ ∞

−∞
(a2− | q1 |2)dt = 4B2

1

k1e2
∫

p(z)dz
, (6a)

E2 =
∫ ∞

−∞
(b2− | q2 |2)dt = 4B2

2

k1e2
∫

p(z)dz
. (6b)
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FIG. 3. The black and gray soliton with different values of black-
ness factor. (a) k1 = 1 and R = 0.125, 0.2, 0.25. (b) Corresponding
phase profile. (c) k1 = −1 and R = 0.125, 0.15, 0.2. (d) Corre-
sponding phase profile. Other physical quantities are a = b = 1 =
k0 = V (z) = 1.

C. Direct numerical simulation

The stability of soliton solutions is of paramount im-
portance for its application and physical feasibility. Unlike
the conventional pulses of different form, the solitons are
relatively stable, even in an environment subjected to external
perturbations. Hence, in order to validate the signature of
soliton, such as stable propagation over appreciable distance,
and the stability against perturbation, we perform numerical
simulation using split-step Fourier method. In order to check
the solution stability of our dark soliton solutions, as a rep-
resentative case, we consider the one soliton solution corre-
sponding to both bright and dark soliton given respectively
by Eqs. (4) and (5). The stability analysis is performed in
two parts, (i) direct numerical simulation of propagation of
soliton using Vc-CNLSE and (ii) the propagation of soliton

subjected to perturbation such as the photon noise. Figures 4
and 5 show the numerical simulation of stable propagation of
the bright and dark soliton propagation. Figure labeled “a” on
top corresponds to the propagation without noise, while the
figure labeled “b” is the propagation under noise perturbation.
Figures 4(b) and 5(b) represent the contour plot of Figs. 4(a)
and 5(a), respectively.

In principle, the propagation of soliton pulse in a fiberlike
media is typically subjected to environmental fluctuations, and
there are numerous effects that can contribute to instability.
Therefore, it is very informative to study the stability of the
soliton in an environment subject to external noise or per-
turbations. We numerically generated a photon white noise,
which corresponds to 0.035% of the soliton or background
intensity. This is indeed an appreciable noise level, which
can potentially perturb any propagation. The initial condition
for the simulation is the soliton profile given by Eqs. (4)
and (5) along with synthesized numerical noise. It is very
evident from the figures labeled “b” that both bright and dark
solitons show remarkable stability against strong perturbation.
Thus, one can draw out a conclusion that the soliton solu-
tion constructed through the Hirota method shows excellent
stability, which has been confirmed through direct numerical
simulations.

III. PHASE DYNAMICS OF MANAKOV SOLITON

From the exact solutions given by Eqs. (4) and (5) for
bright and dark solitons, respectively, we arrive at a relation
between two modes of propagation as q1 = M

N q2, where M
and N replace α1(a) and β1(b) and the modified Eq. (1) can
be given as

iq1z ± 1

2
V (z)q1tt + R(z)

(
1 + |N |2

|M|2
)

q1|q1|2 + ip(z)q1 = 0,

(7a)

iq2z ± 1

2
V (z)q2tt + R(z)

(
1 + |M|2

|N |2
)

q2|q2|2 + ip(z)q2 = 0.

(7b)

FIG. 4. The propagation of bright soliton along the fiber. The left panel represents the evolution of the bright soliton pulse and the influence
of noise, while the panel right portrays the contour evolution.
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FIG. 5. The propagation of dark soliton along the fiber. The left panel represents the evolution of the dark soliton pulse and the influence
of noise, while the panel right portrays the contour evolution.

To obtain the phase of Manakov soliton, first we introduce
the solution as given below

q1(z, t ) = ρ1(z, t )eiψ1(z,t ), (8a)

q2(z, t ) = ρ2(z, t )eiψ2(z,t ). (8b)

Substituting this expression into Eq. (7) and separating the
real and imaginary parts, we obtain

ρ1z + p(z)ρ1 ± V (z)ρ1tψ1t + V (z)

2
ψ1tt = 0, (9a)

ρ2z + p(z)ρ2 ± V (z)ρ2tψ2t + V (z)

2
ψ2tt = 0, (9b)

2R(z)

(
1 + |N |2

|M|2
)

ρ3
1 ± V (z)ρ1tt ∓ V (z)ρ1ψ

2
1t − 2ρ1ψ1z = 0,

(10a)

2R(z)

(
1 + |M|2

|N |2
)

ρ3
2 ± V (z)ρ2tt ∓ V (z)ρ2ψ

2
2t − 2ρ1ψ2z = 0.

(10b)

The stationary condition for |q j |2 gives us an expression ρ jz +
p(z)ρ j = 0, from which one can deduce ρ j = ρ0 j e− ∫

p(z)dz,
where ρ0 j represent the amplitude of pulse without gain or
loss. Further, by using Eq. (9), we obtain a phase relation
ψ j = ∫ c j (z)

ρ0 j
dt + Aj (z), where c j (z) and Aj (z) are integration

constants. Assuming dAj

dz as a constant � j , the expression for
phase can be written as

ψ j =
∫

c j (z)

ρ2
0 j

dt + � j z, j = 1, 2. (11)

Substituting the expression of phase (11) into (10), we obtain
the following equation for I0 j = |ρ0 j |2:(

dI01

dt

)2

= ∓2δ

(
1 + |N |2

|M|2
)

I3
01 ± 8�1

V (z)
I2
01 + 4K1I01 − 4c2

1,

(12a)(
dI02

dt

)2

= ∓2δ

(
1 + |M|2

|N |2
)

I3
02 ± 8�2

V (z)
I2
02 + 4K2I02 − 4c2

2,

(12b)

where δ(z) = 2R(z)
V (z) e−2

∫
p(z)dz and Ki is an integration constant.

For bright soliton both c j and Kj can be considered as zero.
Hence the above expression can be cast into the form

(
dI01

dt

)2

= −2δ

(
1 + |β1|2

|α1|2
)

I2
01(I01 − ρ1s), (13a)

(
dI02

dt

)2

= −2δ

(
1 + |α1|2

|β1|2
)

I2
02(I02 − ρ2s), (13b)

where

ρ1s = 4�1

δV (z)
(
1 + |β1|2

|α1|2
) , ρ2s = 4�2

δV (z)
(
1 + |α1|2

|β1|2
) . (14)

By integrating Eq. (13), we obtain the intensity I j =
I0 je−2

∫
p(z)dz as

I1 = ρ1se
−2

∫
p(z)dzSech2

[√
δ

2
ρ1s

(
1 + |β1|2

|α1|2
)

t

]
, (15a)

I2 = ρ2se
−2

∫
p(z)dzSech2

[√
δ

2
ρ2s

(
1 + |α1|2

|β1|2
)

t

]
, (15b)

comparing by these bright soliton intensities with the exact
solutions given by Eq. (4), we have (ρ1s

ρ2s
) = (|α1|2

|β1|2 ) 1
4
1

. Thus,
the phase for bright vector soliton can be written as

ψ j = δ(|α1|2 + |β1|2)V (z)

16
1
z. (16)

This shows that the phase of bright vector soliton depends
only on the spatial coordinate, and the phase remains constant
across the entire pulse. But in the variable coefficient model,
the GVD parameter V (z) significantly influences the soliton
phase.
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For the dark vector soliton the Eq. (12) can be cast into the form(
dI01

dt

)2

= 2δ

(
1 + |b|2

|a|2
)

(I01 − ρ1a)2(I01 − ρ1b), (17a)

(
dI02

dt

)2

= 2δ

(
1 + |a|2

|b|2
)

(I01 − ρ2a)2(I02 − ρ2b). (17b)

Here ρ ja and ρ jb correspond to the double root and the single root of Eq. (12), respectively. By integrating Eq. (12), the
intensity profile of dark one-soliton solution for Vc-CNLSE can be written as

|q1|2 = I1 = ρ1ae−2
∫

p(z)dz

{
1 − m2

1sech2

[√
δ

2

(
1 + |b|2

|a|2
)

ρ1am1t

]}
, (18a)

|q2|2 = I2 = ρ2ae−2
∫

p(z)dz

{
1 − m2

2sech2

[√
δ

2

(
1 + |a|2

|b|2
)

ρ2am2t

]}
, (18b)

where m2
j = ρ ja−ρ jb

ρ ja
. By equating Eq. (17) and (12), we get the

following set of relations:

�1 = δ

4

(
1 + |b|2

|a|2
)

ρ1a
(
3 − m2

1

)
V (z), (19)

�2 = δ

4

(
1 + |a|2

|b|2
)

ρ2a
(
3 − m2

2

)
V (z), (20)

c2
1 = δ

4

(
1 + |b|2

|a|2
)

ρ3
1a

(
1 − m2

1

)
, (21)

c2
2 = δ

4

(
1 + |a|2

|b|2
)

ρ3
2a

(
1 − m2

2

)
, (22)

K1 = δ

4

(
1 + |b|2

|a|2
)(

ρ2
1a + 2ρ1aρ1b

)
, (23)

K2 = δ

4

(
1 + |a|2

|b|2
)(

ρ2
2a + 2ρ2aρ2b

)
, (24)

with these expressions, the phase of a dark soliton via Eq. (11)
can be written as

ψ1 =
√

δ

2

(
1 + |b|2

|a|2
)(

1 − m2
1

)
ρ1at

+ tan−1

⎧⎨
⎩

m1tanh
[√

δ
2

(
1 + |b|2

|a|2
)
ρ1am1t

]
√

1 − m2
1

⎫⎬
⎭+ �1z, (25)

ψ2 =
√

δ

2

(
1 + |a|2

|b|2
)(

1 − m2
2

)
ρ2at

+ tan−1

⎧⎨
⎩

m2tanh
[√

δ
2

(
1 + |a|2

|b|2
)
ρ2am2t

]
√

1 − m2
2

⎫⎬
⎭ + �2z. (26)

Its interesting to note that Eq. (18) is almost same with the
dark vector one-soliton solution [Eq. (5)] derived by HB

method. The intensity of dark soliton via Eq. (5) can be
written as

|q1|2 = a2e−2
∫

p(z)dz

[
1 − B2

1

a2
e2

∫
p(z)dz sech2

(
k1

2

)]
, (27a)

|q2|2 = b2e−2
∫

p(z)dz

[
1 − B2

2

b2
e2

∫
p(z)dz sech2

(
k1

2

)]
. (27b)

Here, by equating the parameters a2 = ρ1a, b2 = ρ2a,
B2

1
a2 e2

∫
p(z)dz = m2

1, and B2
2

b2 e2
∫

p(z)dz = m2
2, we observed that

the given expressions for intensity [Eqs. (18) and (27)] of
dark solitons are exactly the same with conditions k1 =√

2δ(a2 + b2)m2
j . It is worth mentioning that, unlike the

bright vector soliton, the soliton intensity affects on the time-
dependent phase of dark vector soliton. The intensity and
corresponding phase profiles for different values of blackness
factor mj are depicted in Fig. 3. It is evident that the phase of a
dark soliton changes across the width, with a total phase shift
of 2sin−1(mj ). For a black soliton (mj = 1), a phase shift of
π occurs exactly at the center of the dip. For the gray solitons
(mj < 1), phase varies gradually between 0 − π .

IV. TWO-SOLITON SOLUTIONS

In order to get the bright vector two-soliton solution, the
power-series expansions for G and F are truncated as follows:
G = g1 + g3, G = h1 + h3, and F = 1 + f2 + f4. Then, back
to bilinear Eqs. (3), we obtain

g(z) = e− ∫
p(z)dz

g1 = α1eθ1 + α2eθ2

g3 = σ1eθ1+θ∗
1 +θ2 + σ2eθ2+θ∗

2 +θ1

h1 = β1eθ1 + β2eθ2

h3 = ς1eθ1+θ∗
1 +θ2 + ς2eθ2+θ∗

2 +θ1

f2 = 
1eθ1+θ∗
1 + 
2eθ1+θ∗

2 + 
3eθ2+θ∗
1 + 
4eθ2+θ∗

2

f4 = 
5eθ1+θ∗
1 +θ2+θ∗

2 .
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FIG. 6. The bright two-soliton propagation through homogenous
fiber for parameters, (a) α1 = 1 + 0.5i, α2 = 1 − 0.5i; (b) β1 = 1,
β2 = 1 + 0.5i with k1 = 2 − i, k2 = 2 − 2i, φ1 = −5 and φ2 = 5.
(c) Energy sharing collision with α1 = 1, α2 = 1; (d) β1 = 1, β2 =
2 + i with k1 = 2 + 0.5i, k2 = 2 − 0.5i. Other physical quantities are
V (z) = 1, R(z) = 0.5, and p = 0.

The final form of bright two-soliton solutions (for more de-
tails, see Appendix) can be written as

q1(z, t ) = e− ∫
p(z)dz (g1 + g3)

(1 + f2 + f4)
, (28a)

q2(z, t ) = e− ∫
p(z)dz (h1 + h3)

(1 + f2 + f4)
. (28b)

The above two-soliton solution is characterized by six ar-
bitrary complex parameters α1, α2, β1, β1, k1, and k1. To con-
struct the pair of dark two-soliton solutions, the power-series
expansions for G, H , and F are truncated as follows: G =
g0(1 + g1 + g2), H = h0(1 + h1 + h2), and F = 1 + f1 + f2.
Then, from bilinear equations Eq. (3), we obtain

g0 = aeiφ h0 = beiφ

g1 = μ1 eθ1 + μ2eθ2 h1 = ν1 eθ1 + ν2eθ2

g2 = A12μ1μ2 eθ1+θ2 h2 = A12ν1ν2 eθ1+θ2

f1 = eθ1 + eθ2 f2 = A12eθ1+θ2 .

8
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t

1

0.5
q1 2

(a)

8
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8
z

8

0
8

t

1

0.2
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(b)

FIG. 7. The dark two-soliton propagation through homogenous
fiber for parameters. (a) Same direction of propagation with k1 =
k2 = 1.5, φ1 = −5, and φ2 = 5. (b) Soliton interaction with k1 =
−1.5, k2 = 1.5, φ1 = φ2 = 1. Other physical quantities are a = b =
k = V (z) = δ = 1 and p = 0.

The final form of dark vector two-soliton solutions can be
written as

q1(z, t ) = e− ∫
p(z)dz g0(1 + g1 + g2)

(1 + f1 + f2)
, (29a)

q2(z, t ) = e− ∫
p(z)dz h0(1 + h1 + h2)

(1 + f1 + f2)
. (29b)

By using Eqs. (28) and (29), we can investigate the prop-
agation dynamics of vector solitons either in the same or
opposite direction in a homogeneous or inhomogeneous fiber
system. Figures 6 and 7 represent two-soliton solution in
homogeneous systems. Comparing with the dark pulse, Man-
akov bright solitons have an additional feature, which exhibit
the well-known energy exchange collision (for a detailed
description, see Ref. [33]). The energy sharing collision of
bright soliton are depicted in Figs. 6(c) and 6(d).

A. Asymptotic analysis and two-soliton phase

The behavior of head-on collision between the two-
vector solitons in fibers can be analyzed by the asymp-
totic states of soliton solution. Based on the two-soliton
solution, we can observe the elastic collision between
bright and dark vector solitons. The asymptotic states of
bright vector two-soliton solution Eq. (28) are introduced as
follows:

(1) Before collision

(a) S1−(θ1 + θ∗
1 ∼ 0, θ2 + θ∗

2 → −∞)

(
q1

q2

)
→

(
S1−

1

S1−
2

)
=

(
α1

β1

)
e− ∫

p(z)dz

2
√


1
e−iθ1I sech

(
θ1R + ln 
1

2

)
, (30)

(b) S2−(θ2 + θ∗
2 ∼ 0, θ1 + θ∗

1 → ∞)

(
q1

q2

)
→

(
S2−

1

S2−
2

)
=

(
σ1

ς1

)
e− ∫

p(z)dz

2
√


1
5
e−iθ2I sech

[
θ2R + 1

2 ln(
5/
1)
]
, (31)
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(2) After collision
(a) S1+(θ1 + θ∗

1 ∼ 0, θ2 + θ∗
2 → ∞)

(
q1

q2

)
→

(
S1+

1

S1+
2

)
=

(
σ2

ς2

)
e− ∫

p(z)dz

2
√


4
5
e−iθ1I sech

[
θ1R + 1

2 ln(
5/
4)
]
, (32)

(b) S2+(θ2 + θ∗
2 ∼ 0, θ1 + θ∗

1 → −∞)

(
q1

q2

)
→

(
S2+

1

S2+
2

)
=

(
α2

β2

)
e− ∫

p(z)dz

2
√


4
e−iθ2I sech

(
θ2R + ln 
4

2

)
. (33)

Corresponding phase can be written as

ψ1−
j = δ(|α1|2 + |β1|2)V (z)

16
1
z, (34)

ψ2−
j = δ(|σ1|2 + |ς1|2)V (z)

16
1
5
z, (35)

ψ1+
j = δ(|σ2|2 + |ς2|2)V (z)

16
4
5
z, (36)

ψ1−
j = δ(|α2|2 + |β2|2)V (z)

16
4
z. (37)

The asymptotic analysis of dark vector two-soliton solutions given by Eq. (29) are conducted as follows:
(1) Before collision
(a) S1−(θ1 ∼ 0, θ2 → −∞)

(
q1

q2

)
→

(
S1−

1

S1−
2

)
=

(
a
b

)
eiψ

2e
∫

p(z)dz

[
(1 + μ1) + (μ1 − 1)tanh

(
θ1

2

)]
. (38)

(b) S2−(θ2 ∼ 0, θ1 → ∞)

(
q1

q2

)
→

(
S2−

1

S2−
2

)
=

(
a
b

)
μ1eiψ

2e
∫

p(z)dz

[
(1 + μ2) + (μ2 − 1)tanh

(
θ2

2
+ ln

√
A12

)]
. (39)

(2) After collision
(a) S1+(θ1 ∼ 0, θ2 → ∞)

(
q1

q2

)
→

(
S1+

1

S1+
2

)
=

(
a
b

)
μ2eiψ

2e
∫

p(z)dz

[
(1 + μ1) + (μ1 − 1)tanh

(
θ1

2
+ ln

√
A12

)]
. (40)

(b) S2+(θ2 ∼ 0, θ1 → −∞)

(
q1

q2

)
→

(
S2+

1

S2+
2

)
=

(
a
b

)
eiψ

2e
∫

p(z)dz

[
(1 + μ2) + (μ2 − 1)tanh

(
θ2

2

)]
(41)

with the condition k j =
√

2δ(a2 + b2)m2
j , corresponding phase can be written as

ψ1−
j =

√
δ

2
(a2 + b2)

(
1 − (

m1−
j

)2)
t + tan−1

⎧⎨
⎩

m1−
j tanh

[√
δ
2 (a2 + b2)m1−

j t + φ1

2

]
√

1 − (
m1−

j

)2

⎫⎬
⎭ +

√
1 − (

m1−
j

)2

2m1−
j

φ1 + �1−
j z, (42)
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ψ2−
j =

√
δ

2
(a2 + b2)

[
1 − (

m2−
j

)2
]
t + tan−1

⎧⎨
⎩

m2−
j tanh

[√
δ
2 (a2 + b2)m2−

j t + φ2

2 + ln
√

A12
]

√
1 − (

m2−
j

)2

⎫⎬
⎭

+
√

1 − (
m2−

j

)2

2m2−
j

(φ2 + ln[A12]) + �2−
j z, (43)

ψ1+
j =

√
δ

2
(a2 + b2)

[
1 − (

m1+
j

)2
]
t + tan−1

⎧⎨
⎩

m1+
j tanh

[√
δ
2 (a2 + b2)m1+

j t + φ1

2 + ln
√

A12
]

√
1 − (

m1+
j

)2

⎫⎬
⎭

+
√

1 − (
m1+

j

)2

2m1+
j

(φ1 + ln[A12]) + �1+
j z, (44)

ψ2+
j =

√
δ

2
(a2 + b2)

[
1 − (

m2+
j

)2
]
t + tan−1

⎧⎨
⎩

m2+
j tanh

[√
δ
2 (a2 + b2)m2+

j t + φ2

2

]
√

1 − (
m2+

j

)2

⎫⎬
⎭ +

√
1 − (

m2+
j

)2

2m2+
j

φ2 + �2+
j z, (45)

where

(m j−
1 )2 =

(
B j−

1

)2

a2
e2

∫
p(z)dz,

(
m j−

2

)2 =
(
B j−

2

)2

b2
e2

∫
p(z)dz

(
m j+

1

)2 =
(
B j+

1

)2

a2
e2

∫
p(z)dz,

(
m j+

2

)2 =
(
B j+

2

)2

b2
e2

∫
p(z)dz

(
B1−

1

B1−
2

)
=

(
a
b

)∣∣∣∣ (μ1 − 1)

2e
∫

p(z)dz

∣∣∣∣,
(

B2−
1

B2−
2

)
=

(
a
b

)∣∣∣∣μ1(μ2 − 1)

2e
∫

p(z)dz

∣∣∣∣
(

B1+
1

B1+
2

)
=

(
a
b

)∣∣∣∣μ2(μ1 − 1)

2e
∫

p(z)dz

∣∣∣∣,
(

B2+
1

B2+
2

)
=

(
a
b

)∣∣∣∣ (μ2 − 1)

2e
∫

p(z)dz

∣∣∣∣.
From the above asymptotic expressions for collision, we

can identify that total energy is conserved during the interac-
tion process. The resultant intensity of bright vector soliton
due to energy sharing collisions and the corresponding phases
are depicted in Fig. 8. It is obvious that the resultant phase
of bright solitons remains unchanged during the collision. But
in the case of the dark soliton, the phase behaves markedly
different from the bright soliton case. Here we have studied
the phase profile of two gray vector solitons as shown in
Fig. 9. When both soliton travel in the same direction, the
resultant phase produce a net phase shift equal to the sum
of individual phase shift as shown in Fig. 9(b). Figure 9(d)
represents the phase profile of two oppositely moving gray
soliton before the collision and the recovered phase after the
collision is depicted in Fig. 9(h). It is evident that the solitons
recover the phase after the collision and maintains its phase
shift [35]. At the point of collision the phase profiles of the
two solitons cancel each other as shown in the Fig. 9(f).

V. RESULTS AND DISCUSSIONS

In previous sections, the Manakov model and its pair of
vector soliton with a constant mode of propagation have been
discussed in detail. Especially, the corresponding phase profile
of vector solitons has been emphasized explicitly for the first
time to the best of our knowledge. Recently, the intensity of

Manakov vector soliton with varying coefficients is studied in
Refs. [34,39]. But the actual phase profile of bright and dark
vector solitons in the CNLSE or Vc-CNLSE models are not
addressed yet. Here we report the inhomogeneous effects on
soliton intensity and the corresponding phase of the Manakov
bright and dark vector solitons.

When considering a periodically varying GVD parameter
[48,49], solitons exhibit oscillating phase variation along the
spatial axis, while the amplitude and width of vector soli-
tons remain constant. The effect of GVD parameter [V (z) =
cos(0.7z)] in one and two bright solitons dynamics are de-
picted in Fig. 10. In contrast to the concept of constant phase
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FIG. 8. The bright two-soliton energy sharing collision via the
asymptotic expression. (a) Before collision S− = S1−

1 + S2−
1 . (b) Cor-

responding phase with ψ1−
1 + ψ2−

1 (c) after collision S+ = S1+
1 +

S2+
1 . (d) Corresponding phase with ψ1+

1 + ψ2+
1 . Other physical quan-

tities are α1 = 1, α2 = 1, k1 = 2 + 0.5i, k2 = 2 − 0.5i, V (z) = 1,
R(z) = 0.5, and p = 0.
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FIG. 9. The resultant intensity and phase of two dark soliton via
the asymptotic expressions for before and after collision (a) same di-
rection of propagation with k1 = 1.5 and k2 = 1.5, φ1 = 5, and φ2 =
−5. (b) Corresponding phase (c) before collision with k1 = −1.5 and
k2 = 1.5, φ1 = 5, and φ2 = 5. (d) Corresponding phase (e) at colli-
sion with k1 = −1.5 and k2 = 1.5, φ1 = φ2 = 0. (f) Corresponding
phase. (g) After collision with k1 = 1.5 and k2 = −1.5, φ1 = 5, and
φ2 = 5. (h) Corresponding phase. Other relevant physical parameters
are k0 = a = V (z) = 1, p = 0, and R = 0.5.

of bright soliton in the NLSE [1], the V (z) plays a significant
role in the evolutionary dynamics of soliton phase in varying
coefficients models.

In the presence of medium gain or loss, soliton inten-
sity undergoes amplification or absorption. When p(z) is a
constant value as p = −0.02 (p = 0.02), medium exhibits
constant gain (loss). The effect of gain (loss) on dark solitons
phase is depicted in Fig. 11. It is quite evident that the dark
soliton phase gradually decreases (increases) with respect to
the medium gain (loss). This is attributed to the fact that the
soliton intensity varies inversely with the actual phase of the
dark soliton. During the time of amplification (absorption),
soliton intensity increases (decreases) correspondingly, which
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FIG. 10. The bright soliton propagation with varying GVD pa-
rameter, where V (z) = R(z) = cos(0.7z). (a) One soliton with k1 =
1 + i, α1 = 1 + i, β1 = 2 − i, R(z) = 0.5, and p = 0. (b) Corre-
sponding phase. (c) Two-soliton with α1 = 1, α2 = 1, k1 = 2 + 0.5i,
k2 = 2 − 0.5i, and p = 0. (d) Corresponding phase.

reduces (raises) the total phase shift of dark soliton spatially
as shown in Figs. 11(b) and 11(d). The phase evolution due
to influence of background oscillation [p = 0.05 sin(z)] is de-
picted in Fig. 11(f). In similar lines with the dark one-soliton
situations, we extended the phase dynamics of the two-soliton
solutions as shown in Fig. 12. Unlike the bright two-soliton
which has the same resultant phase before and after collision,
a dark soliton exhibits different forms of resultant phase shift
due to the mode of two-soliton propagation. The medium
inhomogeneity and corresponding phase change in the same
direction of propagation is depicted in Figs. 12(a), 12(c),
and 12(e). The phase variation of a dark soliton due to the
interactions between the two solitons are depicted (with same
inhomogeneity) in Figs. 12(b), 12(d), and 12(f).

A. Nonlinear tunneling and soliton phase

In the recent past, the nonlinear tunneling phenomenon of
solitons have been explored in many leading research works
[34,50–53]. The first experimental achievement of tunnel-
ing phenomena through a potential barrier was reported in
Ref. [54]. To investigate nonlinear tunneling effect of the
Manakov vector soliton through the dispersion barrier or well,
we choose the parameter as follows [44,50]:

V (z) = r0 ± h sech2[c(z − z0)]

R(z) = R0,

where ±h indicates the height of the barrier or well. The
parameter c is related to its width and z0 indicates the lo-
cation of the dispersion barrier or well and R0 is a constant
parameter. When a bright (dark) soliton propagates through
the dispersion barrier, the intensity (blackness) of the pulse
grows and forms a peak at the barrier location and retains its
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FIG. 11. The dark vector soliton propagation through inhomoge-
nous fiber for parameters. (a) Pulse amplification (gain) with p =
−0.02. (b) Corresponding phase. (c) Pulse absorption (loss) with
p = 0.02. (d) Corresponding phase. (e) Periodic background as p =
0.05sin(z). (f) Corresponding phase. Other physical quantities are
k = V (z) = 1, R = 0.5.

shape after crossing the barrier. Similarly, when a bright (dark)
soliton propagates through the dispersion well the intensity
(blackness) of the pulse diminishes and a valley is formed
at z = z0 and restores its shape after crossing through the
well. In this work, apart from the intensity or blackness of
tunneling soliton, we exclusively studied the corresponding
phase change of vector soliton when it passes through the
dispersion barrier and well.

The Manakov bright soliton propagation through disper-
sion barrier and the corresponding phase change are illustrated
in Figs. 13(a) and 13(b), respectively. Similarly, the soliton
passing through dispersion well and corresponding phase
change are respectively depicted in Figs. 13(c) and 13(d). It
is evident that at the region of the barrier, the phase becomes
steeper and maintains its original phase. But in the case of
dispersion well, the phase vanishes at well and retains its
actual phase after crossing the given well.

The dark soliton propagation through dispersion barrier
and corresponding phase change are portrayed in Figs. 14(a)
and 14(b), respectively. When dark soliton pass through the
dispersion barrier, the maximum phase shift takes place at
the region of the barrier and then it retains its original form.
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FIG. 12. The dark two-soliton phase via the asymptotic expres-
sions (a) gain of two-soliton with same direction of propagation.
(b) Gain of two-soliton with opposite direction of propagation.
(c) Loss of two-soliton with same direction of propagation. (d) Loss
of two-soliton with opposite direction of propagation. (e) Periodic
background in two-solitons for the same direction of propagation.
(f) Periodic background in two-solitons for the opposite direction
of propagation. Where same direction of propagation studied with
parameter k1 = 1.5, k2 = 1.5, φ1 = −5, and φ2 = 5, for the interac-
tive mode k1 = −1.5, k2 = 1.5, φ1 = 5, and φ2 = 5. Other relevant
physical quantities are k0 = a = 1 and R = 0.5.

Similarly, dark soliton propagation through dispersion well
and corresponding phase change are respectively depicted in
Figs. 14(c) and 14(d). In the case of a well, the phase vanishes
at the region of the well and retains its original shape after
passing through it. For better insight, the nonlinear tunneling
effect on the Manakov dark two-solitons is shown in Fig. 15,
where the same direction and interactive mode of propagation
of two-soliton are considered.

VI. SUMMARY AND CONCLUSION

In summary, we have investigated the phase dynamics
of the Manakov bright and dark vector solitons in inhomo-
geneous fibers by employing a two-component Vc-CNLS
model. The exact one- and two-soliton solutions have been
derived by Hirota’s bilinear method. To study the phase
dynamics of the system, we have applied a general ansatz
method which enabled explicit analytical expressions for in-
tensity as well as the phase of the soliton. By equating the
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FIG. 13. The bright vector soliton tunneling for parameters.
(a) Dispersion barrier with V (z) = 1 + h sech[z − z0]2 and h = 1.
(b) Corresponding phase. (c) Dispersion well with h = −1. (d) Cor-
responding phase. Other relevant physical quantities are k1 = 1 + i,
α1 = 1 + i, β1 = 1 − i, R(z) = 0.5, z0 = 0, and p = 0.

unknown parameters of this ansatz with the exact solutions
of the well-known HB method, we have obtained the exact
phase of the Manakov soliton. Numerical simulations were
performed and both the bright and dark soliton solutions
show remarkable stability against perturbation. By using the
asymptotic analysis of two-soliton solutions, the phase of
the individual solitons has been explored. Unlike the bright
vector soliton which has a constant phase in a homogeneous

FIG. 14. The dark vector soliton tunneling for parameters.
(a) Dispersion barrier with V (z) = 1 + h sech[z − z0]2 and h = 1.
(b) Corresponding phase. (c) Dispersion well with h = −1. (b) Cor-
responding phase. Other physical quantities are k0 = k1 = a = 1,
R(z) = 0.3, and z0 = 0.

FIG. 15. The phase change of dark two-soliton and tunneling
effect for parameter V (z) = 1 + h sech[z − z0]2. (a) Dispersion bar-
rier in same direction mode with h = 0.7. (b) Dispersion barrier in
opposite direction mode with h = 0.7. (c) Dispersion well in same
direction mode with h = −1. (d) Dispersion well in opposite direc-
tion mode with h = −1, where the same direction of propagation
studied with parameter k1 = 1.5, k2 = 1.5, φ1 = −5, and φ2 = 5 for
the opposite mode k1 = −1.5, k2 = 1.5, φ1 = φ2 = 5. Other physical
quantities are k0 = a = 1, R(z) = 0.5, and z0 = 0.

medium, the time-dependent phase of a dark soliton exhibits
a gradual phase change. The influence of varying coefficients
such as periodically varying GVD, medium gain or loss, and
background oscillations on the dynamics of phase evolution
have also been discussed in detail, to the two-soliton level.
Moreover, we have studied the nonlinear tunneling effect of
Manakov soliton in the context of dispersion barrier or well.
When soliton pass through the dispersion barrier (well), the
maximum (minimum) phase change takes place at the region
of barrier (well) and the phase retains its original form after
crossing the given barrier (well).

To conclude, in contrast to the conventional intensity-based
soliton description, we have presented a comprehensive anal-
ysis of the phase dynamics of the soliton in a self-explanatory
way. Unlike the common usage of the Hirota’s bilinear method
for soliton intensity, we have extended the capability of the
HB method in understanding the phase profile of the multisoli-
ton solutions. As is known, the phase profile has a significant
role in multisoliton solutions, especially in the bound-state
soliton system, where the relative phase plays a significant
role in explaining the nature of the vector soliton interaction,
such as attractive or repulsive. We believe the aforementioned
results in this paper can serve as a potential reference for many
future studies related to the phase dynamics of more complex
systems.
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APPENDIX: COEFFICIENTS OF TWO-SOLITON

Here we give more details of obtained coefficients of two-
soliton solution. For the bright two soliton,

θ1 = k1t − ω1

∫
V (z)dz + φ1

θ2 = k2t − ω2

∫
V (z)dz + φ2


1 = δ(α1α
∗
1 + β1β

∗
1 )

2(k1 + k∗
1 )2


2 = δ(α1α
∗
2 + β1β

∗
2 )

2(k1 + k∗
2 )2


3 = δ(α∗
1α2 + β∗

1 β2)

2(k∗
1 + k2)2


4 = δ(α2α
∗
2 + β2β

∗
2 )

2(k2 + k∗
2 )2

σ1 = (k1 − k2)

(
α1ρ3

k1 + k∗
1

− α2ρ1

k2 + k∗
1

)

σ2 = (k1 − k2)

(
α1ρ4

k1 + k∗
2

− α2ρ2

k2 + k∗
2

)

ς1 = (k1 − k2)

(
β1ρ3

k1 + k∗
1

− β2ρ1

k2 + k∗
1

)

ς2 = (k1 − k2)

(
β1ρ4

k1 + k∗
2

− β2ρ2

k2 + k∗
2

)


5 = δ(|α1|2|α2|2 + |β1|2|β2|2)|k1 − k2|4
4(k1 + k∗

1 )(k2 + k∗
2 )|k1 + k2|4

for the two dark solitons solution,

g0 = aeiφ, h0 = beiφ

φ = k0t − ω0

∫
V (z)dz, g(z) = e− ∫

p(z)dz

λ = 1

2
δ(a2 + b2)V (z), ω0 = − λ

V (z)
− k2

0

2

α1 = 2ω1 + 2kk1 + ik2
1

2ω1 + 2kk1 − ik2
1

, β1 = α1

α2 = 2ω2 + 2kk2 + ik2
2

2ω2 + 2kk2 − ik2
2

, β2 = α2

θ1 = k1t − ω1

∫
V (z)dz + φ1

θ2 = k2t − ω2

∫
V (z)dz + φ2

ω1 = k1

2

[ − 2k ±
√

2δ(a2 + b2) − k2
1

]

ω2 = k2

2

[ − 2k ±
√

2δ(a2 + b2) − k2
2

]

A12 = − 2i(α1 − α2)(ω2 − ω1 − kk1 + kk2) − (α1 + α2)(k1 − k2)2

2i(1 − α1α2)(ω1 + ω2 + kk1 + kk2) − (α1α2 + 1)(k1 + k2)2
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