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Phase reduction is a powerful technique that makes possible to describe the dynamics of a weakly perturbed
limit-cycle oscillator in terms of its phase. For ensembles of oscillators, a classical example of phase reduction is
the derivation of the Kuramoto model from the mean-field complex Ginzburg-Landau equation (MF-CGLE).
Still, the Kuramoto model is a first-order phase approximation that displays either full synchronization or
incoherence, but none of the nontrivial dynamics of the MF-CGLE. This fact calls for an expansion beyond
the first order in the coupling constant. We develop an isochron-based scheme to obtain the second-order
phase approximation, which reproduces the weak-coupling dynamics of the MF-CGLE. The practicality of
our method is evidenced by extending the calculation up to third order. Each new term of the power-series
expansion contributes with additional higher-order multibody (i.e., nonpairwise) interactions. This points to
intricate multibody phase interactions as the source of pure collective chaos in the MF-CGLE at moderate
coupling.
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I. INTRODUCTION

Networks of nonlinear elements with oscillatory behavior
(“oscillators”) are found in a variety of disciplines, such as
neuroscience or engineering [1–4]. It is an empirical fact that
some phenomena arising in these systems can be understood
in terms of interacting phase oscillators. This framework has
proven to be useful modeling and engineering experimental
setups composed of many rhythmic elements, operating in a
wide range of spatiotemporal scales, and interacting through
very different physical processes. We may cite small motors—
cell phone vibrators—interacting through an elastic plate
[5], networks of (electro)chemical oscillators [6,7], arrays
of Josephson junctions [8,9] and globally coupled electrical
self-oscillators [10,11], or nanoelectromechanical oscillators
in a ring [12].

Applying a phase-reduction method [1,13–15] is the rig-
orous way of describing a weakly perturbed oscillator solely
in terms of its phase (the other degrees of freedom become
enslaved). However, obtaining analytically the approximate
“phase-only model” for a specific system is not an easy
task. Moreover, phase reduction becomes inaccurate unless
the disturbances are not sufficiently weak. While according
to common wisdom phase reduction of oscillator ensembles
yields pairwise interacting phase oscillators [13], multibody
(i.e., nonpairwise) interactions may also be relevant in some
contexts. Apart from the idea of invoking hypothetical three-
body interacting limit-cycle oscillators [16], multibody phase
interactions naturally arise if the coupling is nonlinear [17];
see also [18]. Instead, for linear pairwise coupling, three-body
interactions are a distinctive element of second-order phase
approximations, as recently highlighted in [12]. Recognizing
the ubiquity of multibody interactions may also be important
for reconstructing phase interactions from data [19].

Much of our knowledge on nonlinear dynamics relies
on minimal models that capture the essential mechanisms
behind complex phenomena. For oscillatory dynamics, the
conventional test bed is the normal form of the Hopf bifur-
cation above criticality: the so-called Stuart-Landau oscillator.
Concerning geometry, global coupling is a fruitful simplifying
assumption [1,13,20]. These two ingredients are combined in
a standard model of collective dynamics: the fully connected
network of Stuart-Landau oscillators, or the mean-field ver-
sion of the complex Ginzburg-Landau equation (MF-CGLE)
[21–36]. This system is particularly interesting for chaos
theory since it exhibits both microscopic (extensive) and
macroscopic (collective) chaos, either combined or indepen-
dently, depending on parameters [21–24,26,30,33,36]. Phase
reduction of the MF-CGLE yields the Kuramoto-Sakaguchi
model [13,22,37], a first-order approximation that behaves
in a pathological way (unless heterogeneities are present): it
only displays full synchrony or incoherence. Therefore, pure
collective chaos and other phase dynamics of the MF-CGLE
remain to be analytically described in terms of a phase model.
Such a phase reduction should provide additional insights into
the nature of collective chaos (playing an analogous role to the
Kuramoto-Sivashinsky equation of phase turbulence).

The aim of this paper is twofold: we introduce a phase-
reduction method, and we investigate the phase model ob-
tained from the MF-CGLE. The paper is organized as follows.
In Sec. II, we reexamine the phase dynamics of the MF-
CGLE and the connection with its first-order phase reduction
(the Kuramoto model). In Sec. III, we present our system-
atic phase-reduction procedure, based on the direct use of
isochrons, which delivers a well-controlled power expansion
in the coupling strength parameter. Section IV is devoted to
investigating the weak-coupling limit of the MF-CGLE by
means of the second-order phase reduction, which unfolds the
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degeneracies of the Kuramoto model; we address the cases of
a large ensemble of oscillators, as well as a small one of four
oscillators. Section V presents the third-order contribution to
the phase reduction of the MF-CGLE. Finally, in Sec. VI we
discuss the implications of our work and some outlooks.

II. MEAN-FIELD COMPLEX GINZBURG-LANDAU
EQUATION

The MF-CGLE consists of N diffusively coupled Stuart-
Landau oscillators governed by N coupled (complex-valued)
ordinary differential equations:

Ȧ j = Aj − (1 + ic2)|Aj |2Aj + ε(1 + ic1)(Ā − Aj ). (1)

Here, Aj = r jeiϕ j is a complex variable (index j runs from 1
to N), and the mean field is Ā = N−1 ∑N

k=1 Ak . Apart from
the population size N , there are three free parameters in
Eq. (1): ε, c1, and c2. Parameter ε, controlling the coupling
strength, is positive in order to preserve the analogy with the
(spatially extended) Ginzburg-Landau equation. Parameter c1

introduces a cross-coupling between real and imaginary parts
of the Aj’s. This nondissipative coupling, so-called “reac-
tive” [4], generically appears from center manifold reduction
[13]. Finally, “nonisochronicity” (or “shear”) parameter c2 in
Eq. (1) determines the dependence of the angular velocity of
one oscillator on its radial coordinate.

There are two important symmetries in system (1): invari-
ance under a global phase shift Aj → Ajeiφ , and full permu-
tation symmetry stemming from the mean-field coupling.

A. Phenomenology

For many parameter values, the global attractor of Eq. (1)
is either full synchronization (FS) Aj = Ā = e−ic2t or one
incoherent state with vanishing mean field Ā = 0. In the latter
case, the oscillators rotate freely, Aj = √

1 − ε exp{i[−c2 +
ε(c2 − c1)]t + φ j}. Among all the states compatible with
Ā = 0, the most prominent one is the uniform incoherent
state (UIS) in which the φ j are uniformly distributed in the
thermodynamic limit (for a finite ensemble, the φ j are evenly
spaced, deserving the name of splay state or ponies on a
merry-go-round state). A continuum of nonuniform incoher-
ent states (NUISs) coexists with UIS, but usually arbitrarily
weak noise spreads the phases and UIS is eventually attained.
Nonetheless, for certain parameters values, such as those in
Fig. 1(a), the UIS is unstable and one NUIS sets in sponta-
neously [21,25].

In addition to FS, UIS, and NUIS, system (1) ex-
hibits a rich repertoire of collective states including cluster-
ing [22,27–29,33,35], diffusion-induced inhomogeneity (or
chimera) [28,29,32], quasiperiodic partial synchronization
(QPS) [22,36], as well as collective and microscopic chaos
[21–24,26,30,33,36]. In a QPS state, see, e.g., Fig. 1(b), the
mean field Ā rotates uniformly, while the individual oscillators
behave quasiperiodically (since each oscillator “feels” the
periodic driving of the mean field). Remarkably, increasing
coupling QPS may undergo a couple of secondary Hopf bi-
furcations resulting in a state of pure collective chaos [24,36].
With this term we refer to a state in which the mean field
behaves chaotically, while individual oscillators behave in

FIG. 1. Snapshot of the positions Aj for a population of N = 200
oscillators with c2 = 3. The corresponding mean field Ā is marked
by a red cross, and a thin solid line is the trajectory of Ā(t ) for an
interval of 50 t.u. (a) NUIS state with Q ≈ 0.755 (c1 = −0.36, ε =
0.1). (b) Quasiperiodic partial synchrony (c1 = −2, ε = 0.4135).
(c) Pure collective chaos (c1 = −2, ε = 0.4165). (d) Collective and
microscopic chaos (c1 = −2, ε = 0.47) for N = 500.

seemingly chaoticlike fashion (neighboring oscillators remain
close forever due to the absence of microscopic chaos). A
shared feature of NUIS, QPS, and pure collective chaos
[22,24,36] is that the relative positions of the oscillators on top
of a closed curve are preserved; see Figs. 1(a), 1(b), and 1(c).
This fact suggests that a description in terms of the oscillators’
phases alone is possible.

In contrast to Fig. 1(c), Fig. 1(d) shows a chaotic regime
in which phase description breaks down, as it involves mi-
croscopic degrees of freedom and no phase ordering exists.
Hence, our ultimate goal is to find a phase-reduced model
of Eq. (1) that captures as much as possible of the phase-
describable states (NUIS, QPS, modulated QPS, pure collec-
tive chaos, etc.).

B. Basic phase diagrams

Before presenting our results, it is convenient to review
previous results on the MF-CGLE. For fixed c1 and c2 values,
let us denote by εs and ε0 the ε values of marginal linear
stability for FS and UIS. Closed formulas for εs and ε0 are
[21,22]

εs = −2(1 + c1c2)

1 + c2
1

, (2)

ε0(2ε0 − 1)c2
1 + 4(ε0 − 1)(2ε0 − 1)c1c2

− ε0(ε0 − 1)c2
2 + (3ε0 − 2)2 = 0. (3)

These formulas are also valid for finite ensembles, assum-
ing ε0 refers to the splay state. To visualize the stability
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FIG. 2. Partial phase diagram of the MF-CGLE for c2 = 3 (a), 2 (b), and 1 (c). In each panel, the region with stable UIS is depicted in
yellow, and the region with color gradation corresponds to stable NUIS, with a color gradient that indicates the actual Q value (see the text); it
becomes darker as Q → 1. Stable FS is indicated by a blue hatched region. The stability boundaries of FS, UIS, and (Q = 1)-NUIS are depicted
by blue, black, and red lines, respectively, following Eqs. (2), (3), and (4) (setting Q = 1). In panels (a) and (b), there is a green-hatched region
where other phase-describable states such as the ones shown in Figs. 1(b) and 1(c) are stable.

boundaries in Eqs. (2) and (3), it is convenient to fix either
c1 or c2. Following [22] we choose to fix c2, and display the
loci of εs and ε0 in the parameter plane (c1, ε). In the phase
diagrams in Figs. 2(a), 2(b), and 2(c), we selected c2 = 3, 2,
and 1, respectively. This choice is motivated by the fact that
most previous works on the MF-CGLE adopt either c2 = 2
or 3. One key observation is that, as εs and ε0 approach
zero, the boundaries converge to the condition 1 + c1c2 = 0,
which is the well known Benjamin-Feir-Newell criterion for
the stability of uniform oscillations in the complex Ginzburg-
Landau equation in arbitrary dimension [4,13,38,39]. There is
a critical value c2 = √

3 = 1.732 . . . at which the boundaries
εs and ε0 become tangent at ε = 0. Accordingly, for c2 = 1,
see Fig. 2(c), there is a region of bistability between UIS and
synchrony, in contrast, e.g., to Fig. 2(b).

The stability of a NUIS depends exclusively on the mean
field Q = |N−1 ∑

j exp(2iϕ j )|. The coupling constant εQ at
which one particular NUIS becomes unstable was obtained
in Ref. [25]:

[
εQ(2εQ − 1)c2

1 + 4(εQ − 1)(2εQ − 1)c1c2

−εQ(εQ − 1)c2
2 + (3εQ − 2)2

][
(2 − 3εQ)2 + ε2

Qc2
1

]
= Q2εQ(1 − εQ)(3εQ − 2)2

(
c2

1 + 1
)(

c2
2 + 1

)
. (4)

This formula is the generalization of (3) with the important
qualitative information that the size of the stability region
increases as Q grows, reaching its maximum for Q = 1. At
Q = 1, the NUIS collapses into a two-cluster state with
equally populated groups. The value of Q is still far
from breaking the degeneracy of a NUIS, provided Q �= 1,
since the values of all “higher-order” mean fields fn =
|N−1 ∑

j exp(niϕ j )| (n > 2) are free. Nevertheless, the con-
clusion based on numerical simulation is that any small
amount of noise causes fn to converge to zero, and Q to
take the smallest value among all non-unstable (i.e., neutrally
stable) NUISs. Therefore, it is assumed hereafter that the term
NUIS is constrained to fn = 0 (n > 2).

Figures 2(a) and 2(b) include a green-hatched region,
adjacent to the UIS region at moderate ε values, where other
phase-describable states are stable. These are QPS, modulated
QPS, and pure-collective chaos [24,36]. We determined the
boundary through simulations with N = 200 oscillators, but
the result is insensitive if a larger N value is used.

C. First-order phase reduction: Kuramoto-Sakaguchi model

At the lowest order, applying the classical averaging tech-
nique [4,13,37] to Eq. (1) yields the Kuramoto-Sakaguchi
model [40]. In this model, each oscillator is described by
a phase θ j , and it is coupled to the other ones by pairwise
interactions of the form sin(θi − θ j + α). In agreement with
the mean-field character of the system, oscillators are cou-
pled through the Kuramoto order parameter Z1 ≡ R ei� =
N−1 ∑N

k=1 eiθk , such that the ordinary differential equations
governing the dynamics are

θ̇ j = � + εη R sin(� − θ j + α), (5)

with constants � ≡ −c2 + ε(c2 − c1), η ≡√
(1 + c2

2 )(1 + c2
1 ), and phase lag

α = arg[1 + c1c2 + (c1 − c2)i]. (6)

Equation (5) is the disorder-free version of the paradig-
matic Kuramoto-Sakaguchi model [13,40] and related models
[41]. The dynamics of Eq. (5) is determined by the sign of
1 + c1c2 (Benjamin-Feir-Newell criterion): full synchrony—
corresponding to R = 1—is stable for 1 + c1c2 > 0, and un-
stable for 1 + c1c2 < 0. In the latter case, among infinitely
many oscillator densities with R = 0, there is a convergence
to the UIS under an arbitrarily weak noise [22].

As discussed above, the MF-CGLE has much richer dy-
namics than its first-order phase reduction (5), even arbitrarily
close to the ε = 0 limit. Therefore, it is mandatory to extend
the phase reduction to order O(ε2) if we wish to avoid
degeneracies in the phase approximation. This is what we do
next.
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III. SYSTEMATIC PHASE REDUCTION

In spite of the relevance of Eq. (1), no phase reduction
beyond the first order is currently available. Finding higher-
order terms in the phase reduction is necessary to unfold
the singularity at (c1, ε) = (−1/c2, 0); see Fig. 2. This path
of investigation should allow us to discern which are the
true behaviors of the MF-CGLE in the small-coupling limit
|ε| � 1. Moreover, it might serve to shed light on the mech-
anisms behind complex dynamics found (so far) for moderate
ε values.

An isochron-based phase reduction approach is developed
here. It allowed us to obtain the phase reduction of the MF-
CGLE up to order ε3. In this section, we give the details of
our phase-reduction calculation. We anticipate that the results
at second and third order in ε correspond to Eqs. (15) and (29)
below.

A. Isochrons

The concept of isochron [42,43] is the cornerstone of
phase-reduction methods [1,13]. Isochrons foliate the attrac-
tion basin of a stable limit cycle, each intersecting it at one
point. The phase of that point is attributed to all points of
the isochron, motivated by their convergence as time goes
to infinity (the so-called “asymptotic phase” [44]). For the
Stuart-Landau oscillator, polar coordinates (r, ϕ) relate to the
phase θ according to [4,13]

θ (r, ϕ) = ϕ − c2 ln r. (7)

As mentioned above, on the limit cycle (r = 1), θ = ϕ. The
term “nonisochronicity” or “shear” for parameter c2 becomes
clear in light of Eq. (7), since c2 controls how much the
isochrons deviate from radial lines.

B. Isochron-based phase reduction

We continue the analysis writing Eq. (1) in polar coordi-
nates:

ṙ j = r j
(
1 − ε − r2

j

)

+ ε

N

N∑
k=1

rk[cos(ϕk − ϕ j ) − c1 sin(ϕk − ϕ j )], (8)

ϕ̇ j = −c2r2
j − εc1

+ ε

Nrj

N∑
k=1

rk[c1 cos(ϕk − ϕ j ) + sin(ϕk − ϕ j )]. (9)

After the change of variables (r j, ϕ j ) → (r j, θ j ) through
Eq. (7), we get

ṙ j = f (r j ) + εg j (r, θ), (10a)

θ̇ j = εh j (r, θ). (10b)

Here, we have also implemented the transformation θ j →
θ j − c2t (by moving to a rotating frame with angular velocity
−c2). In this way, the time derivatives of the phases in
(10b) are proportional to ε, while the r j are fast variables
that become enslaved to the dynamics of θ j . In Eq. (10)
f (r) = r(1 − r2), and functions g j and h j depend on the
vectors r = (r1, r2, . . . , rN )T and θ = (θ1, θ2, . . . , θN )T as

follows:

g j (r, θ) = −r j + 1

N

N∑
k=1

{
rk

[
cos

(
θk − θ j + c2 ln

rk

r j

)

− c1 sin

(
θk − θ j + c2 ln

rk

r j

)]}
, (11a)

h j (r, θ) = c2 − c1

+ 1

Nrj

N∑
k=1

{
rk

[
(c1 − c2) cos

(
θk − θ j + c2 ln

rk

r j

)

+ (1 + c1c2) sin

(
θk − θ j + c2 ln

rk

r j

)]}
. (11b)

The separation of time scales in Eq. (10) suggests using
classical perturbation techniques such as averaging, adiabatic
approximation, or two-timing. However, the perturbation ap-
proach described next proved to be both conceptually simple
and much less convoluted, permitting us to obtain the phase
reduction up to cubic order in ε. Based on the empirical
observation that, at small ε values, the oscillators fall on a
closed curve and preserve their phase ordering, we assume
that the radii are completely determined by the phases r j =
r j (θ1, θ2, . . . , θN ). We also postulate an expansion in powers
of ε for the radii: r = r (0)

j + εr (1)
j + ε2r (2)

j + · · · ; or in vector
notation, r = r(0) + εr(1) + ε2r(2) + · · · . Equation (10b) for
θ j becomes

θ̇ j = εh j (r(0), θ) + ε2(∇rh j (r(0), θ)) · r(1)

+ ε3[(∇rh j (r(0), θ)) · r(2) + (Mrr) j] + · · · , (12)

where ∇r ≡ (∂r1 , ∂r2 , . . . , ∂rN ) and (Mrr) j ≡
1
2!

∑
k,l ∂rk ∂rl h j (r(0), θ)r (1)

k r (1)
l . Now, the explicit dependence

on the radii in (12) must be removed. This is accomplished
equating both sides of (10a) at the same order. The order
O(ε0) yields r (0)

j = 1, and (12) becomes (at the lowest order)
the Kuramoto-Sakaguchi model (5). At order ε,

ṙ (1)
j = f ′(r (0)

j

)
r (1)

j + g j (r(0), θ). (13)

As r j depends exclusively on the phases, we can apply the
chain rule: ṙ j = (∇θ r j ) · θ̇. At order ε, the time derivative
vanishes:

ṙ (1)
j = (∇θ r (0)

j

) · h = 0.

Hence Eq. (13) yields the result

r (1)
j = −g j (r(0), θ)

f ′(r (0)
j

) = g j (r(0), θ)

2
, (14)

which can be inserted in (12) to obtain the ε2 contribution.
Through elementary manipulations, the second-order phase
reduction of Eq. (1) can be condensed into this expression:

θ̇ j = � + εη R sin(� − θ j + α)

+ ε2η2

4

{
R Q sin(� − � − θ j )

−
2∑

m=1

(−R)m sin[m(� − θ j ) + β]

}
+ O(ε3). (15)
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The O(ε2) term depends on Z1 as well as on the sec-
ond Kuramoto-Daido order parameter [45] Z2 ≡ Q ei� =
N−1 ∑N

k=1 e2iθk . To enhance the clarity of Eq. (15), we found
it convenient to define a phase lag

β = arg
(
1 − c2

1 + 2c1i
)
, (16)

which turns out to be independent of c2. The other constants in
Eq. (15) are the same as in Eq. (5); as the change to a rotating
frame has been reversed, the O(ε0) term inside � is −c2 (as
before).

IV. SECOND-ORDER PHASE REDUCTION:
THREE-BODY INTERACTIONS

In this section, we study in detail the phase model obtained
from the second-order phase reduction of the MF-CGLE, i.e.,
the system of phase oscillators governed by Eq. (15). Of the
three O(ε2) contributions to Eq. (15), the first element of the
sum (m = 1) entails a parameter shift to the O(ε) interaction,
and it is therefore irrelevant in qualitative terms. The other two
terms in Eq. (15) correspond to three-body (i.e., nonpairwise)
interactions:

R2 sin[2(� − θ j ) + β] = 1

N2

∑
k,l

sin(θk + θl − 2θ j + β ),

(17)

R Q sin(� − � − θ j ) = 1

N2

∑
k,l

sin(2θk − θl − θ j ). (18)

The price of working only with the phases is that two-body
interactions of the original MF-CGLE (1) become multibody
interactions, as higher orders of ε are considered. In compari-
son to Eq. (1), our phase model can be much more efficiently
analyzed, both analytically and numerically. We devote the
remainder of this section to analyze the phase model in
Eq. (15). We note that, as expected, the model is invariant
under global phase shift θ j → θ j + φ. For the sake of making
the presentation simpler, we assume constant � = 0, since
this can always be achieved by going to a rotating frame
θ j → θ j + �t .

A. Full synchronization

The stability boundary of FS (θ j = � = �/2) is easily
calculated. In particular, for infinite N it is almost imme-
diate: we simply assume one oscillator is infinitesimally
perturbed, say the first one, θ1 = � + δθ1. The evolution
of the perturbation obeys the linear equation dδθ1/dt =
εη[cos α + εη

4 (1 − cos β )]δθ1. At threshold (dδθ1/dt = 0)
the coupling satisfies

εs = −2(1 + c1c2)

c2
1

(
1 + c2

2

) , (19)

where we have written cos α and cos β in terms of c1 and c2.
For illustration, the curve defined by (19) is represented by a
blue dotted line in Figs. 3(a) and 3(b) for c2 = 3 and c1 = 1,
respectively. Equation (19) is asymptotically exact as εs → 0,
and deviates progressively from the FS boundary of the MF-
CGLE (represented by a solid line) as εs increases.

FIG. 3. Comparison between the bifurcation lines of FS, UIS,
and NUIS (Q = 1) for the MF-CGLE (solid lines) and for the second-
order phase reduction (dashed lines). Line colors are the same as in
Fig. 2. (a) c2 = 3 and (b) c2 = 1.

B. Incoherent states

We adopt the thermodynamic limit and define a density ρ

such that ρ(θ, t )dθ is the fraction of oscillators with phases
between θ and θ + dθ . Now θ ∈ [0, 2π ) is a cyclic variable,
i.e., ρ(θ + 2π, t ) = ρ(θ, t ), and we impose the normalization
condition

∫ 2π

0 ρ(θ, t )dθ = 1. The oscillator density ρ obeys
the continuity equation because of the conservation of the
number of oscillators:

∂tρ(θ, t ) + ∂θ [v(θ )ρ(θ, t )] = 0. (20)

Here v = θ̇ is the ρ-dependent velocity of an oscillator with
phase θ . We define the Fourier modes of ρ:

ρ(θ, t ) = 1

2π

∞∑
n=−∞

ρneinθ , (21)

with ρ0 = 1 and ρn = ρ∗
−n. The mean fields Zn reduce to

Zn =
∫ 2π

0
ρ(θ, t ) einθ dθ = ρ−n.

Inserting the Fourier expansion (21) into the continuity equa-
tion (20) allows us to rewrite our model in Fourier space:

ρ̇n = n

2
εη

{
e−iαρ1ρn−1 − eiαρ∗

1ρn+1

+ εη

4
[e−iβρ1(ρn−1 − ρ1ρn−2) − eiβρ∗

1 (ρn+1 − ρ∗
1ρn+2)

− ρ∗
2ρ1ρn+1 + ρ2ρ

∗
1ρn−1]

}
. (22)

1. Uniform incoherent state

The stability boundary of the UIS [ρ(θ ) = (2π )−1 ⇔
ρn �=0 = 0] is obtained linearizing the previous equation. It is
easy to notice that only the first mode may destabilize. We
have for |ρ1| � 1,

d

dt
δρ1 = εη

2

[
e−iα + εηe−iβ

4

]
δρ1. (23)

Neglecting the trivial marginal case ε = 0, the stability bound-
ary satisfies cos α + (1/4)ε0η cos β = 0. Or in terms of c1

012211-5



IVÁN LEÓN AND DIEGO PAZÓ PHYSICAL REVIEW E 100, 012211 (2019)

and c2,

ε0 = 4(1 + c1c2)(
c2

1 − 1
)(

1 + c2
2

) . (24)

In Figs. 3(a) and 3(b), we can contrast this formula with the
exact one for the MF-CGLE, Eq. (3), for two c2 values.

2. Nonuniform incoherent states

According to (22), in an incoherent state (ρ1 = 0) higher-
order modes are at rest: ρ̇n = 0 (n > 2). The linearization of
(22) around ρ1 = 0 and ρn �= 0 (|n| � 2) is (schematically) as
follows:

d

dt

⎛
⎜⎜⎜⎜⎝

δρ1

δρ∗
1

δρ2

δρ∗
2

...

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

• • 0 0 · · ·
• • 0 0 · · ·
• • 0 0 · · ·
• • 0 0 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

δρ1

δρ∗
1

δρ2

δρ∗
2

...

⎞
⎟⎟⎟⎟⎠, (25)

where the • symbols denote nonzero elements. Clearly, the
structure of this equation yields an infinite set of vanishing
eigenvalues plus two eigenvalues coming from the first two
rows. The equation for δρ1 is hence the only relevant one. The
linear terms in δρ1 yield

˙δρ1 = ε η

2

{[
e−iα + εη

4
(e−iβ − |ρ2|2)

]
δρ1

−
[

eiα + εη

4
(eiβ − 1)

]
ρ2 δρ∗

1

}
. (26)

All higher-order modes, save ρ2, are absent in the equation. As
ρ̇2 = 0, we can choose the coordinate axes such that ρ2 = Q ∈
R. After some calculations, we find that NUIS with a specific
Q value is marginally stable at

εQ = 4(1 + c1c2)(
c2

1 − 1
)(

1 + c2
2

) + η2Q2
. (27)

As occurs in the MF-CGLE, the larger Q is, the larger is the
stability region of the NUIS. Our empirical observation is that,
for given c1 and c2, if ε is set at a certain ε = εQ∗ the numerical
integration of the system (either oscillators or Fourier modes),
under a very weak noise, always converges to a NUIS with
ρn�3 = 0; and |ρ2| = Q∗. In other words, the system adopts
the minimum value of |ρ2| among all allowed by Eq. (27).

The state Q = 1 (R = 0)—the last NUIS to destabilize—is
singular, not only because it is just a two-cluster state with
two equally populated groups, but also because in contrast
to the other NUIS, the instability is not oscillatory. Equa-
tion (26) takes the form ˙δρ1 ∝ a δρ1 − a∗ δρ∗

1 , which yields
an additional zero eigenvalue corresponding to the direction
Im(δρ1) = 0.

C. Validity and accuracy

From our previous results, we conclude that the phase
reduction (15) is free of degeneracies. The boundaries of FS,
UIS, and NUIS with different Q values do not overlap. As a
double-check of the correctness of our analysis, we verified
that the boundaries (19), (24), and (27) obtained through the
phase reduction are tangent to the equivalent boundaries of

the MF-CGLE, Eqs. (2), (3), and (4), at ε = 0. In Fig. 3 we
depict together the boundaries of FS, UIS, and (Q = 1)-NUIS
of the MF-CGLE (solid lines) and phase reduction to second
order (dashed lines) for two values of the nonisochronicity:
c2 = 3 and 1. These plots permit us to identify the range of
ε in which the second-order approximation is accurate. For
c2 = 1 the approximate bifurcation lines are accurate up to
ε ≈ 0.05, while this range is certainly smaller for c2 = 3.

For general c1, c2 values, the prefactor (εη)n appearing for
first (n = 1) and second (n = 2) orders suggests to extrapolate
the relative smallness of ε to other c1 and c2 values. Thus, if
in Fig. 3(b) accuracy is good up to εη ≈ 0.05η, and η ≈ 2, we
propose

εη < 0.1 (28)

as a conservative range of validity of the second-order ap-
proximation. Nevertheless, Eq. (28) must be regarded with
some caution, since the third-order contribution to the phase-
reduction expansion is not exactly proportional to (εη)3; see
Sec. V.

D. Quasiperiodic partial synchronization

The phenomenon of QPS was originally reported in the
MF-CGLE [24] as a state emerging from the destabilization of
the UIS, see Fig. 1(b), though its finding is usually attributed
to a model of phase oscillators [46]. As mentioned above, in
a QPS state the mean-field rotates uniformly, but individual
oscillators behave quasiperiodically. Each oscillator passes
periodically through a bottleneck located at the phase arg(Ā).
The onset of QPS looks like a Hopf bifurcation undergone
by the UIS, but this is not the case because of the infinitely
many neutral directions pointing to nearby NUISs. It is also
important to emphasize that stable QPS does not settle any
time the UIS becomes unstable. As can be appreciated in
Figs. 2(a) and 2(b), QPS is only observed at moderate ε values
when entering inside the green hatched region. Otherwise,
what we observe in the MF-CGLE is that the QPS state
born at the instability of the UIS is a saddle. For parameter
values with unstable UIS and FS—outside the green-hatched
regions—initial conditions close to the UIS approach QPS
for long time, eventually converging to one NUIS. If any
small amount of noise is present, the NUIS with the lowest Q
among the non-unstable ones is selected. The same behavior
is displayed by the second-order phase reduction, Eq. (15);
see Fig. 4. The logarithmic scaling of the residence times
near QPS indicates a heteroclinic connection between UIS
and QPS. The amplitude of the saddle QPS depends on the
particular parameter values. The state of QPS progressively
grows as we move away from the UIS stability boundary,
finally colliding with FS (|ρn| → 1) at the point where FS
becomes stable.

All in all, these results confirm the correctness of our
expansion, but at the same time prove the limitations of the
second-order reduction, since the QPS attractor—found at
moderate ε values, see Figs. 2(a) and 2(b)—is not reproduced.

E. Clustering

Clustering is a much studied phenomenon in oscillator
ensembles [47]. In a clustered state, there are several groups
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FIG. 4. Evolution of R(t ) for N = 1000 phase oscillators gov-
erned by (15) initiated near the UIS state. For the selected parameter
values (c2 = 3, c1 = −0.38, ε = 0.1), UIS is unstable but there are
neutrally stable NUISs. After a transient in the neighborhood of QPS
(R(t ) ≈ const), the system approaches a particular NUIS (R = 0).
From left to right, the initial conditions are random perturbations
of the UIS with R0 = 4.3 × {10−7, 10−9, 10−11, 10−13}. The origin
of times was shifted in all data sets to make the initial rise of R
coincident. The inset shows the QPS transient time as a function
of R0. Note the logarithmic divergence of transient time T ∼ ln R0

(consistent with heteroclinicity).

of oscillators, each group formed by oscillators sharing the
same phase. These kind of states are always possible in a
mean-field model, so the relevant question is the stability.
Indeed, the MF-CGLE is known to exhibit stable cluster at
certain parameter ranges [21,22,27–29,33,35], specifically for
strong coupling (ε ≈ 1).

Are there stable clustered states at small coupling? Our
phase model allows us to address this question in an analytical
way. Nonetheless, the general problem is intractable, and we
decided to restrict our study to states with two point clusters,
where a fraction p of the population is in the A-state θA, and
the remaining (1 − p) fraction is in the B-state θB �= θA. We
now summarize the results; the corresponding calculations
can be found in Appendix A.

As an illustrative example, Fig. 5 depicts the combi-
nations of phase difference � = θA − θB and imbalance p
corresponding to actual cluster solutions for three different
c1 values with fixed values of c2 and ε. Each panel is a
typical situation in a specific region of parameter space. At
the FS threshold, between panels (a) and (b), there is an
infinity of two-cluster solutions colliding with FS (� = 0).
As a consequence, there is a reconnection of the two-cluster
solutions. In Fig. 5, solid lines represent stable locking of the
clusters. However, these solutions are fragile against disinte-
gration of the largest cluster. Our conclusion after an extensive

(a) (b)

(c)

FIG. 5. Two-cluster solutions of Eq. (15). Each panel represents
the fraction p of oscillators in one cluster as a function of the
phase lag between clusters � = θA − θB. We fix c2 = 3 and ε = 0.3
and select three values of c1 in each panel. The arrow indicates
the direction of increasing c1. Solid (dashed) lines indicate stable
(unstable) locking of the clusters. (a) Unstable FS region, c1 =
−0.7, −0.5, −0.43; (b) stable FS and not unstable (Q = 1)-NUIS
region, c1 = −0.42, −0.36, −0.3; (c) stable FS and unstable (Q =
1)-NUIS region, c1 = −0.25, −0.1, 0.1.

exploration of parameter space is that stable two-cluster states
are not stable at small coupling. To be more precise, what
we observe in our second-order phase reduction, Eq. (15),
is that stable clustering is hardly found, and if so, it always
requires moderate coupling strengths, violating (28). And
indeed, we could not replicate clustering in the MF-CGLE for
the parameter values predicted by Eq. (15).

The stability analysis of the two-cluster solutions also
confirmed that slow switching [48]—a stable heteroclinic
connection between two configurations of � = θA − θB—is
not possible.

F. Finite population, N = 4

This work focuses on the behavior of the MF-CGLE in the
thermodynamic limit (N → ∞). But the phase reduction (15)
is valid for an arbitrary population size. In this section, we
construct a bifurcation diagram for N = 4 oscillators, one size
previously considered in the MF-CGLE context [35,49]. Here,
this choice is motivated by the fact that in globally coupled
systems this is the smallest size with a continuum of states
with R = 0 [50], equivalent to the NUISs for N = ∞.

In analogy with its thermodynamic limit, the finite-N
Kuramoto-Sakaguchi model has an exceptional transition be-
tween FS and the splay state at 1 + c1c2 = 0. This degener-
acy can be broken down, for instance, adding higher-order
harmonics to the (pairwise) interactions [51]. In our case,
degeneracy is broken down by the three-body interactions of
the second order in the phase-reduction expansion.

012211-7



IVÁN LEÓN AND DIEGO PAZÓ PHYSICAL REVIEW E 100, 012211 (2019)

FIG. 6. Bifurcation diagram for Eq. (15) with N = 4 oscillators
and c2 = 3, ε = 0.1. Solid (dashed) lines represent stable (unstable)
solutions. In the case of UIS and NUIS, the solution depicted must
be understood as the one observed under arbitrarily weak noise
(there is a continuum of neutral solutions with Q larger than the
solution depicted). The saddle QPS orbit was continued by means
of a Newton-Raphson algorithm, and the values of R and Q assigned
in the diagram correspond to their time averages.

Working with a small number of oscillators has the ad-
vantage that we can track all the stationary solutions, in
particular the clustered solutions. As there are 3! orderings
for the oscillator phases, and phase ordering is preserved
by the dynamics because of the mean-field interactions, we
choose the oscillators’ labels such that θ j � θ j+1. (We assume
here θ j ∈ [0, 2π ) to avoid artificial degeneracies.) The set of
phases {θ1, θ2, θ3, θ4} may take several invariant configura-
tions. Apart from the trivial FS state {a, a, a, a}, there exists a
continuum of “NUIS-like” Z2-symmetric states with {a, a +
b, a + π, a + b + π}, where b ∈ (0, π/2) ∪ (π/2, π ). In the
limit b → π/2, the NUIS becomes the splay state (the ana-
log of UIS). In addition, in the limits b → 0 and b → π

the NUIS collapses into a two-cluster state with opposite
phases. Apart from this one, other two-cluster solutions are
possible. Namely, for some parameter values there exist two
symmetry-related 2-2 configurations {a, a, b, b} (b �= a + π ).
Additionally, one 3-1 cluster exists, designated as {a, a, a, b}
or {b, a, a, a}. Three-cluster solutions, like {a, a, b, c}, do not
exist in our phase reduction, in contrast to the MF-CGLE for
strong coupling [35]. Concerning the N = 4 analog of QPS,
it is a periodic orbit, in which, due to the finiteness of the
population, R and Q fluctuate around their average values.

We use R, Q, and c1 to plot the bifurcation diagram in
Fig. 6. These coordinates have the drawback of collapsing
multiple equivalent states to a single point, hiding symmetries
(e.g., pitchfork bifurcations). However, our choice intends
to ease the comparison with the previous section, and with
the same aim states are labeled borrowing the infinite-N
terminology; namely, we use the labels UIS, NUIS, and QPS

instead of splay state, Z2-symmetric state, and limit cycle,
respectively.

Due to permutation symmetry FS destabilizes at point T in
Fig. 6, as three eigenvalues go through zero simultaneously.
This comprises an equivariant transcritical bifurcation with
the 3-1 cluster, as well as a pitchfork bifurcation involving
a 2-2 cluster. Moreover, at point T, QPS collapses into a
heteroclinic cycle. This coincidence of bifurcations is a known
scenario in systems with full permutation symmetry [50].
Concerning UIS, it undergoes an oscillatory instability at
point U, but this is not a standard Hopf bifurcation because
of the neutral direction along the NUIS manifold. QPS is
a saddle, and not a stable limit cycle as might have been
naively expected. In Fig. 6 we took c2 = 3, and the QPS
branch connects points T and U in a simple way. In contrast
to Fig. 6, for c2 = 1 FS and UIS coexist, and points U and
T switch their relative positions. In that case the QPS branch
is completely reversed (not shown), and the QPS solution is
fully unstable. Consistently, we found a range of c2 values in
between, 1 < c2 < 3, where (depending on ε) the QPS branch
develops a fold.

In summary, the bifurcation diagram for N = 4 appears
to capture the global picture of the transition from UIS to
FS. Considering more oscillators will increase the number of
cluster solutions, see [27], but no essential new features.

V. THIRD-ORDER PHASE REDUCTION:
FOUR-BODY INTERACTIONS

Our reason to deal with the third-order term now is to
illustrate the practicality of the phase-reduction method, and
get a glimpse of the power-series expansion at higher orders.
Evaluating the cubic term in Eq. (12) yields the O(ε3) correc-
tion to Eq. (15):

ε3 1 + c2
2

16
{C1R sin(� − θ j + γ1)

+C2R2 sin[2(� − θ j ) + γ2]

+C3R Q sin(� − � − θ j + γ3)

+C4R Q2 sin(� − θ j + γ4)

+C5R3 sin(� − θ j + γ5) + C6R2Q sin(� − 2θ j + γ6)

+C7R3 sin[3(� − θ j ) + γ7]

+C8R2P sin(� − 2� − θ j + γ8)

+C9R2Q sin(� − 2� + γ9) + DR2}. (29)

This expression depends on the third Kuramoto-Daido
order parameter Z3 ≡ Pei� = N−1 ∑

j ei3θ j . The dependence
of constants {Cj, γ j} j=1,...,9 and D on c1 and c2 is tabulated in
Appendix B. The structure of Eq. (29) deserves some words
here. The terms proportional to Cj with indices j = 1, 2, 3
are higher-order corrections to Eq. (15), tantamount to a
shift in parameter values. Four-body interactions appear in
five different forms, corresponding to indices j = 4, . . . , 8.
For illustration, we expand a couple of these four-body
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contributions:

R3 sin(� − θ j ) = 1

N3

∑
k,l,n

sin(θk + θl − θn − θ j ),

R2P sin(� − 2� − θ j ) = 1

N3

∑
k,l,n

sin(3θk − θl − θn − θ j ).

There are several qualitative features in Eq. (29) that deserve
to be pointed out:

(i) The overall O(ε3) contribution is not proportional to
η3—though some terms indeed are—in contrast to O(ε) and
O(ε2), which are proportional to η and η2, respectively.

(ii) From Eqs. (15) and (29) we can expect that truncation
of the power series to order εn yields up to (n + 1)-body
interactions, but not higher-order nonpairwise couplings. We
can also expect that only Kuramoto-Daido order parameters
Zk with k � n appear.

(iii) The last two terms in Eq. (29) are somewhat unex-
pected (nonetheless see [17]), since they depend on the mean
fields Z1 and Z2, but not on θ j itself. They are hence irrelevant
concerning synchronization boundaries.

(iv) As occurs with the O(ε2) term, FS and (N)UIS states
are consistent with the MF-CGLE dynamics: (i) all terms in
(29) are proportional to R ensuring that the contribution to
the oscillators’ frequencies vanishes in one incoherent state;
(ii) in the FS state, the contribution also vanishes, as expected
since the frequency of FS in the MF-CGLE varies linearly
with ε. Accordingly, it holds that D + ∑

j Cj sin γ j = 0; cf.
Appendix B.

Unfortunately, there is not a recognizable pattern in the
new terms appearing in the power-series expansion, so it is
not possible to extrapolate to higher orders in ε.

From Eqs. (15) and (29) we can derive the stability bound-
ary of FS, NUIS (for UIS just set Q = 0) obtaining

2(1 + c1c2) + εsc
2
1

(
1 + c2

2

) + ε2
s c3

1c2
(
1 + c2

2

) = 0, (30)

4(1 + c1c2) + εQ
(
1 + c2

2

)[(
1 − c2

1

) − Q2
(
1 + c2

1

)]

+ ε2
Q

2

(
1 + c2

2

)[(
2 − 2c2

1 − 3c1c2 + c3
1c2

)
− Q2

(
1 + c2

1

)
(−2 + 3c1c2)

] = 0. (31)

In Fig. 7 we depict (a) ε0 and (b) εs from the previous
expressions and compare them with the result of the MF-
CGLE, and with the second-order approximation. The slopes
and the curvatures of the bifurcation lines of the third-order
phase reduction agree with those of the MF-CGLE at ε = 0.

VI. DISCUSSION

A. Alternative phase reduction(s)

Our phase reduction is a genuine power series in the small
parameter ε. Another strategy to analyze (1) is to absorb the
εAj term prior to the phase reduction. Specifically, setting
t ′ = (1 − ε)t and

κ = ε

1 − ε
, (32)

FIG. 7. Stability boundaries of (a) UIS and (b) FS obtained
exactly and from phase approximations, for c2 = 3. The solid line
corresponds to the exact boundary of the MF-CGLE (1), while
dotted and dashed lines correspond to second- and third-order phase
approximations, respectively. Blue lines are obtained from (15) and
(29). Orange lines are the results if prior to phase reduction the
MF-CGLE is transformed into (33), performing an isochron-base
phase reduction in powers of κ .

we get

dBj

dt ′ = Bj − (1 + ic2)|Bj |2Bj + κ (1 + ic1)B̄, (33)

where Bj = Aj exp(iεc1t )/
√

1 − ε. Applying our phase-
reduction method to (33) we obtain an alternative phase reduc-
tion in powers of κ (the result is not qualitatively different).

Is it worth transforming (1) into (33)? In other words, is the
phase reduction of (33) up to order κn superior to that of (1)
at order εn? Certainly, phase reductions at order εn and κn are
not equivalent since κ = ε + ε2 + ε3 + · · · . Any truncation
at order κn involves all powers of ε. The relative accuracy of
the phase reductions of (33) and (1) at the same order can be
assessed comparing the bifurcation loci. Instead of applying
phase reduction to Eq. (33), the quickest strategy is to assume
the existence of an exact phase reduction involving all orders
in ε such that the exact critical value ε∗ (the asterisk denotes
an arbitrary state: UIS, FS,...) satisfies

∞∑
n=1

an(c1, c2) εn
∗ + 1 + c1c2 = 0. (34)

The coefficients an depend on the specific instability we are
considering.

Phase reduction of (1) up to order n results in a truncation
of (34) to order n − 1. For instance, the second-order phase
reduction of (1) yields the linear relation [recall Eq. (19) or
(24)]

a1ε∗ + 1 + c1c2 = 0. (35)

At the same order, the phase reduction of (33) results in an
analogous expression

a′
1κ∗ + 1 + c1c2 = 0. (36)

Given that κ = ε + O(ε2), consistency with (34) determines
a′

1 = a1. Thus the bifurcation locus estimated from the phase
reduction of (33) satisfies (in coordinate ε) a1ε∗/(1 − ε∗) +
(1 + c1c2) = 0, which is slightly different from (35). Analo-
gous reasoning permits us to obtain the bifurcation lines for
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the third-order phase reduction of (33) from Eqs. (30) and
(31).

A comparison of the bifurcations lines of UIS and FS is
displayed in Figs. 7(a) and 7(b) for c2 = 3. We see that the
transformation of (1) into (33) allows us to obtain a phase
model that captures better the stability boundary of UIS, but
not of FS. It is easy to understand why. Each strategy captures
better the dynamics in which the quantities multiplying the
coupling constant are small. Thus, Eq. (1) is already a good
starting point for states close to FS (Aj ≈ Ā), while (33)
works better close to incoherence (Ā ≈ B̄ ≈ 0). Finally, note
that in addition to (1) and (33), there exists a continuum of
alternative, intermediate formulations in which εAj is only
partly absorbed by a coordinate transformation.

B. Possible extensions of this work

The phase-reduction procedure presented in this work can
be easily implemented in other geometries, different from
the fully connected network. In a networked architecture,
phase reduction at first order in ε couples phases with the
nearest-neighbor phases. At order ε2, second nearest neigh-
bors come also into play [19], and progressively more distant
nodes participate in the phase dynamics at higher orders.
Also, the case of nonlocally coupled Stuart-Landau oscillators
[52] is analyzable with the phase reduction presented here.
Concerning the original complex Ginzburg-Landau equation,
a partial differential equation of reaction-diffusion type, our
phase reduction procedure is very simple and efficient obtain-
ing the coefficients of the second-order terms: ∇4θ , (∇2θ )2,
(∇θ )2∇2θ , ∇θ∇3θ [13].

Concerning the oscillator dynamics, the phase reduction
carried out here can be easily applied to planar oscillators
with polar symmetry (λ − ω systems). In the latter case,
analogously to (7), the isochrons satisfy θ = ϕ + χ (r) [1].
Even if function χ does not have a closed form, it is still
possible to obtain the phase model using the derivatives of
the isochrons on the limit cycle.

C. Relationship with other phase-reduction approaches

In this subsection, we comment on the progress of our
phase-reduction approach with respect to previous works,
even if only directly applicable to λ − ω systems.

An alternative way of obtaining the second-order phase re-
duction of the MF-CGLE, Eq. (15), is applying the systematic
averaging formulation in Chap. 4 of the book by Kuramoto
[13]. This calculation is, however, much more lengthy than the
one presented in Sec. III. Not surprisingly, obtaining the order
ε3 with the averaging approach [13] is a totally impractical
task, while we succeeded with our method (with the assistance
of symbolic software); see Eq. (29).

Equation (15) can also be obtained assuming small vari-
ations of the radii, i.e., setting ṙ j = 0. This procedure was
followed in [12,53], with the difference being that there the
small quantities are deviations from the reference limit cycle.
Here, we pursued a bona fide power expansion in terms
of the coupling constant ε, and the result differs from the
one obtained following [12,53]. In passing, we mention that
instead of assuming r j = r j (θ1, θ2, . . . , θN ), once Eqs. (10)

are derived, the two-timing approximation, such that the θ j

depend only on a slow time τ = εt , can also be applied.
In contrast to our work, Refs. [17,54] apply first-order

phase reduction obtaining multibody phase interactions. The
reason is that those works invoke amplitude equations for
an ensemble close (but not asymptotically close) to a Hopf
bifurcation. The amplitude equation, which can be seen as
a generalization of Eq. (1), turns out to contain nonlinear
interactions. The nonlinear coupling among the Aj’s leads
to multibody interactions in the first-order phase reduction.
Applying second-order phase reduction, as described here, to
the amplitude equations in [17] or [54] may be interesting.

D. Toward a minimal phase model of pure collective chaos

Pure collective chaos has been found in several phase
models with heterogeneity [55] or delay [56]. Collective chaos
in the MF-CGLE, see Fig. 1(c), calls for a phase description in
terms of identical phase oscillators (without delays). The fact
that we have not found evidence of collective chaos in our
numerical simulations of the second-order phase reduction
(15)—nor in the third-order one—can be reasonably attributed
to a too restrictive truncation of the power expansion. We
believe that a higher-order truncation will capture better the
behavior of the system at larger ε values, and eventually will
exhibit collective chaos.

As pairwise interactions through higher harmonics, like
Q sin(� − 2θ j ) = N−1 ∑

k sin[2(θk − θ j )], do not show up in
the phase reduction of the MF-CGLE [57], multibody phase
interactions appear to be the most promising ingredient to
model collective chaos. In small ensembles of identical phase
oscillators, higher harmonics as well as multibody interactions
promote chaos alike; see [58] and [59], respectively. However,
so far, collective chaos remains elusive in populations of
higher-order pairwise interacting identical phase oscillators
[60]. We believe multibody interactions could be the key
element of collective chaos instead.

In the MF-CGLE with parameter values close to those in
Fig. 1(c), we found chaos with a population size as small
as N = 6. Does this say something about the order of the
multibody interactions needed in the phase reduction? Is this
chaos connected to collective chaos in the thermodynamic
limit, as in [55]?

E. Conclusions

Multibody interactions are an unavoidable consequence of
phase reduction, but save for a few works [12,16,59,61,62],
the role of multibody phase interactions shaping exotic dy-
namics remains largely unexplored. In the weak-coupling
regime of the MF-CGLE, multibody phase interactions are
essential to describe all states apart from FS and UIS.

In summary, in this work we achieve second- and third-
order phase reductions of the MF-CGLE. In our view,
higher-order phase reductions promise to be crucial for our
understanding of collective chaos and other exotic phenom-
ena [12]. Moreover, analytic higher-order phase reductions
may also serve as test beds for numerical phase reductions
recently implemented [63]. For these reasons, we regard phase
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reduction beyond the first order as an exciting battleground of
nonlinear dynamics.
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APPENDIX A: CLUSTERING

Our model (15) in a more convenient form (recall that in
the rotating frame � = 0) reads

θ̇i = 1

N

∑
j

�(θ j − θi ) + 1

N2

∑
j,k

[G1(θ j + θk − 2θi )

+ G2(2θ j − θk − θi )], (A1)

with

�(x) = ε[(c1 − c2) cos x + (1 + c1c2) sin x] − G1(x),

(A2)

G1(x) = −ε2
(
1 + c2

2

)[c1

2
cos x +

(
1 − c2

1

)
4

sin x

]
, (A3)

G2(x) = ε2
(
1 + c2

2

)(
1 + c2

1

)
4

sin x. (A4)

Note that G2 is an odd function.
Let us write first the evolution equation for cluster-A phase

θA, defining the phase difference � = θA − θB:

θ̇A = [p�(0) + (1 − p)�(−�)]

+ [p2G1(0) + 2p(1 − p)G1(−�) + (1 − p)2G1(−2�)]

+ [−p(1 − p)G2(2�) + (−2p2 + 3p − 1)G2(�)];

(A5)

the equivalent equation for the B-cluster is obtained with the
substitution � → −� and p → (1 − p). The evolution of
�(t ) obeys

�̇ = (2p − 1)�(0) + (1 − p)�(−�) − p�(�)

+ [−2p(1 − p)G2(2�) + (−4p2 + 4p − 1)G2(�)]

+{(2p − 1)G1(0) + 2p(1 − p)[G1(−�) − G1(�)]

+ (1 − p)2G1(−2�) − p2G1(2�)}. (A6)

Setting �̇ = 0 we obtain a quadratic equation in p that can
be solved explicitly. We depict p(�) in Fig. 5 for selected
parameter values. Note the symmetry of the curves because
of the invariance under (�, p) ↔ (−�, 1 − p). There are �

values for which p is out of the range (0,1), indicating no two-
cluster states with those particular � values exist. Conversely,
different values of � may be consistent with the same p value,
indicating the coexistence of multiple two-cluster solutions
with the same sizes.

1. Stability

First of all, note that one zero eigenvalue is always present
due to the global phase shift invariance of the model, θ j →
θ j + const, and we ignore it hereafter. For the analysis that fol-
lows it is simpler to assume the thermodynamic limit (eigen-
values are the same for finite N , but the calculation is more
convoluted.) As already known from previous studies [64],
perturbations on a two-cluster solution can be decomposed in
three orthogonal modes. Two of them are the disintegration of
each respective cluster, and the third one is the unlocking of
the two clusters. We denote λA, λB, and λL the corresponding
eigenvalues. For the stability of the A-cluster, we need to
evaluate if one oscillator in the neighborhood of this cluster
decays to it or departs (i.e., “evaporates”). The eigenvalue λA

is simply obtained linearizing around the state. The result is

λA = −p�′(0) − (1 − p)�′(−�) − 2p2G′
1(0)

− 4p(1 − p)G′
1(−�) − 2(1 − p)2G′

1(−2�)

− p2G′
2(0) − (1 − p)G′

2(�) − p(1 − p)G′
2(2�).

(A7)

The eigenvalue λB is obtained from λA after the substitu-
tion p → (1 − p) and � → −�, and vice versa. Finally, the
locking between the clusters is controlled by the eigenvalue
obtained linearizing (A6):

λL = −(1 − p)�′(−�) − p�′(�) − 2(1 − p)2G′
1(−2�)

− 2p(1 − p)[G′
1(−�) + G′

1(�)] − 2p2G′
1(2�)

− (4p2 − 4p + 1)G′
2(�) − 4p(1 − p)G′

2(2�). (A8)

Stability requires λA, λB, λL < 0. For small ε we summarized
our findings in the main text, distinguishing three different
regions corresponding to the three panels of Fig. 5. As said
in the main text, we found stable clusters in the first region
(FS unstable), e.g., ε = 0.1, c1 = −9, c2 = 2. However, for
these parameters the condition (28) does not hold, and in fact
the cluster solution destabilized when we implemented it in
the MF-CGLE.

2. No slow switching

With unstable two-cluster states, the system might still
exhibit one nontrivial phenomenon called slow switching
[48]. In this phenomenon, the clusters switch between two
different � values with identical p value. The explanation
for this behavior is a stable heteroclinic connection between
the pair of two-cluster states that causes the system to switch
forever between them with increasing residence times [48,64].
In practice [60], switching either terminates in one of the
unstable two-cluster states (due to round-off errors), or it
achieves a constant periodic switching (due to small noise).
According to [64], slow switching requires the coexistence of
three two-cluster states �′, �′′, and �′′′ with an identical p
value, such that 0 < �′ < �′′′ < �′′ < 2π and λL < 0 for �′
and �′′ while λL > 0 for �′′′. As may be seen in Fig. 5, finding
parameter values with three solutions for � at the same p is
already difficult—only for the green line in Fig. 5(a) do such
p values exist. In addition, the condition for the eigenvalues
is even more stringent: e.g., in Fig. 5(a) the three points share
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the stability of λA and λB making the heteroclinic connection
impossible.

APPENDIX B: CONSTANTS Cj , γ j , AND D IN EQ. (29)

The dependence of constants {Cj, γ j} j=1,...,9 and D on c1

and c2 is tabulated as follows:

Cj =
√

A2
j + B2

j , (B1)

γ j = arg(Aj + iB j ), (B2)

where

A1 = 2
(
c2c3

1 − 2c2
1 − 3c2c1 + 2

)
,

A2 = −(
3c3

1c2 − 7c2
1 − 9c1c2 + 5

)
,

A3 = −2
(
c2

1 + 1
)
(2c1c2 − 3),

A4 = 2
(
c2

1 + 1
)
(c1c2 + 1),

A5 = 2
( − c2c3

1 + c2
1 + 2c2c1

)
,

A6 = 3
(
c2

1 + 1
)
(c1c2 − 1),

A7 = − 1
2

( − 5c2c3
1 + 9c2

1 + 15c2c1 − 3
)
,

A8 = 1
2

(
1 + c2

1

)
(5c1c2 − 1),

A9 = (
1 + c2

1

)
(1 + c1c2),

and

B1 = 2
(
4c1 + c2 − 3c2

1c2
)
,

B2 = (
c3

1 + 9c2
1c2 − 11c1 − 3c2

)
,

B3 = 2c1
(
c2

1 + 1
)
,

B4 = 2
(
c2

1 + 1
)
(c1 − c2),

B5 = (
c3

1 + 5c2c2
1 − c1 − c2

)
,

B6 = −3
(
c2

1 + 1
)
(c1 + c2),

B7 = 1
2

( − 3c3
1 − 15c2c2

1 + 9c1 + 5c2
)
,

B8 = 1
2

(
c2

1 + 1
)
(c1 + 5c2),

B9 = (
1 + c2

1

)
(c2 − c1).

Additionally,

D = (
c2

1 + 1
)
(c2 − c1). (B3)
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