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Experimental investigation of the elastic enhancement factor in a microwave cavity
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A characteristic of chaotic scattering is the excess of elastic over inelastic scattering processes quantified
by the elastic enhancement factor FM (T, γ ), which depends on the number of open channels M, the average
transmission coefficient T , and internal absorption γ . Using a microwave cavity with the shape of a chaotic
quarter-bow-tie billiard, we study the elastic enhancement factor experimentally as a function of the openness,
which is defined as the ratio of the Heisenberg time and the Weisskopf (dwell) time and is directly related to M
and the size of internal absorption. In the experiments 2 � M � 9 open channels with an average transmission
coefficient 0.34 < T < 0.98 and moderate internal absorption strength in the range of γ = 0.9–2.8 are achieved.
The experimental results for the enhancement factor are shown to agree well with random matrix theory
predictions. Furthermore, in order to corroborate the wave-chaotic features of the microwave system, the spectral
fluctuation properties are studied for M = 2 channels. Agreement with those exhibited by typical, fully chaotic
systems is illustrated, which is exemplary for the nearest-neighbor spacing distribution and the average power
spectrum. Here we take into account the incompleteness of the sequence of resonance frequencies ascribed to
the small yet nonvanishing internal absorption.
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I. INTRODUCTION

The enhancement of elastic processes over inelastic ones
in chaotic scattering was first detected in compound-nucleus
cross sections [1,2] and also occurs in mesoscopic systems [3].
The elastic enhancement factor provides a measure for its size.
It was introduced more than half a century ago by Moldauer
[4] and since then has been considered as a probe of quantum
chaos in nuclear physics [5–7] and other fields [8–11]. Within
Hauser-Feshbach theory [12,13] the nuclear cross sections
are expressed in terms of the scattering (S) matrix, of which
the diagonal elements Saa describe elastic processes and the
off-diagonal ones Sba inelastic ones, yielding for their energy
average 〈σ fl

ba〉 = 〈|Sfl
ba|2〉 and accordingly for the enhancement

factor F =
√

〈|Sfl
aa|2〉〈|Sfl

bb|2〉/〈|Sfl
ba|2〉. Using the equivalence

of the scattering formalism for compound-nucleus reactions
and for microwave resonators [14], properties of the elastic
enhancement factor have been studied in such systems [10,
15–18] and also in microwave networks [19–21]. Investi-
gations of aspects of quantum chaos in terms of the fluc-
tuation properties of the scattering matrix associated with
the measurement process are of particular interest from an
experimental point of view because the latter are directly
obtained in both the modulus and phase. Above all, large data
ensembles may be attained and systems with preserved and
also partially or completely violated time-reversal T invari-
ance can be realized. A conjecture concerning the universality
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of the enhancement factor in electromagnetic fields in mode-
stirred reverberating chambers was put forward by Fiachetti
and Michelson [15] and has been further tested in wave
scattering experiments with microwave cavities simulating
quantum billiards [10,16] with a chaotic classical dynamics
in the presence of absorption for the cases of preserved
and partially violated T invariance. Quite recently, extensive
studies of the elastic enhancement factor have been performed
with microwave cavities with preserved T invariance in a
low-absorption regime [17]. The reciprocal quantity � = 1/F
was also considered both theoretically and experimentally in
microwave cavities [16,17] and with microwave networks [22]
simulating quantum graphs with preserved and violated T
invariance in the presence of moderate and large absorption
strength [19–21].

Experimentally, the S matrix is determined from measure-
ments of resonance spectra, i.e., of ratios of the complex
outgoing and incoming transmission or reflection amplitudes.
The resonances acquire widths � which are composed of
the width �a due to absorption and the escape width �esc

due to additional open channels describing the coupling of
the internal modes to the continuum. The coupling between
the scattering channels c, which in our experiment corre-
spond to antennas, and the interior region is quantified by
the transmission coefficients Tc = 1 − |〈Scc〉|2, where weak
coupling Tc � 0 corresponds to direct reflection back to the
exterior without entering the scattering zone, whereas Tc = 1
implies perfect coupling. Furthermore, in our experiments
the absorption is due to Ohmic losses in the walls of the
microwave cavity. Its strength is related to �a via γ = 2π�a

�
,

where � denotes the average resonance spacing. For uniform
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Ohmic losses it can be modeled by means of a large number
of weakly open fictitious channels [5,9]. In Ref. [7] the case
of a large number M of weakly open channels with equal
transmission coefficients T and no absorption was considered
in terms of the openness η = tH/tW = MT . Here tH = 2π/�

is the Heisenberg time and tW = 1/�esc is the dwell time,
i.e., the time an incoming microwave spends inside the cavity
before it escapes through one of the M open channels like,
e.g., an antenna [10]. The escape width can be expressed in
terms of the Weisskopf width �W , 2π

�
�esc = 2π

�
�W = MT . In

[11] an approximation was derived for the enhancement factor
for the case of many weakly open channels with transmission
coefficients Tfict and a few open channels with T � Tfict.
We realized such a situation experimentally in microwave
experiments, where the weakly open channels correspond to
the fictitious ones accounting for absorption. Accordingly,
the enhancement factor FM (T, γ ) depends on the absorption
strength γ , the number of additional open channels M, and
their average transmission coefficient T .

II. EXPERIMENT

Up to now, the enhancement factor FM (T, γ ) has been
studied experimentally only for the case of two open channels
M = 2, even though the general case is of large relevance
in nuclear physics and mesoscopic systems. We realized this
case in microwave experiments performed with a flat cylindri-
cal microwave cavity with the shape of a chaotic quarter-bow-
tie billiard simulating a two-dimensional quantum billiard
of corresponding shape [23–26]. Results were obtained for
2 � M � 9 open channels and moderate internal absorption
strength ranging from γ = 0.90 to 2.80 in the frequency
range ν = 6–12 GHz. Figure 1 shows a schematic view of
the experimental setup. The cavity was constructed from two
plates. A hole with the shape of the billiard was milled out
of the bottom plate, whereas the top plate contained nine
randomly distributed identical holes marked 1–9 in Fig. 1. The
area of the hole equaled A = 1828.5 cm2, the perimeter was
L = 202.3 cm, and its height was h = 1.2 cm, corresponding
to a cutoff frequency of νmax = c/2h � 12.49 GHz, with c
the speed of light in vacuum. Above νmax the equivalence
of the Helmholtz equation describing the microwave cavity
and the Schrödinger equation for the corresponding quantum
billiard no longer holds [23], whereas below νmax only the
transverse magnetic modes can be excited inside the cavity so
that the vectorial Helmholtz equation reduces to a scalar one.
The top and bottom plates were squeezed together tightly with
127 screws at a distance of 2 cm. The cavity was manufactured
from polished aluminum, type EN 5754. The whole inner
surface of the cavity was covered by a 20-μm layer of silver
so that the internal absorption was reduced by approximately
30% and a quality factor Q ranging from 2000 to 3000 was
achieved.

The subunitary two-port scattering matrix Ŝ,

Ŝ =
[

S11 S12

S21 S22

]
, (1)

was measured with an Agilent E8364B microwave vector
network analyzer which was coupled to the two measuring
antennas at the positions marked 1 and 2 in Fig. 1 with

FIG. 1. (a) Photograph of the experimental setup. The measure-
ments were performed with a vector network analyzer connected to
the microwave antennas that protruded through the holes marked by
1 and 2 by flexible microwave cables. Additional open channels were
realized by antennas with the same properties as the measuring ones
but shunted with 50-
 loads. (b) Schematic view of the quarter-
bow-tie microwave cavity used for the measurement of the two-port
scattering matrix Ŝ. In order to realize an ensemble of differing
cavities, a metallic perturber (gray) was moved along the wall of the
cavity.

HP 85133-616 and HP 85133-617 flexible microwave cables.
The antennas with pin diameter 0.9 mm and length 5.8 mm
protruded through holes into the cavity and corresponded to
two open channels. Additional open channels were realized
by attaching additional antennas one by one with the same
properties as the measuring ones to the holes according to
their numbering but shunted with 50-
 loads. A metallic
perturber with area Apert � 9 cm2 and perimeter Lpert � 26 cm
was inserted into the cavity and moved along the wall with an
external magnet in order to create 100 different realizations of
the cavity.

III. ANALYSIS OF RESONANCE SPECTRA

The elastic enhancement factor depends on the degree of
T violation and is defined as

F (β )
M (T, γ ) =

√〈∣∣Sfl
11

∣∣2〉〈∣∣Sfl
22

∣∣2〉
/
〈∣∣Sfl

12

∣∣2〉
=

√
C11(0)C22(0)/C12(0), (2)

with β = 1 for T invariant systems and β = 2 for completely
violated T invariance,

Sab(ν) = 〈Sab〉 + Sfl
ab(ν) (3)

with a, b ∈ {1, 2}, and Cab(0) denoting the S-matrix two-point
correlation function

Cab(ε) = 〈Sab(ν)S∗
ab(ν + ε)〉 − |〈Sab(ν)〉|2

= 〈
Sfl

ab(ν)Sfl
ab

∗
(ν + ε)

〉
(4)
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FIG. 2. Comparison of the experimental distributions (black his-
tograms) of the reflection coefficients for the case of two open
channels characterized by the transmission coefficients T1 � T2 with
the theoretical ones (black dashed lines). The frequency window and
the values of T1, T2, and γ are given in the legends.

at ε = 0. The S-matrix two-point correlation function and
the enhancement factor depend on the values of the trans-
mission coefficients Tc and on the absorption strength γ . In
[6,8,27] exact analytical results were obtained for the two-
point correlation function, and thus the enhancement factor,
for preserved, violated, and also partially violated T invari-
ance and tested thoroughly in [10]. In the limits of isolated
resonances, yet a large number of weakly coupled channels,
and of strongly overlapping ones, the enhancement factor
approaches the values [8,9,11,16]

F (β )
M ({Tc}, γ ) →

{
1 + 2/β for �/� 
 1
2/β for �/� � 1.

(5)

In the present article we consider the case of T invariance,
i.e., β = 1. Both the internal absorption γ in the walls of
the cavity and the transmission coefficients describing the
coupling of the antennas to the electric field modes inside
the cavity depend on the microwave frequency. We checked
that they are approximately constant in 1-GHz windows and
accordingly evaluated them in such frequency intervals in the
range from 6 to 12 GHz. Actually, absorption can be increased
more effectively by the application of microwave absorbers.
However, in the present article we are interested in the case of
smallest possible absorption which can be controlled by the
choice of the microwave frequency range.

The transmission coefficients are obtained from measure-
ments of reflection spectra, Tc = 1 − |〈Scc〉|2. For the deter-
mination of the absorption strength γ we considered M = 2
open channels, i.e., the case where just the two measuring an-
tennas were attached to the cavity, and adjusted the theoretical
distribution for the diagonal elements Saa of the S matrix to

FIG. 3. Same as Fig. 2 for the scattering phases.

the experimental ones. Here the index a = 1, 2 denotes the
measuring-antenna ports. Using the notation

Saa = √
raeiθa , xa = 1 + ra

1 − ra
, ga = 2

Ta
− 1, (6)

FIG. 4. Experimental elastic enhancement factor F (1)
M (T, γ ), for

M = 4 (blue circles), M = 6 (green diamonds), and M = 9 (red
triangles), as a function of the openness η. The absorption strength
γ changes from 0.9 to 2.8 for ν from 6 to 12 GHz. The theoretical
results are shown as dotted lines with M = 4, 6, and 9 corresponding
to blue, green, and red, respectively. The black dash-dotted line
shows the random matrix theory limit of F (1)

M (T, γ ) for strong
absorption and/or large openness η = MT . The top inset shows
the dependence of the average transmission coefficient T on the
microwave frequency ν and the bottom the corresponding values of
the absorption strength γ .
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FIG. 5. Comparison of the experimental distributions (black histograms) of the reflection coefficients P(r) for the case of M open channels
with theory (black dashed lines) in the frequency window 7–8 GHz. The best agreement between the experimental result and theory was found
when assuming two open channels for the antennas with average transmission coefficients T and accounting for the remaining open channels
in the value for the absorption strength γ which is thus larger than in the case of two open channels (see Fig. 2). Accordingly, the average
transmission coefficient due to these channels, i.e., their openness, seems to be smaller than that of the antennas. The value of T for the two
antennas and of γ are given in the legends.

the distribution P(xa, θa) of Saa is obtained from

P(xa, θa) = 1

4π

d

dy
(1 + y)

[
γ [K1(w)J2(w) + K2(w)J1(w)]

+
M∑

c=1

t a
c

[
Lc

1(w)Hc
2 (w) + Lc

2(w)Hc
1 (w)

]]∣∣∣∣
y=ya

,

(7)

with ya = xaga + √
x2

a − 1
√

g2
a − 1 cos θa, w = y−1

2 , t a
c = 1

for c = a and t a
c = Tc otherwise, and [8,10]

J1(w) =
∫ ∞

w

dz
e−γ z/2

√
z|z − w|

M∏
d=1

1√
1 + t a

d z
,

Hc
1 (w) =

∫ ∞

w

dz
e−γ z/2

√
z|z − w|

M∏
d=1

1√
1 + t a

d z

1

1 + t a
c z

,

K1(w) =
∫ ∞

w

dz e−γ z/2

√
z|z − w|∏M

d=1

√
1 + t a

d z

[
e−γ

z + 1

M∏
d=1

(
1 − t a

d

)

− 1

z
+

M∑
b=1

t a
b

2

1 + t a
b z

∫ 1

0
dμ0e−γμ0

M∏
d �=b

(
1 − t a

d μ0
)]

,

Lc
1(w) =

∫ ∞

w

dz e−γ z/2

√
z|z − w|∏M

d=1

√
1 + t a

d z

⎡
⎣ e−γ

z + 1

M∏
d �=c

(
1 − t a

d

)

− 1

z
+

∑
b�=c

t a
b

2

1 + t a
b z

∫ 1

0
dμ0e−γμ0

M∏
d �=b,c

(
1 − t a

d μ0
)⎤⎦.

(8)

In Figs. 2 and 3 we compare, for three frequency intervals,
the experimental distributions of the reflection coefficients
ra, P(r) ≡ P(ra), and scattering phases θa, P(θ ) ≡ P(θa),
for the case M = 2 with the theoretical results obtained by
integrating P(xa, θa) over θa and ra, respectively. The values of
the frequency intervals, the transmission coefficients, and the
absorption strength are given in the legends. The agreement
between the experimental and theoretical curves is good above
8 GHz. This procedure yielded γ with a relative accuracy
�γ/γ � 0.06. The results are shown in the insets of Fig. 4.
In the presence of M open channels with average transmission
coefficient T , corresponding to an openness η = MT and
internal absorption γ , the total rescaled width γ tot = 2π�

�
of

the resonances is given by γ tot = MT + γ . Here we assume
that the transmission coefficients associated with the two
measuring antennas and those for the additional open channels
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FIG. 6. Comparison of the experimental distributions (black histograms) of the reflection coefficients for the case of M open channels with
theory (black dashed lines) in the frequency window 8–9 GHz. Good agreement was found when assuming that the transmission coefficients
of two antennas and the remaining open channels are on average the same. The values of T and γ are given in the legends.

are approximately the same, which is justified because we
chose antennas with equal properties and corroborated by
the results for T1 and T2 (see Figs. 2 and 3). Accordingly,
they are characterized by the average transmission coefficient
T = 1

M

∑M
i=1 Ti. These assumptions were carefully verified

experimentally by adjusting the theoretical distributions for
M > 2 to the experimental ones, yielding values for γ close
to those obtained for the case M = 2 for ν � 8 GHz. Indeed,
in the investigated frequency range ν = 6–12 GHz all Ti were
within 5% of each other. Below 8 GHz the experimental
distributions for M � 2 attached antennas are better described
by the theoretical ones for two open channels and an ab-
sorption larger than γ , i.e., there the effect of the additional
open channels is to introduce absorption corresponding to an
openness which is less than MT . Accordingly, the case M > 2
is achievable with our procedure for ν � 8 GHz (see Figs. 5
and 6).

The experimental results for F (1)
M (T, γ ) were obtained

in a sliding 1-GHz frequency window, which was shifted
by 250 MHz between 6 and 12 GHz, and are shown to
be exemplary for M = 4 (blue circles), M = 6 (green dia-
monds), and M = 9 (red triangles) in Fig. 4 as a function
of the openness η = MT . Due to significant fluctuations of
the enhancement factor F (1)

M (T, γ ), which actually results
from just one value (ε = 0) of the S-matrix two-point cor-
relation function (4), F (1)

M (T, γ ) was obtained by averaging

over the results for 100 different cavity realizations. The
theoretical results for the enhancement factor were obtained
from Eq. (4) by evaluating the exact analytical result for the
S-matrix two-point correlation function [6] for M identical
open channels. The absorption strength was modeled by
Mfict = 50 identical fictitious channels with the transmission
coefficients Tfict set such that γ = MfictTfict. For the experi-
mental values of total absorption γ tot � 11.62 and openness
η � 8.84 we observe a clear dependence of F (1)

M (T, γ ) on
η, which follows well the theoretical curves, whereas for
larger values it saturates at the value F (1)

M (T, γ ) = 2 corre-
sponding to strong absorption and/or large openness (black
dash-dotted line in Fig. 4). The top inset shows the aver-
age transmission coefficient as a function of frequency and
the bottom one the corresponding values for the absorption
strength γ .

IV. ANALYSIS OF SPECTRAL PROPERTIES

The spectral properties of generic quantum systems ex-
hibiting a chaotic dynamics and preserved T invariance co-
incide with those of the eigenvalues of random matrices
[28] from the Gaussian orthogonal ensemble (GOE) [29].
In order to corroborate that the quarter-bow-tie-shaped mi-
crowave cavity exhibits properties typical for quantum sys-
tems with classically chaotic counterparts, we furthermore
analyzed the spectral fluctuation properties for the case of
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FIG. 7. (a) Nearest-neighbor spacing distribution P(s) (his-
togram) for the case of two open channels M = 2 obtained in the
frequency range 8–10 GHz. The experimental distribution is com-
pared to the theoretical distribution (red dash-dotted line) accounting
for randomly missing levels with the fraction of observed levels ϕ =
0.94 corresponding to 6% missing levels. The Wigner distribution for
the GOE (ϕ = 1) is shown as a solid line. (b) Same as (a) for the inte-
grated nearest-neighbor spacing distribution. The black circles show
the experimental result. (c) Experimental average power spectrum
〈s(k̃)〉 (black pluses) compared to the GOE results (red dash-dotted
line) for a fraction of observed levels ϕ = 0.94 ± 0.01 and ϕ = 1
(black solid line).

two open channels. Sequences of 200 resonance frequencies
were determined in the frequency range from 8 to 10 GHz
for 15 different realizations of the cavity and thereby an
ensemble of 3000 levels was achieved. Comparison with
Weyl’s formula for two-dimensional microwave cavities re-
vealed that approximately 6% of the resonance frequencies
could not be identified. This is attributed to the absorption.
Accordingly, we compared the experimental nearest-neighbor
spacing distribution P(s) to the Wigner distribution which
provides a good approximation for that of the GOE and
to the corresponding distribution which accounts for ran-
domly missing levels [30,31] and depends on the fraction
of observed levels ϕ. Furthermore, we analyzed the average
power spectrum 〈s(k̃)〉 [32]. The experimental distribution
P(s) for two open channels M = 2 is shown in Fig. 7(a)
(histogram). It was averaged over the distributions for the
15 microwave cavity configurations. It agrees well with the
nearest-neighbor spacing distribution (dash-dotted line) ac-
counting for missing levels with ϕ = 0.94, corresponding
to 6% missing levels, thus confirming the estimate based
on Weyl’s formula. Since the fraction of observed levels

is close to 1, it is barely distinguishable from the Wigner
distribution (solid line). Figure 7(b) shows the integrated
nearest-neighbor spacing distribution I (s) which has the ad-
vantage with respect to P(s) that it does not depend on the
binning.

Figure 7(c) shows the experimental result for the power
spectrum (black pluses) of the deviation of the qth nearest-
neighbor spacing from its mean value q, δq = εq+1 − ε1 − q
[31–34]. For a sequence of N levels it is given in terms of
the Fourier spectrum from “time” q to k, S(k) = |δ̃k|2, with
δ̃k = 1√

N

∑N−1
q=0 δq exp(− 2π ikq

N ) and exhibits for k̃ = k/N 
 1

a power-law dependence 〈S(k̃)〉 ∝ (k̃)−α [35,36]. For chaotic
systems α = 1, independently of whether T invariance is
preserved or not, and for regular systems α = 2. For the case
of missing levels the power spectrum 〈s(k̃)〉 is given by

〈s(k̃)〉 = ϕ

4π2

[
K (ϕk̃) − 1

k̃2
+ K (ϕ(1 − k̃)) − 1

(1 − k̃)2

]

+ 1

4 sin2(π k̃)
− ϕ2

12
. (9)

Here 0 � k̃ � 1 and K (τ ) denotes the spectral form factor
which for τ � 1 equals K (τ ) = 2τ − τ ln(1 + 2τ ) for the
GOE. This measure is more sensitive to missing levels than
the nearest-neighbor spacing distribution P(s). The value of
ϕ was unambiguously determined to ϕ = 0.94 ± 0.01, by
comparison of the experimental power spectrum to the the-
oretical one. Figure 7(c) shows the experimental result for
〈s(k̃)〉 (black pluses) together with the theoretical one (red
dash-dotted line). The experimental results are also compared
to that for the GOE (black solid line). They agree well with
the curve accounting for missing levels, thus confirming that
we deal with a typical wave-chaotic system with a fraction of
observed levels ϕ = 0.94.

V. CONCLUSION

In summary, we studied experimentally and numerically
the elastic enhancement factor F (1)

M (T, γ ) for a microwave
cavity with the shape of a chaotic quarter-bow-tie billiard
in the presence of open channels M characterized by an
average transmission coefficient T and internal absorption
γ as a function of the openness η = MT . The experimental
results were obtained for 2 � M � 9 open channels and mod-
erate absorption strength γ = 0.90–2.80. We demonstrate
that within the error in the determination of F (1)

M (T, γ ) the
experimental results are close to the theoretical predictions.
Moreover, the spectral properties of the microwave cavity
with M = 2 open channels were analyzed based on missing
level statistics and illustrated for the nearest-neighbor spacing
distribution and the average power spectrum. This analy-
sis corroborated that the studied microwave cavity behaves
like a typical chaotic system with preserved T invariance.
These findings are crucial for the comparison of the exper-
imental results with the theoretical ones which are based
on random matrix theory. However, note that the fluctua-
tion properties of the S matrix do not depend on missing
resonances.
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