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Phase transition to synchronization in generalized Kuramoto model with low-pass filter
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A second-order continuous synchronization has been well documented for the classic Kuramoto model. Here
we generalize the classic Kuramoto model by incorporating a low-pass filter (LPF) in the coupling, which serves
as a simple form of indirect coupling through a common external dynamic environment. We uncover that a
first-order explosive synchronization turns out to be a very generic phenomenon in this generalized Kuramoto
model with LPF. We establish theoretical results by providing a rigorous analytical treatment, which is validated
by conducting extensive numerical simulations. Our study provides a new root for the emergence of first-order
explosive synchronization, which could substantially deepen the understanding of the underlying mechanism of
a first-order phase transition towards synchronization in coupled dynamical networks.
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I. INTRODUCTION

Spontaneous synchronization is a ubiquitous emergent
behavior of a population of interacting elements in many
contexts of physics, biology, and even social systems [1–3].
One prototype for studying synchronization was introduced
by Kuramoto in 1975 [4]. For the classic Kuramoto model, it
was exclusively reported that the process from incoherence to
synchrony typically takes place via a second-order continuous
phase transition [4–7], which has been experimentally iden-
tified in coupled chemical oscillators [8]. Later, a first-order
discontinuous transition to synchronization was recognized if
the coupling has a time delay [9–11] or the natural frequencies
are bimodally distributed [12–14]. In particular, a first-order
phase transition towards synchronization was further discov-
ered in scale-free networks of coupled Kuramoto oscillators
[15], where this phenomenon is termed explosive synchro-
nization. Since then, an ever-increasing theoretical interest
has been witnessed in uncovering the roots for the onset of
explosive synchronization [16–21].

Hitherto, advances of explosive synchronization in the Ku-
ramoto model have been made for the case of direct coupling
via the differences of their phases [15–22]. However, in a wide
variety of realistic systems, the interaction between units oc-
curs indirectly through an external agency or medium. Typical
examples include synthetic gene-regulation networks based
on cell-to-cell communication [23–26], catalytic microparti-
cles in a Belousov-Zhabotinsky reaction [27–29], suspensions
of yeast in nutrient solutions [30], semiconductor lasers opti-
cally linked by a central hub [31], degrade-and-fire oscillators
coupled through a common activator [32], etc. In this work,
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we generalize the classic Kuramoto model by incorporating
a conventional low-pass filter (LPF) into the coupling, which
provides a bridge linking the direct coupling to the indirect
one. The coupling with LPF serves as a minimal form of
indirect interaction through a common external environment,
which is synthesized by the contributions of all units analo-
gous to dynamical quorum sensing [23–35].

In many real-world systems, signals are generally
inevitable to be distorted during their transmissions due
to the diverse physical limitations of channels [36–38].
Consequently, it is of practical importance to take into account
the effects of communication channels on emergent dynamics
of coupled systems. The LPF serves as a basic protocol to
capture the frequency-selective property of the communi-
cation channels of physical systems [39–41]. However, the
phase transition to synchronization still remains unclear in the
presence of LPF in coupled dynamical networks. A significant
task here is to systematically study the phase transition
towards synchronization in an indirectly coupled Kuramoto
model with LPF, which will introduce a deeper insight into
the roots of the first-order explosive synchronization.

In this work, we exclusively establish both the second-
and the first-order phase transitions to synchronization in
the generalized Kuramoto model with LPF. We report that
the second-order continuous synchronization can transit to the
first-order explosive one, which is consolidated by performing
rigorous theoretical analyses, and then numerically confirmed
by carrying out a series of simulations. The generalized Ku-
ramoto model with LPF is the simplest exactly solvable case
for indirectly coupled dynamical networks through a common
external medium, which undergoes two distinct kinds of phase
transitions towards synchronization depending on the cutoff
frequency of the filter. Our study serves as a promising
recipe in unveiling the rich behaviors of phase transitions in
indirectly coupled dynamical networks.
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II. KURAMOTO MODEL WITH LPF

Let us begin with an ensemble of N Stuart-Landau limit-
cycle oscillators coupled diffusively via a common external
medium,

Ż j = (1 + iw j − |Zj |2)Zj + K (μ − Zj ), (1)

αμ̇ = −μ + 1

N

N∑
k = 1

Zk, (2)

where j = 1, . . . , N . w j is the intrinsic frequency of the jth
oscillator distributed according to a prescribed density g(w).
K accounts for the overall coupling strength. The external
medium μ described by Eq. (2) stands for a conventional LPF
with a time constant α > 0 to attenuate the mean-field signal,
which mediates the coupling between oscillators qualitatively
resembling the interaction way of dynamical quorum sensing
[23–31]. For weak coupling of strength or the strong attrac-
tiveness of a limit-cycle orbit, the dynamics of an individual
unit can be well captured only by its phase variable, where the
amplitude of the limit cycle remains unaffected. By rewriting
Zj = eiθ j and μ = ρeiφ , Eqs. (1) and (2) are reduced to the
phase-only model:

θ̇ j = w j + Kρ sin(φ − θ j ), (3)

αμ̇ = −μ + z. (4)

Here z = reiψ = 1
N

∑N

k = 1 eiθk defines the Kuramoto order

parameter, where r (0 � r � 1) and ψ quantify the degree of
coherence and the average phase of the oscillator community,
respectively.

If α = 0, Eqs. (3) and (4) degenerate to the classic Ku-
ramoto model with direct coupling [4–6]. It has been well
documented that, when g(w) is assumed to be unimodal and
even about a mean frequency w0, the stationary value of r as
a function of the coupling strength K shows a typical second-
order phase transition from incoherence r = 0 to coherence
r > 0 with a critical coupling strength Kc = 2/[πg(w0)] [5].
In the setting of α > 0, Eqs. (3) and (4) generalize the classic
Kuramoto model by incorporating a LPF in the coupling. We
will reveal that the phase synchronization can also proceed
discontinuously and irreversibly via a first-order fashion for
α > 0.

With shifting to a frame rotating with frequency w0, Eq. (4)
is then replaced by

αμ̇ = −(1 + iαw0)μ + z, (5)

where Eq. (3) remains unchanged, but w j is now extracted
from a new density function g̃(w) with zero mean value and
the same profile to g(w), i.e., g̃(w) = g(w + w0).

III. STABILITY ANALYSIS OF INCOHERENCE

In the thermodynamic limit of N → ∞, the dynamics of
phases θ j in Eq. (3) can be described by the time-dependent
density function F (θ,w, t ) [5], where F (θ,w, t ) dθ dw rep-
resents the ratio of oscillators with phases between θ and
θ + dθ and natural frequencies between w and w + dw at

time t with the normalization condition∫ 2π

0
F (θ,w, t ) dθ = 1. (6)

F (θ,w, t ) obeys the continuity equation

∂F

∂t
+ ∂

∂θ
(Fv) = 0, (7)

where the phase velocity v = θ̇ is given by

v = w + Kρ sin(φ − θ ) = w + K

2i
(μe−iθ − μ∗eiθ ). (8)

In the setting of N → ∞, the Kuramoto order parameter z has
the integral form

z = reiψ =
∫ +∞

−∞

∫ 2π

0
eiθ g̃(w)F (θ,w, t ) dθ dw. (9)

The density function F (θ,w, t ) is 2π -periodicity in θ , which
can be expressed in the form of the Fourier expansion

F (θ,w, t ) = 1

2π

+∞∑
n=−∞

zn(t,w)e−inθ (10)

with the nth Fourier coefficient

zn(t,w) =
∫ 2π

0
einθ F (θ,w, t ) dθ, n = 0, 1, 2, . . . , (11)

where z0(t,w) = 1 and z−n(t,w) = z∗
n (t,w). The Kuramoto

parameter z(t ) is then given by

z(t ) =
∫ +∞

−∞
z1(t,w )̃g(w) dw. (12)

The evolutions of zn(t,w) satisfy the differential equations

dzn

dt
= niwzn + nK

2
(μzn−1 − μ∗zn+1) for n � 1. (13)

Equations (5), (12), and (13) constitute a closed description
for the macroscopic dynamics of the full system. The incoher-
ent state corresponds to μ = 0 and zn = 0 for n = 1, 2, . . ., for
which F (θ,w, t ) = 1/2π and r = 0. By linearizing Eqs. (5),
(12), and (13) around the origin, we get a set of the following
linear equations:

dδz1

dt
= iwδz1 + K

2
δμ, (14)

dδzn

dt
= inwδzn, for n > 1, (15)

α
dδμ

dt
= −(1 + iαw0)δμ + δz, (16)

where

δz =
∫ +∞

−∞
δz1(t,w )̃g(w) dw. (17)

From Eq. (15), all higher Fourier harmonics δzn (n > 1) are
neutrally stable. Thus, only δz1 is needed to be considered for
the stability of the incoherence. Equations (14) and (16) can
be rewritten in the compact form(

˙δz1
˙δμ

)
=

(
iw, K

2
1
α

P̂,− 1+iαw0
α

)(
δz1

δμ

)
= T̂

(
δz1

δμ

)
, (18)
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where P̂ denotes a linear operator defined as

P̂q(w) =
∫ +∞

−∞
q(w )̃g(w) dw = (q(w), P0). (19)

Assume that the linear operator T̂ has the eigenvalue a:

T̂

(
δz1

δμ

)
= a

(
δz1

δμ

)
. (20)

Substituting the form of T̂ into Eq. (20) leads to

K

2
(a − iw)−1P̂δz1 = (1 + αa + iαw0)δz1. (21)

Applying the inner product with P0 for both sides of Eq. (21),
we obtain

1 + αa + iαw0 = K

2

∫ +∞

−∞

g̃(w)

a − iw
dw, a �= iw. (22)

The solution of Eq. (22) gives the discrete spectrum, where
a = iw constitutes the continuous spectrum [5]. The critical
coupling Kc at which the incoherent state loses its stability
while increasing K beyond Kc corresponds to a solution of
Eq. (22) with Rea → 0+. Let a = λ − iβ and λ → 0+ in
Eq. (22), and separate the real and imaginary parts, then Kc

is determined by

Kc = 2

π g̃(β )
, (23)

where β satisfies

α(w0 − β )π g̃(β ) = P.V.

∫ +∞

−∞

g̃(w)

β + w
dw. (24)

To arrive at Eqs. (23) and (24), the Sokhotski-Plemelj formula
is used [42], where P.V. denotes the Cauchy principle-value
integration. For α → 0, β = 0 solves the Eq. (24), thus Kc =

2
π g̃(0) = 2

πg(w0 ) for α = 0, which well recovers the same result
of the classic Kuramoto model [4–6].

For a general frequency distribution g̃(w), the critical
coupling strength Kc in Eqs. (23) and (24) cannot be derived
explicitly. However, for a Lorentzian distribution g(w) =
�/π [(w − w0)2 + �2], Kc can be obtained analytically. First,
the integral in the right side of Eq. (22) can be treated as∫ +∞

−∞

g̃(w)

a − iw
dw =

∫ +∞

−∞
dw

∫ +∞

0
e−(a−iw)sg̃(w) ds

=
∫ +∞

0
dse−as

∫ +∞

−∞
eiwsg̃(w) dw

≡
∫ +∞

0
e−asG(s) ds, (25)

where

G(s) =
∫ +∞

−∞
eiwsg̃(w) dw (26)

is the characteristic function by performing the Fourier trans-
formation of the density function g̃(w). For a Lorentzian dis-
tribution g̃(w) = �/π (w2 + �2), its characteristic function is
explicitly given by

G(s) = e−�|s|. (27)

Plugging Eq. (27) into Eq. (25) yields∫ +∞

−∞

g̃(w)

a − iw
dw = 1

a + �
. (28)

Thus, the discrete spectrum in Eq. (22) is decided by

(1 + αa + iαw0)(a + �) = K

2
. (29)

By letting a = λ − iβ and λ → 0+ in Eq. (29), and separating
the real and imaginary parts, Kc is solved out as

Kc = 2� + 2�α2w2
0

(1 + �α)2
. (30)

IV. SOLUTION OF COHERENCE

For the Lorentzian distribution g(w), the evolution of the
Kuramoto order paramter z can be explicitly worked out
with the Ott-Antonsen ansatz [43,44]. First, by expanding
F (θ,w, t ) in a Fourier series

F (θ,w, t ) = 1

2π

{
1+

∞∑
n=1

[an(w, t )einθ + an(w, t )∗e−inθ ]

}
,

(31)

then substituting the above form of F (θ,w, t ) back into the
continuity Eq. (7) leads to

∂a

∂t
+ iwa + K

2
(μa2 − μ∗) = 0. (32)

The Kuramoto order parameter z is expressed as

z = reiψ =
∫ +∞

−∞

∫ 2π

0
eiθ g(w)F (θ,w, t ) dθ dw

=
∫ +∞

−∞
a∗(w, t )g(w) dw. (33)

For a Lorentzian distribution g(w) = �/π [(w − w0)2 + �2],
we have

∫ +∞
−∞ a∗(w, t )g(w) dw = a∗(w0 − i�, t ). Thus, the

evolution of z is

ż = −�z + iw0z + K

2
(μ − μ∗z2). (34)

Equation (34) together with Eq. (4) form a closed ODE
system. By introducing the polar coordinates of z = reiψ and
μ = ρeiφ , and setting ṙ = ρ̇ = 0 and ψ̇ = φ̇ = , a station-
ary behavior of r = |z| > 0 for the coherent state is given by

r =
√

1 − 2�(1 + �2α22)

K
, (35)

where the fixed angular velocity  is implicitly determined by

A3 + B2 + C + D = 0, (36)

where A = (�α − 1)�2α2, B = w0�α2, C = �α − 1 − αK ,
and D = w0/�.

If �α = 1, the expression for  determined by Eq. (36) is
explicitly derived as

∓ =
K ∓

√
K2 − 4w2

0

2w0
. (37)
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FIG. 1. Synchronization diagrams by plotting r as a function
of K for Eqs. (3) and (4) with a Lorentzian frequency distribution
g(w) = �/π [(w − w0 )2 + �2]. (a), (b) The plots of r vs K for
α = 0.1 and α = 1.0. Blue line with stars and black line with circles
represent numerical simulations of the forward and back synchro-
nization transitions, respectively. Solid (dashed) red line denotes
the theoretical prediction for the stable (unstable) branch r+ (r−)
of r > 0. w0 = 5 and � = 1 are fixed. N = 10 000 is used in the
simulations.

Corresponding to the above ∓, the exact result of r is further
obtained as

r± =

√
w2

0 − �K ± �

√
K2 − 4w2

0

w0
, (38)

respectively. For w0 > 2�, r± are born via a saddle node
bifurcation at K = 2w0, which persist within a pronounced

coupling interval of 2w0 < K < 2� + w2
0

2�
. Only r+ survives

if K � 2� + w2
0

2�
. In contrast, for w0 � 2�, only r+ appears

once K � Kc = 2� + w2
0

2�
. r+ and r− correspond to a stable

and an unstable branch of synchronous states, respectively.
Thus, a bistable region with an associated hysteretic loop in

r appears for 2w0 < K < 2� + w2
0

2�
if w0 > 2�. For �α �=

1, the analytical expressions for both  and r are difficult
to be explicitly expressed; however, by numerically solving
Eqs. (35) and (36), the solution structure of r is found to be
quite similar to those for �α = 1.

Our above analytical analysis implies that the transition
from a second-order continuous to a first-order explosive
synchronization can be induced by the LPF coupling with
α > 0. To clearly validate this assertion, Figs. 1(a) and 1(b)
depict the dependence of r on K for α = 0.1 and α = 1, where
g(w) is assumed to be a Lorentzian distribution. In our simu-
lations [45], two sets of numerical trials, termed forward and
backward continuations, are adopted to monitor the stationary
value of r as adiabatically increasing or decreasing K , which
are indicated by the blue line with stars and the black line with
circles in Fig. 1, respectively. The other parameters w0 = 5,
� = 1, and N = 10 000 are fixed.

A typical second-order phase transition from the incoher-
ence to synchronization is observed in Fig. 1(a) with α = 0.1.
In the synchronization diagrams, the value of r as a function
of K for the forward and the backward continuations shows
a perfect match, where the incoherent state with r = 0 is
destabilized via a supercritical Hopf bifurcation at K = Kc.
The red line denoting the theoretical prediction of r > 0 from

Eqs. (35) and (36) agrees very well with the numerical results
of r.

Strikingly, for α = 1 in Fig. 1(b), the diagrams of the phase
transition to synchronization for the backward and the forward
continuations are found to be rather different. In the case of
the forward continuation, the order parameter r first remains
near zero (r � 0), implying the incoherence of the coupled
system. Then r jumps suddenly to r = r+(Kf ) � 1 at Kf =
Kc = 2� + w2

0
2�

= 14.5, where the incoherent state loses its
stability via a subcritical Hopf bifurcation. For the backward
continuation, the coupled system experiences a sharp transi-
tion from the synchronized state with r = r+(Kb) � 1 to the
incoherence with r � 0 at the saddle node bifurcation point
of K = Kb = 2w0 = 10 < Kf . Either increasing or decreasing
progressively the value of K in the forward or backward direc-
tion, the stationary behavior of r > 0 is well predicted by r+
in Eq. (38) delimited by the solid red line, where the unstable
branch r− plotted by the dashed red line is responsible for the
emergence of a hysteretic loop in r associated to the first-order
explosive synchronization.

The stability of the incoherence is lost completely progres-
sively increasing K from zero to K = Kf , which corresponds
to the threshold condition to get the phase-synchronized state
starting from the incoherence. Thus, one can infer that Kf =
Kc, where Kc is explicitly given by Eq. (30). The backward
critical coupling strength Kb, at which the stability of coherent
state is totally destroyed as gradually decreasing K from a
sufficiently large value, is implicitly decided by Eq. (36).
From Eq. (36), K can be extracted as

K = A3 + B2 + (�α − 1) + D

α
. (39)

At the critical backward transition point K = Kb, a saddle
node bifurcation emerges, and thus the constraint dK/d = 0
is satisfied, which leads to

2A3 + B2 − D = 0. (40)

Kb can be obtained by first solving  from Eq. (40) and then
inserting the value back into Eq. (39).

Figure 2(a) displays the dependences of Kf and Kb on α,
which provides a more exhaustive description of the transition
from the second-order to the first-order synchronization. The
above theoretical predictions of Kf and Kb are delineated by
the black and red lines, which are in good agreement with
the direct simulation results of the forward and backward
transition points, denoted by the black circles and blue stars,
respectively. The first-order phase transition with a hysteretic
loop is observed only if α > αc = 0.51, otherwise the phase
transition is of the second order. Figure 2(b) further portrays
αc as a function of w0, where αc is well predicted from the
relation

w0 = (�α + 1)3/2

α(3�α − 1)1/2
. (41)

The relation of w0 on αc in Eq. (41) is derived based
on the observation that at the critical point αc the Hopf
bifurcation merges with the saddle node bifurcation in
the limit of r → 0. For the synchronized state r > 0, the
function of  on r is  = w0/(� + 1+r2

1−r2 �
2α). Inserting
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FIG. 2. Characterization of the emergence of a hysteresis in
Eqs. (3) and (4) for the Lorentzian frequency distribution g(w)
with � = 1. (a) Kf and Kb vs α for w0 = 5. The black and red
curves correspond to the theoretical predictions of Kf and Kb, which
perfectly coincide with the numerical results marked by the blue
stars and open circles, respectively. The hysteresis exists only for
α > αc = 0.51. (b) The dependence of αc on w0. The black square
marks the numerical result of αc, which is well located on the black
curve plotted from the relation of Eq. (41).

 = w0/(� + �2α) for r → 0 to dK/d = 0 leads to
Eq. (41). It is evident from Eq. (41) that the occurrence of
the first-order explosive synchronization critically depends on
the values of both α and w0. The onset of a sharp transition
with a hysteresis towards synchronization is possible if both
α > αmin = 1/(3�) and w0 > wmin = �/

√
3 hold simultane-

ously; otherwise only the first-order phase transition can be
established.

The LPF coupling can induce the first-order explosive
synchronization transition in the generalized Kuramoto model
for various other configurations of frequency distributions.
We have numerically computed the forward and backward
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FIG. 3. Synchronization diagrams by plotting r as a func-
tion of K for triangle frequency distribution (a), (b) and Gaus-
sian frequency distribution (c), (d). α = 0.5 for panels (a) and
(c), and α = 5 for panels (b) and (d). The triangle distribution
is prescribed by g(w) = (π� − |w − w0|)/π 2�2 for |w − w0| <

π�, and 0 otherwise; and the Gaussian distribution by g(w) =
(1/π�) exp(−(w − w0)2/π�2). w0 = 3, � = 1, and N = 2000 are
used in all simulations.

synchronization diagrams for a triangle frequency distribution
[Figs. 3(a) and 3(b)] and a Gaussian frequency distribution
[Figs. 3(c) and 3(d)], respectively. For both distributions, a
typical second-order phase transition is observed for α = 0.5
in Figs. 3(a) and 3(c); however, the two synchronization
diagrams in Figs. 3(b) and 3(d) display the phase transition
of the first order with a strong hysteresis for α = 5. From
the four panels of Fig. 3, we notice that Kf = Kc differs
for the different frequency configurations of g(w) and depends
on the value of α, which is well predicted by Eqs. (23) and
(24). The results in Fig. 3 quite resemble those of Fig. 1,
corroborating the scalability of the LPF in sustaining the evo-
lution from the second-order to the first-order phase transition
towards synchronization.

V. CONCLUSION AND DISCUSSIONS

To conclude, we have reported the transition from the
second-order continuous to the first-order explosive synchro-
nization in the generalized Kuramoto model with LPF. As
far as the units interact with each other via a shared external
medium of the LPF form, we have uncovered that the first-
order explosive synchronization turns out to be a very generic
phenomenon. The underlying physical mechanism is due to
that the inertial feature of LPF effectively introduces a phase-
lag (time-delayed) effect between the interaction of coupled
systems. However, the coupling with LPF has its own great
merits in inducing the first-order explosive synchronization, as
is described by a set of linear ordinary differential equations
involving only a finite of inherent degrees of freedom, which
endows the dynamics of coupled systems to be analytically
treated in the theory.

Our proposed LPF coupling can be regarded as a minimal
form of indirect interaction via a common external informa-
tion pool, which gives rise to an equivalent role of coupling
to that of dynamical quorum sensing omnipresent in coupled
biological and chemical systems. On the other hand, the
Kuramoto model is widely recognized as a generic prototype
to reveal the general mechanisms of synchronous behaviors
observed in diverse natural systems. Thus, our theoretical
findings of the generalized Kuramoto model with LPF are
supposed to be of widespread practical applications in indi-
rectly coupled systems, where the communications between
units are realized via a common external dynamic medium
such as in populations of synthetic bacteria and Belousov-
Zhabotinsky reactions. By introducing LPF in the Kuramoto
model, we have made an important step to systematically
study the phase transitions towards synchronization in cou-
pled dynamical networks with LPF, which would initiate nu-
merous further investigations of collective dynamics in indi-
rectly coupled nonlinear networks. Finally, we believe that the
transition from the second-order continuous to the first-order
explosive synchronization induced by LPF can be evidenced
in pertinent experiments such as in coupled electrochemical
reactions.
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