
PHYSICAL REVIEW E 100, 012208 (2019)

Effect of chaos in a one-channel time-reversal acoustic mirror
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Time-reversal of propagating waves has been intensely studied during the last years and successfully
implemented in different experimental contexts. It has been argued that ergodic or chaotic ray dynamics improve
the refocusing resolution. In this work we consider this fundamental aspect by studying the reversion of sound
waves in two-dimensional reflecting cavities numerically. The boundary of the enclosure is deformed from a
rectangle with regular ray dynamics to a completely chaotic hyperbolic billiard. We observed that both the
regular and chaotic cases display a prominent refocusing peak, and also that in the first scenario many secondary
maxima appear. We developed measures of the spatial and temporal contrasts of the reconstructed signal in order
to gain insight on these phenomena and to distinguish between cases. The results obtained point to the necessity
for a reconsideration of what is usually understood by successful time-reversal processes.
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I. INTRODUCTION

Time-reversal of waves is reported frequently in literature
nowadays. This phenomenon started being studied in the
1990s with the pioneering work of Fink and his group [1].
Usually called “time-reversal mirror”, it is a technique that
allows for the focusing of a signal onto a narrow region in
space by emitting a time-reversed version of the received wave
field measured by an array of transducers. This procedure
has been successfully accomplished in acoustic [2], elastic
[3,4], and electromagnetic waves [5] in different setups, and
several applications based on it have been found [6–8]. The
refocusing property is due to the linear reciprocity of the wave
equation.

When the reversion is performed in a closed cavity and
without absorption, the presence of many transducers to
record and replicate the original signal is not needed. In fact, it
has been shown that the reversion is very good with only one
channel [3] though with certain theoretical limitations for the
refocusing of the energy [10]. That is, the injection of a single
pulse in a cavity yields a signal in another point. By recording
and reversing a part of this signal, a sharp peak is obtained at
the injection point. But in this case the need of underlying
chaotic ray dynamics has been stressed as a fundamental
factor for obtaining a good reversion [9,10]. Although this was
mentioned in several works in the literature, as far as we know,
there has yet not been a systematic study on the influence of
chaos on the temporal reversion. For example, in Ref. [9] a
semi-classical study of time-reversal focusing was developed
for chaotic cavities but the integrable case was only referred
mentioned to stress that the refocusing depends strongly on
the position of the transducers. Nevertheless, as can be de-
duced from results in Ref. [11], the behavior of ray dynamics
seems not to have any influence on the quality of the focusing.
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Therefore, a study that clears doubts about the influence of
chaos on reversion is important and necessary. We note that
the connection between classical chaos and wave mechanics
has been greatly studied in the context of quantum mechanics,
giving rise to quantum chaology or quantum chaos. Many
wave manifestations of ray chaos were well established as
the connection of the statistical spectral distributions and the
Random Matrix Theory [12].

The goal of this paper is to study the effect of chaos in the
one-channel reversion of acoustic waves in two-dimensional
cavities. For this reason we consider a cavity without dissi-
pation as a model system. Closed cavities are paradigmatic
systems in classical dynamics, the shape of their boundaries
determining the type of dynamics they develop. For example,
rectangle billiards are completely regular, while chaotic dy-
namics are developed when one of the walls is curved. We
studied the time-reversal acoustic mirror in a one-parameter
family of billiards that displays the transition from integrable
to chaotic ray dynamics. While the expected refocusing result-
ing from the time-reversal process is observed in every case,
for the regular geometries a number of secondary maxima
appear. This effect was detected through inspection of the
resulting fields.

In order to quantify the quality of the reversion the tem-
poral and spatial contrasts are commonly employed, which
measure, respectively, the degree of focusing at the reversion
time or at the injection point, and which can be written
as functions of the eigenmodes and eigenfrequencies of the
cavity. Remarkably, while the effect of underlying chaotic
ray dynamics is detected on the spatial contrast, the same
is not true for the temporal contrast. An explanation for this
phenomenon is provided, based on the modal content of each
type of system. Moreover, in the literature the usual definitions
of contrast employed [10,11] are based on RMS values, and
as a consequence the quantitative influence of the reported
secondary peaks is averaged out. Therefore, in this work we
introduce new definitions of spatial and temporal contrasts to
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take account of such features. These new definitions can also
be used to hint the chaoticity of a system. We also provide
an explanation for the origin of such maxima, based on the
method of images.

The paper is organized as follows. In Sec. II we present the
main theoretical aspects of the time-reversal mirror and we de-
fine the two measures of temporal and spatial contrasts which
can be written as functions of the eigenmodes and eigenfre-
quencies of the cavity. Section III is devoted to describe the
systems under study: a family of perturbed two-dimensional
rectangular cavities with ray dynamics that range from regular
to completely chaotic. We describe the numerical procedures
employed to obtain the eigenmodes and eigenfrequencies of
the cavities. In Sec. IV we show the results produced by a
systematic study of the different measures of contrast in sev-
eral cavities. We consider the dependence of these measures
on the size of the time window applied to filter out the part
of the signal to revert, and on the cutoff frequency employed
in the calculation of the eigenfrequencies of the system. We
also consider the dependence of the spatial contrast on the
perturbation parameter that quantifies the deviation of the
chaotic geometries from the regular systems. We end the paper
with some final remarks on the topic of time-reversal mirrors.

II. TIME-REVERSAL MIRROR AND CONTRAST

A. Time-reversed signal

Let us suppose that at time t = 0 a sharp perturbation
is produced in r = rA. The time evolution of this perturba-
tion in a two-dimensional medium is described by the non-
homogeneous wave equation

( 1

c2

∂2

∂t2
− ∇2

)
φ(r, t ) = Fδ(r − rA)δ(t ),

where c is the wave speed and F is the amplitude of the
perturbation. The time evolution can be expanded in the eigen-
modes φi(r) of the cavity, φ(r, t ) = ∑

ai(t )φi(r) with an(t ) =
Fc2 cos(ωnt ) and ωi the corresponding eigenfrequency. The
possibility of expanding the solution in these terms will be
useful for what follows.

When we consider the case of single-channel time rever-
sion, a stimulus f (t ) (with t ∈ [0, T ]) is emitted at point
rA and recorded at point rB. Then, a part of the recorded
signal ν(t ) is reversed in time and re-emitted from rB. We
are interested in observing the resulting signal at rA. As is
well known, a tool for characterizing the transfer function of a
system between two points is the impulse response (IR) [13].
The IR represents the response of a system when stimulated
by a pulse, which mathematically can be noted as a δ function.
As the Fourier expansion of such a stimulus is comprised of
all possible excitation frequencies, the stimulation produced
by a pulse contains information about the stimulation with any
single frequency, and the full transfer function of the system
can actually be computed as the Fourier transform of the IR.

Being hAB(t ) the impulse response from rA to rB we can
write

ν(t ) =
∫ ∞

−∞
f (t ′)hAB(t − t ′) dt ′ (1)

If the stimulus f (t ) employed is actually the impulse response
(IR) itself, cut from t = T1 to t = T2 and inverted in time, then
it can be written as

f (t ) =
{

hAB(T − t ) if t ∈ [T − T2, T − T1]

0 if t /∈ [T − T2, T − T1]
.

The time-reversal process is completed after emitting this
signal from rB and observing the result in rA. By virtue of
the symmetry of the impulse response hAB with respect to
the pair of points (rA, rB) the resulting signal in rA, νT R,
can be computed inserting the defined f in Eq. (1). Naming
�T2,T1 = [T − T2, T − T1], it turns out to be

νT R(t ) =

⎧⎪⎨
⎪⎩

0 if t < T − T2∫ t
T −T2

hAB(T − t ′) hAB(t − t ′) dt ′ if t ∈ �T2,T1∫ T −T1

T −T2
hAB(T − t ′) hAB(t − t ′) dt ′ if t > T − T1

.

(2)

Note that regardless of the choice for T1, T2, νT R attains its
maximum value at t = T , where the integral is equal to the
autocorrelation function of hAB. This corresponds with observ-
ing the maximum of the re-emitted signal at the refocusing
time.

For t < T − T2 the signal observed at rA is null, since the
re-emitted recording, starting at T − T2, displays no informa-
tion there. For the case t ∈ �T2,T1 we can find expressions
for Tmn in terms of known quantities by making use of a
Fourier expansion. As can be shown [10,11], the impulse
response hAB can be written as a summation over eigenmodes.
With φi the acoustic fields of the system corresponding to
eigenfrequencies ωi, it is seen that

hAB(T − t ′) =
∑

m

φm(rA)φm(rB) cos(ωm(T − t ′)),

hAB(t − t ′) =
∑

n

φn(rA)φn(rB) cos(ωn(t − t ′)).

By inserting these series in Eq. (2) νT R takes the form

νT R(t ) =
∑
m,n

φm(rA)φn(rA)φm(rB)φn(rB)

×
∫ t

T −T2

cos(ωm(T − t ′)) cos(ωn(t − t ′)) dt ′

Tmn(t )

. (3)

Depending on the complexity of the geometry, the eigen-
modes φi can be computed either by analytical or numerical
procedures. We now focus on finding a closed expression
for the matrix Tmn in terms of the eigenfrequencies and of
the time window limits T1, T2. Beginning with a change of
variables

d = t − T

s = T − t ′, ds = −dt ′,
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Tmn can be written as

Tmn(t ) = −
∫ T −t

T2

cos(ωms) cos(ωn(s + d )) ds

= cos(ωnd )
∫ T2

−d
cos(ωms) cos(ωns) ds

− sin(ωnd )
∫ T2

−d
cos(ωms) sin(ωns) ds.

Using basic trigonometrical properties and defining

ω+ = ωm + ωn

ω− = ωm − ωn,

the former expression for Tmn can be seen to reduce to

Tmn(t ) = cos(ωnd )

2

[
sin(ω+T2) + sin(ω+d )

ω+

+ sin(ω−T2) + sin(ω−d )

ω−

]

+ sin(ωnd )

2

[
cos(ω+T2) − cos(ω+d )

ω+

− cos(ω−T2) − cos(ω−d )

ω−

]
.

On the other hand, for the case t > T − T1 changing the su-
perior limit of integration (t → T − T1, which implies −d →
T1) and following an analogous procedure leads to

Tmn(t ) = cos(ωnd )

2

[
sin(ω+T2) − sin(ω+T1)

ω+

+ sin(ω−T2) − sin(ω−T1)

ω−

]

+ sin(ωnd )

2

[
cos(ω+T2) − cos(ω+T1)

ω+

− cos(ω−T2) − cos(ω−T1)

ω−

]
.

The time dependency of the results is in the variable d =
t − T .

Equation (3), with the corresponding expression depending
on the value of t , defines the time dependence of the observed
field at rA after the time-reversal process, in terms of the
modal behavior of the cavity. In particular, note that the modal
fields φi(x) are evaluated at the locations rA and rB. This
implies that the time-reversal is better between points at which
the same modal fields display maxima, i.e., at points located
symmetrically with respect to some axis of symmetry of the
cavity, should such an axis exist.

B. Temporal and spatial contrasts

When the time-reversal of a given signal takes place, an
important concentration of energy can be found at the location
rA of the original source at the refocusing time T . This gives
rise to two main quantities that can be computed to determine
the quality of the time-reversal process for a given cavity.

The first quantity is the spatial contrast. In the literature
[11] it is usually defined as the ratio between the wave
amplitude at r = rA and the root mean square of the wave
amplitudes in every other point of the cavity, at the reversion
time:

CRMS
s = |νT R(rA, T )|√〈

ν2
T R(r �= rA, T )

〉 . (4)

It can be noted that this definition does not provide infor-
mation on the existence of secondary maxima which may
compete in importance with the one that arises from the
refocusing at the original source location. For reasons that
will be clear later on, it is useful to introduce an additional
definition of spatial contrast, which takes that possibility into
account, allowing to distinguish between different scenarios.
Considering that the quality of the time-reversal process does
not only depend on the formation of an outstanding localized
spatial maximum but that it also implies the uniqueness of that
maximum, an alternative definition is based on the compari-
son between the maximum at r = rA and the maximum wave
amplitude at any other point:

Cmax
s = |νT R(rA, T )|

max|νT R(x, T )| (5)

with x : ||x − rA|| > l so as to discard points that belong to
the region surrounding the maximum at rA, where a resonance
with characteristic width l takes place. The idea is that if the
peak arising from the refocusing is prominent with respect to
the background noise, and that it also is unique, then CRMS

s
together with Cmax

s would point that fact out.
The other quantity of interest is the temporal contrast.

Following the previous observations we will again consider
two definitions, one based on an RMS average

CRMS
t = |νT R(rA, T )|√〈

ν2
T R(rA, t �= T )

〉 (6)

and another on the comparison between maxima

Cmax
t = |νT R(rA, T )|

max|νT R(rA, t �= T )| . (7)

Taking into account expression (3) it can be seen that the
contrasts to be calculated depend on the cutoff frequency
considered for the computation of the eigenfrequencies. Also,
as previously stated, the signal received at rB is cut from t =
T1 to t = T2 before conducting the reversion. Two parameters
are then defined for characterizing the resulting signal: the
cutoff frequency fcut and the width w = T2 − T1 of the time
window employed.

III. NUMERICAL MODELS

As we are interested in studying the behavior of the time-
reversal process throughout the transition from a regular sys-
tem to a chaotic one, we consider an air-filled acoustical rect-
angular cavity with non-commensurable sides (Lx = π, Ly =
2, in meters) and a family of perturbed cavities, replacing two
adjacent walls with circumference arcs with contact angle θ ,
while keeping the same area R = 2π m2. The case θ = 0 cor-
responds to the regular system and the chaoticity is increased
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FIG. 1. Nearest-neighbor distribution P(s) of the first 6000
eigenfrequencies for the geometries under study. In orange we dis-
play the behavior for the non-degenerated (with non-commensurable
sides) rectangular cavity, which is correctly described by a Poisso-
nian distribution PP(s), drawn in black dashed line. The correspond-
ing distribution for the perturbed cavity (θ = 20) is pictured in blue,
and we superimpose a Wigner-Dyson PW D(s) curve in black dots for
reference. Both reference curves (Poisson and Wigner) were obtained
from the numerical results for the eigenfrequencies, and confirm
the underlying level distribution (regular, chaotic) for each type of
system. In the inset the same distributions are shown but considering
only the first 1000 eigenlevels. The clear qualitative differences are
seen to persist under this lower spectral regime.

with θ . A commensurable rectangle case was also considered.
The sides of this rectangle were Lx = 2, Ly = 3 m, giving
rise to modal degeneration. The qualitative behavior for this
system was found to be very similar to the corresponding one
for the non-commensurable rectangle, in terms of spatial and
temporal contrasts. Hence, from now on this case will not be
mentioned.

The first step to compute the spatial and temporal con-
trasts was to obtain the eigenmodes of the cavities, from
the analytic solutions for θ = 0 and through a finite element
method (FEM) commercial software implementation (COM-
SOL Multiphysics [14]) for θ �= 0. For each case, the first
≈6000 eigenfrequencies and eigenfunctions were computed.
All the calculations were repeated using different grid sizes to
check for numerical convergence of the FEM.

As a tool for determining the chaoticity arising from the
different geometries we computed the nearest-neighbor dis-
tribution P(s) of the eigenfrequencies for the two cavities.
This is shown in Fig. 1. The distribution P(s) shows a clear
indication of the regular-chaotic transition: levels of systems
with integrable ray dynamics can cross and the distribution
is Poissonian, PP(s) = exp(−s), (s is the normalized level
spacing) while crossings are avoided in chaotic systems and
the level spacing distribution is given by the Wigner-Dyson
distribution, as predicted by random matrix theory PW D(s) =
(πs/2) exp(−πs2/4) [15]. We also checked that the spectral
distribution of the eigenfrequencies follows Weyl’s law [16].

An additional study consisted of inspecting the level spac-
ing distribution for different superior cut-off frequencies. In

particular, the distributions were also observed considering
only the first 1000 (see inset in Fig. 1), 2000, 3000, 4000,
5000 eigenfrequencies, verifying that the qualitative differ-
ences between the rectangular and deformed cavities still
hold, and that the Poissonian and Wigner-Dyson distributions,
respectively, still provide proper fits. This allows to state that
the different geometries give rise to integrable or chaotic ray
dynamics under various spectral regimes (in particular, under
all those that will be considered henceforth).

After obtaining the modal components, ωi, and the corre-
sponding acoustic fields in all space, φi, we used Eq. (3) to
compute the theoretical time-reversed signal to be observed
when the reversion is conducted between points rA and rB.
This procedure was repeated for all the systems.

For the computation of the spatial contrast for each ge-
ometry 30 different pairs of random points were considered,
in order to obtain statistical results which average out the
behavior of ill-conditioned points. For the dependence against
fcut we considered values between 900 and 5900 Hz, in steps
of 500 Hz. For the dependence against w, on the other hand,
we considered time windows with widths ranging from 10 to
980 ms, always centered at T/2 = 500 ms.

The calculations for temporal contrast were carried out
taking 1000 random rA, rB pairs of points for each geometry,
and the ranges for fcut and w were the same as before.

IV. RESULTS

Let us consider the case of a time-reversal process involv-
ing a source placed in rA and a recording position rB. The
emitted signal is recorded during a time window of width
w, then reversed in time and re-emitted (in every possible
direction) from rB. As a first result we display in Fig. 2 the
time-reversed signal as recorded at the position of the original
source (rA) for the two configurations. In the figure we also
show the acoustic field in all the space at the reversal time,
which is taken as t = 0 for convenience.

In panels (a,b) of Fig. 2 the recorded signals at point rA =
(xA, yA) exhibit a sharp peak for both systems. This occurs at
the refocusing time, when the original signal is reconstructed
at the position of the original source due to the convergence
of multiple wave-fronts in phase. The corresponding fields
are shown in panels (b, d). In both cases it is found that the
amplitude of the temporal as well as of the spatial peaks are
very similar. Also, calculations on the spatial distributions of
energy show that the relation between the energy of the main
peak corresponds to approximately 1/3 times the energy of
the whole field, consistently with the theoretical predictions
[10]. No significant differences are observed in that ratio when
considering the different geometries.

For the rectangular geometry a remarkable feature is ob-
served. In addition to the amplitude maximum at rA a number
of secondary maxima arise. Two secondary maxima with
an amplitude close to one-half that of the main peak are
found aligned at the same xA coordinate as the principal
maximum, and the same happens along the yA coordinate.
Additional maxima are found aligned with these secondary
peaks displaying an amplitude about 1/4 that of the main
reversed peak. In contrast, the chaotic system does not exhibit
secondary peaks.
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FIG. 2. (a) Time dependence of the reversed signal at the position where the pulse was originally emitted rA, for a rectangular acoustical
cavity with Lx = π and Ly = 2 m. The origin of time was chosen so that the refocusing occurs at time T = 0. (b) The corresponding wave
field at the refocusing time. The positions of the original source rA and the receptor rB are pointed with red and black arrows, respectively. In
(c) and (d) the corresponding time reversed signal and wave field at the refocusing time are displayed for the chaotic cavity with θ = 20. At
all instances the area with fixed at 2π m2.

From these representations it is clear that the introduction
of the definition of spatial contrast given by Eq. (5) is neces-
sary to account for these effects.

The presence of secondary maxima for the rectangular
cavity can be explained using the method of images. Let rk,l

A
and rm,n

B be the multiple images corresponding to the original
emitting and recording points, indexed in the (x, y) cavity
images by the integers pairs (k, l ) and (m, n), respectively.
The impulse response from rA to rB can be determined
by calculating the acoustical paths 
k,l =| rk,l

A − rB |. Since
during reversal all the images rm,n

B act as sources, coincident
wavefronts will occur at point r whenever 
k,l =| rn,m

B − r |
for multiple (k, l, m, n) quadruplets. In this scenario, the main
refocusing at r = rA corresponds to an infinite number of
coincident wavefronts obtained making k = ±m and l = ±n,
with the plus (minus) sign for odd (even) integers.

In Fig. 3 we illustrate, as an example, the acoustical paths
from four images of the original source to the recording
position, and the wavefronts from the images of the recording
position (that act as re-emission points) with radii equal to the
corresponding acoustical paths lengths. The four wavefronts
are coincident at the location of the original source.

In order to find the secondary maxima we reduce the
problem to the easily solvable one-dimensional case of a
cavity of length L. In Table I we display four acoustical
paths (x−1

A to x+2
A ) as columns and two images x0

B and x−1
B

as rows. Each path is added and subtracted from the image
coordinate, since during time-reversal each image emits two
pulses (moving towards positive and negative directions) for
each recorded pulse. All higher order acoustical paths and
images give coordinates that overlap with those displayed in
Table I which, when restricted to the interval [0, L], lead to
only three refocusing points: the original source point xA and
two secondary maxima C and D. The coordinates of these
secondary maxima depend on the relative position of xA and

xB, as follows:

C

⎧⎪⎨
⎪⎩

xB < xA/2 C1

xB � xA/2 ∧ xB � (xA + L)/2 C2

xB > (xA + L)/2 C3

, (8)

D

⎧⎪⎨
⎪⎩

L − xB < xA/2 D1

L − xB � xA/2 ∧ L − x1 � (xA + L)/2 D2

L − xB > (xA + L)/2 D3

. (9)

11

00

-2-1

0-1
-2-10-1

11

00

rB rA

rA
-2-1

rB
0-1

rA
0-1

rA
11

rB
11

rB
2-1

FIG. 3. An illustration of the image method for finding time-
reversed focusing points. The acoustical paths from each of four
images of the original source (r0,0

A , r0,−1
A , r1,1

A , and r−2,1
A ) to the

recording position rB are displayed as red dotted segments. The
corresponding wavefronts with the same radii, re-emitted from four
images of the recording position (r0,0

B , r0,−1
B , r1,1

B , and r2,−1
B ) are

displayed in green dotted line and overlap at the original source
location rA.
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TABLE I. Locations where the convergence of wavefronts occur at the reversal time. Some of them lie within the cavity (in particular, xA)
and some others outside, independently of the locations (xA, xB ). Some others, marked with letters, may or not be in [0, L] depending on the
relation between xA and xB, see Eqs. (8) and (9). The table can be extended infinitely in both directions, but the remaining virtual images will
produce wavefronts always outside the cavity.

�����������Image
Distance

x−1
A = xA + xB x0

A = xA − xB x1
A = 2L − xB − xA x2

A = 2L − xB + xA

xB+ 2xB + xA D3 > L > L

xB− <0 2xB − xA C2 −2(L − xB ) + xA D1 <0

−xB+ xA − 2xB C1 2(L − xB ) − xA D2 2(L − xB ) + xA C3

The locations of the secondary maxima C and D can also
be obtained by reflecting xA with respect to xB and (L − xB),
respectively, and taking its images if the result lies outside
the interval [0, L]. This solution generalizes to the two-
dimensional case as longitudinal modes in the x and y direc-
tions. In fact the secondary maxima are obtained by reflecting
rA with respect to the lines x = xB, x = Lx − xB, y = yB, and
y = Ly − yB, and taking its images if needed. Therefore a
Cartesian product of the solution of the one-dimensional case,
is also a solution for the two-dimensional case, giving nine
focusing points.

As discussed before,the spatial and temporal contrasts can
be studied in terms of their dependence on the type of under-
lying geometry, and also as functions of the defined quantities
fcut (cutoff frequency) and w (time window). In Fig. 4 we
display the spatial contrasts [using both definitions (4) and
(5)] as functions of those quantities for the geometries under
study.

Taking panel (a) into consideration, the first observation is
that the spatial contrast grows with the cutoff frequency. The
positive dependence is reasonable because more eigenmodes
are considered for the reconstruction of the signal as fcut

grows, and hence more wavefronts interfere constructively
at the position of the original source at the reversal time.

(a) (b)

(c) (d)

FIG. 4. Spatial contrasts as functions of fcut (a,b) and w (c,d). In
(a,c) the averaging definition given by Eq. (4) is employed, and in
(b,d) the one given by Eq. (5). The curves in the panels correspond
to the average results for deformed (blue) and regular (orange) rect-
angles, and are displayed together with their corresponding standard
deviations. A linear projection is also presented in dashed black line.

A similar reasoning can be developed to explain (c), where
it is seen that the contrast grows with the widening of the
time window. In this case it seems evident that as w grows
the signal to be reversed contains more energy, as it is the
equivalent of taking a larger portion of the original emission.
Both behaviors seem to be roughly the same for the two
systems when definition (4) is employed. Also it is noticed
that while the contrast grows roughly linearly throughout the
whole range of values of fcut considered, is seems to saturate
for values of w near 0.75 ms, where a plateau is attained.

On the other hand some remarkable features are observed
when considering panels (b) and (d). It is noted that the curve
for the deformed rectangle (in blue line) clearly departs from
the one corresponding to the regular geometry (in orange
line), indicating that the definition of contrast based on com-
parisons between maxima (5) allows for the identification of
each type of system. For the rectangular case that measure
is equal to the ratio between the amplitudes of the main
and secondary peaks, which is approximately equal to 2. For
the deformed geometry, however, the behavior is similar to
the one observed in panels (a), (c)—where the averaging
definition erases the influence of such maxima—since there
are no secondary maxima.

In Fig. 5 we display the results for the temporal contrast for
each system, again as functions of the cut-off frequency and
fcut and the time window employed for the reversal w.

(a) (b)

(c) (d)

FIG. 5. Temporal contrasts as functions of fcut (a,b) and w (c,d),
as given by Eqs. (6) and (7). The curves in the panels correspond
to the average results for deformed (blue) and regular (orange) rect-
angles, and are displayed together with their corresponding standard
deviations. A linear projection is also presented in dashed black line.
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FIG. 6. Spatial contrasts as functions of fcut , as given by Eq. (5).
Each curve corresponds to values of θ of 0 (blue), 1 (red), 5 (yellow),
and 20 (violet) degrees. The behavior of the contrast changes remark-
ably for a value of θ between 1 and 5 degrees. As in Fig. 4, the values
of contrast were averaged over 30 pairs of random points and in
this picture we display those results together with the corresponding
standard deviations.

In this case it is interesting to see that both geometries
seem to display similar behaviors, using both definitions and
considering the dependence on both parameters. The temporal
contrast again grows linearly with fcut and suggests some sat-
uration as w is increased approaching 1 ms, especially under
the second definition of contrast. The most important result
here is that the temporal contrast is not affected significantly
by the chaotic dynamics as compared to those of regular type,
and also that both definitions of contrast lead to the same
conclusions.

This feature can be understood in terms of the mech-
anism leading to the formation of the refocused peak, as
follows. First, it is important to notice that when the initial
acoustical excitation is applied the various wavefronts pro-
duced arrive to the receiving location coming from specific
directions (depending on the reflections they experienced
on the surrounding walls), but, on the contrary, the emis-
sion of the reversed signal is performed in every direction
simultaneously, as a cylindrical or spherical excitation. As
discussed for the one-dimensional (1D) scenario some of the
wavefronts emitted in different directions can interfere con-
structively after several reflections, giving rise to secondary
maxima; the same reasoning can be applied to cases with
more dimensions. It is therefore reasonable to conclude that
increasing the number of eigenfrequencies considered for the
excitation, as well as widening the time window employed
to cut the signal, results in stronger convergences at the
refocused maximum, therefore enhancing the spatial contrast.
For the temporal contrast, however, the phenomenology is
different: the formation of secondary maxima at the reversal
location implies the existence of periodic components in the
temporal reversion, which result in maxima localized in time
when overlapped. These periodic components are series of
commensurable frequencies, and need to have a relatively
important weight on the spectrum in order to have a noticeable
effect as a whole. This condition is always met for the 1D case
because all the eigenfrequencies are integer multiples, giving

rise to a periodic signal as a result of the reversal. On the
other hand, for the two-dimensional (2D) scenario there are
also sequences of eigenfrequencies which are integer related,
such as those defined by the separations between parallel
walls (‘bouncing ball’ modes). If the total amount of eigen-
frequencies considered for the excitation signal is moderate
then those modes which are in a sequence can be relatively
important globally. But as the cut-off frequency increases, the
number of elements in the periodic series grows linearly, while
the total amount grows quadratically (according to Weyl’s
law) and as a result the relative weight of the modes that
belong to a periodic series approaches zero as ∼1/ f . In that
case no recurrence is observed on the reversed signal, and in
sum the temporal contrast does not experience considerable
fluctuations due to the geometry of the system under study.
This is precisely what is observed on the numerical results.
We can therefore conclude that the differences between the
behaviours of the temporal and spatial contrasts originate
on the non-preservation of the directions of arrival for the
reversed wavefronts.

As a final study we calculated the spatial contrast (5)
for different values of perturbation angle θ (see Fig. 6).
This provided insight on the quantitative relevance of the
chaotic dynamics for the enhancement of the contrast. We
considered values of θ between 0 and 20 [corresponding to
non-commensurable and deformed rectangles, respectively,
see panels (b) and (d) in Fig. 2] finding that a clear difference
in the contrast curves occurs for a value of θ between 1 and 5
degrees.

V. CONCLUSIONS

The influence of chaotic dynamics on the quality of time-
reversal processes was argued for in the literature. To our
notice, however, no work had so far been developed to demon-
strate such necessity. In this paper we developed systematic
studies on regular and chaotic systems in an attempt to deter-
mine how fundamental the underlying dynamics are for the
adequate conduction of the time-reversal process. We used
measures of spatial and temporal contrast as quantities to
gauge the quality of the results.

The numerical computations carried out showed that for
every geometry considered the refocusing effect manifests,
leading to a prominent peak in the amplitude of the field.
It was also manifest that there are no significant differences
on the prominence of that peak among the different geome-
tries. By inspection of the time-reversed fields, however, we
observed that the conduction of the time-reversal process on
regular geometries leads to the manifestation of some relevant
secondary peaks. We provided an explanation for their origin,
locations and relative amplitudes by means of the method of
images.

In quantitative terms, when the usual definition for contrast
(as the ratio between the energy of the main peak and the
energy of background noise) is employed there are no im-
portant differences on the resulting values for the different
geometries. This suggests that, under this definition, chaos
actually is not a requisite for a good quality time-reversal.
To take account of the appearance of the secondary peaks we
proposed a new definition for contrast, as the ratio between
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the energies of the most important peak and of the subsequent
maximum. Under that definition there is a clear difference on
the behaviours of the regular and chaotic systems. Consider-
ing regular geometries with and without modal degeneration
allowed us to confirm that the differences arise from the
chaoticity of the systems, and not from the separation of
eigenfrequencies alone.

As mentioned, it was shown that a number (eight) of
secondary maxima appear when the time-reversal process
is performed on the rectangular cavities. These maxima are
clearly noticeable and carry 1/4 or 1/16 times as much
energy as the main reversal peak. In spite of that, the ratio
of energy of the peak against the RMS value of the energy of
the background throws a value close to the theoretical limit
maximum of 1/3. This fact confirms the relevance of the
additional definition of contrast proposed in this work, that
sheds further light on the underlying behavior of the system
by pointing out the existence of secondary maxima.

When considering the temporal contrast no noticeable dif-
ferences were found using either of the definitions of contrast
involved in this work. This is again remarkable, especially
considering the differences in spatial contrast. An explanation
for this feature was provided here, based on the underlying
mechanisms leading to secondary maxima both in the spatial
and in the temporal aspects of the reverted signal.

It must be kept in mind that the proposed contrast measure
does not suffice by itself to determine whether a system is
chaotic or not, although it actually helps on signaling the
possible existence of chaos. From the performed simulations
chaos was shown to be related to the non existence of
secondary time reversal maxima. Also, this measurement is
not necessarily the only possible one to hint for this type
of behavior. In fact under some circumstances, using short
reconstruction times and a limited number of high frequency
modes, noticeable differences appear with respect to the usual

measurement of contrast, although this can not be widely gen-
eralized to other scenarios. As an advantage, the differences
on the measurement of contrast comparing with secondary
maxima (the newly introduced definition) are observed for
every reconstruction time and number of modes, both in
higher and lower frequencies, as was shown in the presented
figures. Other measures, for example based on the stability of
the reconstructed signal against perturbations, can be further
explored.

The results shown here, together with those previously re-
ported in the literature, point to the need for a reconsideration
of what is defined as a successful time-reversal process. Given
the linear reciprocity of the wave equation, the underlying
physics allows for the reversion at all instances. However, as
was shown here, a unique refocused peak occurs only under
some particular circumstances (chaotic dynamics), while the
time-reversal process gives rise to many maxima otherwise
(regular dynamics). If a good reversion is considered to oc-
cur whenever some focusing is found at the original source
location, then there are no clear differences arising from the
underlying dynamics. If, on the other hand, a good-quality
reversion is said to occur whenever that condition is met
together with the uniqueness of that maximum, then only
chaotic systems allow for the phenomenon, and the newly
introduced definition of spatial contrast is necessary to dis-
tinguish between scenarios.
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