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We study wave reciprocity in one-dimensional asymmetric systems constructed by multiple nonlinear δ-
function scatters embedded within linear scatters. A general reciprocal condition is proposed, in terms of the ro-
tation symmetry between forward and backward transfer matrices. We then derive various resonance conditions,
under which all scatterers behave as merging into either a single nonlinear δ scatter, or a symmetric nonlinear
barrier configuration. As such, the reciprocity appears periodically by changing widths of linear constant poten-
tials between neighboring nonlinear δ scatters. Moreover, the wave reciprocity will not be violated if one replaces
the linear constant potential between two δ-nonlinear scatters with any other kind of transparent scatterers.

DOI: 10.1103/PhysRevE.100.012207

I. INTRODUCTION

The unidirectional wave propagation has long been a cru-
cial topic in controlling energy and information transporta-
tion. Recently, different kinds of diodes were proposed in
analogy to the familiar electric diodes, including acoustic
diodes which can manipulate an acoustic wave with an appli-
cation in biomedical ultrasound devices [1–3]; optical isola-
tors that can remove undesired light in various optical devices
[4–9]; thermal rectifiers [10–19] that permit thermal flux only
in one direction with many potential applications such as
thermal computers [20–22]; and spin Seebeck diodes which
can even manipulate pure spin current [23,24]. Reciprocity is
violated in these devices.

Reciprocity, in the Lorentz sense, means the invariance of
signals under exchange of source and detector [25,26] and is
usually expressed as the symmetry of the Green’s function
[27] or scattering matrix [25,28]. The reciprocity theorem says
that the linear lossless system with time-reversal symmetry
is reciprocal [25,28]. Therefore, to realize nonreciprocity in
the linear system, time-reversal symmetry needs to be broken
[29–31]. For example, magnetic field is applied to magneto-
optical materials to realize Faraday rotation and hence the
asymmetric propagation of light [29]. An analogy for non-
reciprocal acoustic waves in magneto-acoustic materials is
also predicted [32]. To achieve nonreciprocity avoiding the
physical magnetic field that usually makes devices bulky, one
can alternatively introduce materials with absorption [8,9]
or time modulation [31] to synthesize an effective magnetic
field break the time-reversal symmetry. However, under such
conditions although Lorentz reciprocity is broken with the
transport coefficient Si j (B) �= S ji(B), the Onsager reciprocity
is still preserved Si j (B) = S ji(−B) under time-reversal of
the effective magnetic field −B [33,34] or artificial gauge
field. This reciprocity in the sense of time-reversal (including
reversing gauge fields) holds in the linear response region.
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Nonlinearity is an alternative way to realize nonreciproc-
ity without breaking time-reversal symmetry. For example,
acoustic diodes constructed by combining superlattice and
nonlinear materials [2], by inserting a point defect near the
boundary of the one-dimensional nonlinear lattice [3]; thermal
diodes by coupling two distinct nonlinear lattices [18,35],
by introducing nonlinear heat radiation in asymmetric ho-
ley composites [36] and the static nonreciprocal mechanical
system using nonlinear metamaterials [37]. The practicabil-
ity of nonlinear rectifier devices have also been verified by
experiments [2,38,39]. Therefore, introducing nonlinearity in
a spatial asymmetric system is an effective way to realize
nonreciprocity.

However, nonlinearity, combined with spatial asymmetry,
does not necessarily guarantee nonreciprocity. We considered
a nonlinear and asymmetric model in the presence of two
nonlinear elements [40] embedded within a linear potential. A
geometrical resonance condition that can break nonreciprocal
propagation was shown in that model. Here, motivated by
this previous work [40], we generalize the same notions of
symmetric wave propagation but in an asymmetric system
with multiple nonlinear elements instead of two. The model is
described by the nonlinear Schrödinger equation, which is the
governing equation of electron tunneling with many-electron
interaction [41,42], or matter wave, Bose-Einstein condensate
(BEC), nonlinear optics and is frequently discussed in the
literature about asymmetric wave propagation [43–45] as well
as solitons [46–49]. Without loss of generality, we investigate
the general reciprocity condition based on this model and
several special reciprocal cases are provided. The results
are also valid for the general wave dynamics described by
Helmholtz equation.

The paper is organized as follows. In Sec. II, we review
the definition of reciprocity and extend the concept of the
scattering matrix for a one-dimensional nonlinear system. A
general reciprocity condition in terms of transfer matrix is
derived in Sec. III. In Sec. IV, we describe the model with
multiple nonlinear δ-function potentials and derive the formal
solution of the corresponding wave equation. In Sec. V, we
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FIG. 1. Diagram of the general model we consider: propagation
of wave with single frequency in presence of a scatterer of real
nonlinear potential, located at the range from x = 0 to x = D. Iin

and Rin denotes the amplitude of the incident plane wave from left
and right sides of the scatter, respectively. Iout and Rout denotes the
amplitude of the transmitted plane wave to the right and left sides of
the scatter, respectively. We consider scattering states with E > V .

give four examples that the nonlinear system can also be
reciprocal. In Sec. V A, a special reciprocal case named as
the global resonance condition is derived from the general
reciprocal condition. Under the global resonance condition,
two neighboring nonlinear δ-function potentials merge and
behave as a single one. Thus the resonance condition in
[40] can be generalized to satisfy models with any number
of nonlinear δ-function potential. In Secs. V B and V C, we
construct two special reciprocal systems that do not satisfy
the global resonance condition. Then we argue that they are
actually equivalent to systems satisfying the global resonance
condition and spatial symmetry, respectively. In Sec. V D, we
propose a sandwich-structure linear model and find that it is
also transparent. Based on this, we construct another kind of
reciprocal model in analogy to the one in Sec. V A. Finally, we
briefly discuss the stability of the global resonance condition
in Sec. VI.

II. REVISIT OF RECIPROCAL CONDITION

We consider the one-dimensional system, described by the
time-independent nonlinear Schrödinger’s equation

−d2ψ

dx2
+ U (x, ψ )ψ (x) = Eψ (x), (1)

as illustrated in Fig. 1. Note that the governing equation of
general waves, such as the mechanical wave and electromag-
netic wave, can also be written in a similar form, with replac-
ing E with its quadratic counterpart. The scatter potential in
the position ∈ [0, D] can depend on the wave magnitude as
a consequence of the response to nonlinearity. Since we only
consider real potentials, the current densities of the system
are conserved. The potential outside of the scatterer regime is
assumed to be constant.

For the one-dimensional system, reciprocity is defined as
the invariance of the transition amplitude while reversing the
wave propagating direction. This is usually represented by
the symmetry of the scattering matrix for the linear system,

which can also be extended to a nonlinear system with some
modifications shown below.

Considering the input a = [Iin, Rin]T and output b =
[Rout, Iout]T , they are related via: b = Sa. Here S is a func-
tion of a and b in analogy to the scattering matrix for the
linear system. Note that S cannot be determined totally by an
incident wave due to the existence of multistability [50,51].
In addition, it is difficult to calculate with S since it operates
on a but its value depends on both a and b. So we use the
transfer matrix M instead: L = MR where L = [Iin, Rout]T

and R = [Iout, Rin]T . S can be represented by M:

S = 1

M11

[
M21 1

1 −M12

]
. (2)

Here we applied Det(M) = 1 as a consequence of time-
reversal symmetry and probability current conservation [52].
For the same reason, S is unitary and symmetric [25].

For the forward incident wave from the left, we have
Iout = T and Rin = 0 where T is an arbitrary number. Thus
the wave at x > D is ψ (x) = Iouteik0(x−D) and the scattering
matrix denoted as S f can be determined according to the
Picard uniqueness theorem. Similarly, for a wave propagating
backward from the right, we have Iin = 0 and Rout = T . The
wave at x < 0 is ψ (x) = Route−ik0x and the scattering matrix
is denoted as Sb. Then, the definition of the reciprocity reads

S21, f = S12,b, (3)

where the subscript f , b denotes forward and backward,
respectively.

III. ROTATION SYMMETRY BETWEEN
FORWARD AND BACKWARD

Combining the definition of reciprocity S21, f = S12,b and
the symmetric scattering matrix S12 = S21, we can conclude
that for the reciprocal system

S21, f = S21,b = S12, f = S12,b. (4)

As S is unitary, we can derive three independent equations
about four entries of S:

|S11|2 + |S21|2 = 1, (5a)

|S12|2 + |S22|2 = 1, (5b)

S∗
11S12 + S∗

21S22 = 0. (5c)

Comparing Eq. (4) to Eqs. (5a) and (5b), we have S11, f =
S11,beiθ1 and S22, f = S22,beiθ2 where θ1 and θ2 are real num-
bers. Substituting these into Eq. (5c), we get θ1 = −θ2.

Comparing these arguments with Eq. (3), we can conclude
that for the reciprocal system, the transfer matrix for a wave
propagating forward and backward are related via a unitary
transform

M f = �†Mb�, (6)

where � = diag[e−iθ , eiθ ] and θ is an arbitrary real number.
Usually, for a system with nonlinearity or potential vary-

ing with position continuously, wave amplitude is not well-
defined inside the scatterer. So we introduce a new variable
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FIG. 2. Diagram of the model with multiple nonlinear δ poten-
tials. A plane wave of amplitude I0 strikes a nonlinear δ-function
potential, giving rise to a reflected wave of amplitude Ri and trans-
mitted wave of amplitude Ii in each region with linear potential
Vi. We consider scattering states with E > V . The backward wave
propagation can be similarly described.

χ (x) = [ψ (x), 1
k(x)ψ

′(x)]
T

to describe the wave propaga-

tion, with factor k(x) = √
E − U (x) ensuring that the units of

the two elements are the same. At the left end of the scatterer,
we have χ (0 − ε) = �L where � = [1, 1; i,−i] and ε → 0.
At the right end, χ (D + ε) = �R. So, χ (x) at the two ends
of the scatterer can be related χ (0 − ε) = 	χ (D + ε) to the
new transfer matrix 	:

	 = 1
2�M�†. (7)

Substituting Eq. (7) into Eq. (6), the reciprocal condition
can be derived in terms of 	:

	 f = ϒ†	bϒ, (8)

where ϒ is a rotation matrix

ϒ = 1

2
���† =

[
cos θ − sin θ

sin θ cos θ

]
. (9)

Therefore, Eq. (8) can be concluded as the general reciprocal
condition for the transfer matrix 	 of a reciprocal system
for a wave propagating forward and backward which are
orthogonally similar to each other via a rotation matrix. In the
following sections, we will verify various kinds of nonlinear
yet reciprocal models based on Eq. (8).

IV. MODELS AND RESULTS

In the rest of this paper, we examine the reciprocity of the
system with N + 1 nonlinear layers, described by nonlinear
Dirac δ-function potentials embedded in a linear system as
illustrated by Fig. 2. Similar derivations can be generalized to
the discretized coupled-site system or multilayer system.

The potential of the system consists of the nonlinear and
linear parts:

U (x, ψ ) =
N∑

n=0

Gn,n+1δ(x − Dn,n+1)|ψ (x)|2 + V (x), (10)

where real numbers Gn,n+1 denote the nonlinear strength of
the δ-function potential located at x = Dn,n+1. Index n =
0, 1, . . . , N here, as well as in the following sections. In

additions, the linear part is

V (x) =

⎧⎪⎨
⎪⎩

V0, x < D0,1,

Vj, Dj−1, j < x < Dj, j+1,

VN+1, x > DN,N+1,

(11)

with j = 1, . . . , N and VN+1 = V0. Inside each linear region,
the equation is

d2ψ

dx2
+ k(x)2ψ = 0, (12)

where wave vector k(x) = √
E − V (x) or k j = √

E − Vj ,
j = 1, 2, . . . , N . Note this equation is reminiscent of the
Helmholtz equation for general classical waves.

As in Sec. II A, we use the two-dimensional vector χ (x) =
[ψ (x) 1

k(x)ψ
′(x)]

T
to represent wave function and its deriva-

tion. At the endpoints of each linear region χn,r = χ |x=Dn,n+1−ε

and χn+1,l = χ |x=Dn,n+1+ε where indexes “l” and “r” denote
the left endpoints and right endpoints, respectively. Thus
Eq. (12) can be rewritten as χ ′ = ik jσyχ , where σy is the Pauli
matrix.

So, inside each linear region, we have

χ j,l = � jχ j,r, (13)

where � j is

� j = e−iφ jσy =
[

cos φ j − sin φ j

sin φ j cos φ j

]
, (14)

where φ j = k j (Dj, j+1 − Dj−1, j ), j = 1, 2, . . . , N . � j is rec-
ognized as the rotation matrix in two-dimensional Euclidean
space R2. So the effect of back-propagating in the jth linear
potential, without considering the boundary effect, is to rotate
both the real and imaginary parts of vector χ an angle, φ j . The
boundary conditions at x = Dn,n+1 are

ψ |Dn,n+1−ε = ψ |Dn,n+1+ε, (15)

dψ

dx

∣∣∣∣
Dn,n+1+ε

Dn,n+1−ε

= Gn|ψ (Dn,n+1)|2ψ (Dn,n+1), (16)

where ε → 0.
Rewriting Eqs. (15) and (16) in terms of χn,r and χn+1,l :

χn,r = �n,n+1χn+1,l =
[

1 0
−Qn,n+1 Pn,n+1

]
χn+1,l , (17)

where Pn,n+1 = kn+1

kn
and Qn,n+1 = Gn,n+1

kn
|ψ (Dn,n+1)|2 comes

from the scattering of the boundary and δ potential, respec-
tively. By combining Eqs. (13) and (17), we get

χ0,r = 	χN+1,l , (18)

where 	 is the transfer matrix

	 = �01

N∏
j=1

� j� j, j+1. (19)

	 describes the relationship of vector χ at the two endpoints
of the scatterer. Each � j represents the effect of the jth linear
constant potential alone, while � j, j+1 is the scattering of the
boundary and δ potential between the jth and j + 1th linear
potential together with the nonlinear δ-function potential lo-
cated there. Thus we derived a formal solution of Eq. (1) with
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a potential in the form of Eq. (10), although the nonlinear
operator 	 is determined by the unknown wave function in
general.

V. RESONANCE CONDITIONS FOR RECIPROCITY

Previously, we studied a system consisting of two nonlin-
ear δ-function potentials and a linear interface [40]. Results
showed that the system is reciprocal if the linear interface sat-
isfies the resonance condition φ = nπ . In this section, we will
construct more nonlinear models and verify the reciprocity. In
Sec. V A, as a generalization of the previous two-nonlinear-
spot system [40], we derive a global resonance condition
for an arbitrary number of nonlinear spots from the general
reciprocal condition Eq. (8), which says that the system is
reciprocal if φ j = mjπ for all linear interfaces Vj . We also
show that the reciprocity arises from that the two nonlinear
spots Gj−1, j and Gj, j+1 at the two ends of linear interface Vj

and can be viewed as a single one if φ j = mjπ . Based on this
idea, we construct two models that can be viewed as satisfy-
ing the global resonance condition and spatial symmetry in
Secs. V B and V C, respectively. In Sec. V D, we show that
reciprocity will not be violated if the linear constant interface
satisfying the resonance condition is replaced by another kind
of transparent media.

A. Global resonance condition

First, we consider the case that θ = 0 in Eq. (8) and reci-
procity requires 	 f = 	b. Comparing this with Eq. (19), the
expression of 	 for our model, we find a sufficient reciprocal
condition � f ,n,n+1 = �b,n,n+1, which yields

|ψ f (Dn,n+1)|2 = |ψb(Dn,n+1)|2. (20)

As |ψ f (DN,N+1)| = |ψb(D0,1)| = |T |, to realize Eq. (20), we
can set

|ψ (Dj−1, j )| = |ψ (Dj, j+1)|, (21)

for j = 1, 2, . . . , N , so that |ψ f (Dn,n+1)| = |ψb(Dn,n+1)| =
|T |. According to Eq. (13):

|ψ (Dj−1, j )| =
∣∣∣∣ψ (Dj, j+1) cos φ j − ψ ′(Dj, j+1 − ε)

sin φ j

k j

∣∣∣∣.
(22)

So, to ensure that Eq. (20) holds true, we only need to set
sin φ j = 0 and cos φ j = ±1, from which we can obtain the
following reciprocal condition:

φ j = mjπ, (23)

where mj are integers. We name Eq. (23) as the global
resonance condition since it must be fulfilled for all j from
1 to N . Under this condition, � j = (−1)mj 1. Therefore, the
transfer matrix of the subscatter formed by the jth interface
Vj and nonlinear spots at its two ends is

� j−1, j� j� j, j+1 = (−1)mj

[
1 0

−Qj−1, j+1 Pj−1, j+1

]
, (24)

where Pj−1, j+1 = k j+1

k j−1
and Qj−1, j+1 = Gj−1, j+Gj, j+1

k j−1
|ψ (Dj, j+1)|2.

x

E

FIG. 3. Diagram of the model considered in Sec.V B. An “in-
verted” nonlinear δ potential is inserted in the multiple-nonlinear-
layer model. The parameters of this model are V0 = V4, V1 = V3,
G1,2 + G2,3 = 0, φ2 = m2π , φ1 + φ3 = m3π , where m2 and m3 are
integers.

Comparing Eqs. (16) and (23), we find that the transfer
matrix of the subscatter is the same as the transfer matrix
of the single nonlinear δ potential with nonlinear coefficient
Gj−1, j + Gj, j+1. This indicate that the neighboring nonlinear
δ potential can be viewed as a single one. Moreover, substitut-
ing � j into Eq. (18), we get the transfer matrix of the whole
scatter

	 = (−1)m
N∏

n=0

�n,n+1 = (−1)m

[
1 0

−Q 1

]
, (25)

where Q=G|ψ (D0,1)|2/k0, G = ∑N
j=0 Gj, j+1, m = ∑N

j=1 mj .
Equation (25) also has the same form as Eqs. (17) and

(24). Thus, all nonlinear spots can merge into a single one.
It is also known that a single nonlinear spot is not sufficient
for nonreciprocity [40]. Specifically, if G = 0, all nonlin-
ear potentials are eliminated and the transfer matrix is the
identity, which means that the scatterer is then transparent.
This is a generalization of Fabry-perot resonance for a linear
system [40].

Note that global resonance condition Eq. (23) is a special
case of reciprocal condition Eq. (8) since it is derived by first
specifying the invariance of wave magnitude at each nonlinear
spot in Eq. (20), then further specifying the equality of wave
magnitude at every nonlinear spot Eq. (21). So there may
exist other cases where the global resonance condition is not
fulfilled whereas the system is still reciprocal.

B. Equivalent systems satisfying global resonance condition

In this section, to investigate other reciprocal conditions,
we intentionally design a special reciprocal system that does
not satisfy the global resonance condition.

The geometry of a this setup is shown in Fig. 3. The
highlight is that G1,2 + G2,3 = 0, φ2 = m2π , φ1 + φ3 = m3π .
As φ2 = m2π and G1,2 + G2,3 = 0, two nonlinear potentials
G1,2, G2,3 merge and eliminate so that linear regions (I) and
(III) become adjacent. Meanwhile, φ1 + φ3 = m3π . Thus the
system is equivalent to one that consists of two nonlinear
spots and a linear interface satisfying the global resonance
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FIG. 4. Diagram of the model considered in Sec. V C.
The parameters of this model are V0 = V3, G1,2 + G2,3 = G0,1,
and φ2 = m2π .

condition. Therefore, the system is reciprocal for very good
reasons, even though the global resonance condition Eq. (23)
is not fulfilled.

Verification of this reciprocal model is given by exploit-
ing the general condition of reciprocity we just proposed in
Eq. (8). As φ2 = m2π , according to Eq. (14), �2 = (−1)m2 1
and χ2,l = (−1)m2χ2,r . So, the wave magnitude at two ends
of the linear potential V2 are the same :|ψ (D1,2)| = |ψ (D2,3)|.
The transfer matrix of the subscatterer constructed by linear
potential V2 and δ-function potential G1,2 and G2,3 is

�1,2�2�2,3 = (−1)m2

[
1 0

−G1,2+G2,3

k1
|ψ (D1,2)|2 1

]

= (−1)m2 1. (26)

Thus, two nonlinear potentials G1,2 and G2,3 are eliminated,
as expected. Namely, the presence of the subscatterer will not
affect the wave propagation. According to Eqs. (13), (17), and
(26), χ1,l = (−1)m2�1�3χ3,r . As φ1 + φ3 = m3π ,

�1�3 = e−i(φ1+φ3 )σy = (−1)m3 1. (27)

Therefore, χ1,l = (−1)m2+m3χ3,r . Thus wave magnitude at
two endpoints of the scatterer are the same both for the waves
propagating forward and backward: |ψ (D0,1)| = |ψ (D3,4)| =
|T |. Substituting Eqs. (26) and (27) into Eq. (19), the transfer
matrix 	 is obtained:

	 f = 	b = (−1)m2+m3�0,1�3,4

= (−1)m2+m3

[
1 0

−G0,1+G3,4

k0
|T |2 1

]
. (28)

So, the reciprocal condition Eq. (8) is fulfilled with θ = 0.
Note that this model is different from the global resonance
condition. Unlike in Sec. III A, the wave magnitude at x =
D1,2 and x = D2,3 are not invariant in general as G0,1 and G3,4

take arbitrary values. Namely, Eq. (20) is not fulfilled. But
this does not violate reciprocity since the scattering at the two
nonlinear spots are eliminated in Eq. (26).

C. Equivalent to symmetric systems

Now we consider another special reciprocal system as
shown in Fig. 4. This model does not fulfill the global

resonance condition Eq. (23) either, but is still reciprocal,
similar to the previous one.

Nonlinear spots at x = D1,2 and x = D2,3 merge into a
single spot with nonlinear strength equal to G0,1 and the
system then is equivalent to a symmetric one. It is well known
that a symmetric nonlinear model is not sufficient to give
rise to nonreciprocity. Thus, this setup is also reciprocal,
reasonably.

First, we consider the subscatterer constructed by linear po-
tential V2 and nonlinear δ-function potential G1,2 and G2,3 as
in Sec. V B. Since φ2 = m2π , �2 = (−1)n1 and |ψ (D1,2)| =
|ψ (D2,3)|. So, according to Eqs. (13) and (17), the transfer
matrix of the subscatterer is

�1,2�2�2,3 = (−1)m2

[
1 0

−G1,2+G2,3

k1
|ψ (D1,2)|2 k3

k1

]
. (29)

Comparing Eqs. (29) and (17), we find that the transfer
matrix of the subscatterer is the same as the single δ-function
potential with nonlinear strength G1,2 + G2,3 = G0,1. So,
the transfer matrix of the model is the same (other than
the sign) as another one, which is constructed by two
nonlinear identical spots G0,1 and a linear interface V1,
a surely reciprocal model. Note that we do not need any
information about the linear constant interface V1 to get
Eq. (29). Therefore, the linear interface can be replaced by
another kind of symmetric potential and reciprocity will still
not be violated. For example, the interface can be a sandwich
structure and the potential can change continuously with
position or consists of nonlinearity itself.

Next, we verify that the general reciprocal condition Eq. (8)
is fulfilled. For a wave propagating forward, χ f ,3,l = [T, iT ]T .
substituting Eq. (29) into Eq. (19), the transfer matrix of the
whole scatter is

	 f = � f ,0,1�1(� f ,1,2�2� f ,2,3)

= (−1)m2
cos φ1

k0

[
k0 0

−(α + β ) k0

]

+ (−1)m2
sin φ1

k1

[
α −k0

1
k0

(
k2

1 − αβ
)

β

]
, (30)

where α = G0,1|ψ f (D1,2)|2 and β = G0,1|ψ f (D0,1)|2. For
a wave propagating backward χb,0,r = [T,−iT ]T , so
|ψb(D0,1)| = |ψ f (D1,2)| = |T |. It can be also verified
that |ψb(D1,2)| = |ψ f (D0,1)|, by substituting χ f ,3,l

and χb,0,r into χ f ,1,l = �1(�b,1,2�2�b,2,3)χ f ,3,l and
χb,1,r = �−1

1 �−1
b,0,1χb,0,r , respectively. So, the transfer matrix

	b can be obtained just by exchanging the position of α and
β in Eq. (30):

	b = (−1)m2
cos φ1

k0

[
k0 0

−(α + β ) k0

]

+ (−1)m2
sin φ1

k1

[
β −k0

1
k0

(
k2

1 − αβ
)

α

]
. (31)

Comparing Eqs. (30) and (31), reciprocal condition Eq. (8) is
fulfilled with

θ = arctan

(
k0(α − β ) tan φ1(

k2
0 − k2

1 + αβ
)

tan φ1 + k1(α + β )

)
. (32)

Recall that θ is the angle of the rotation matrix in Eq. (9).
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FIG. 5. (a) Diagram of the constant “transparent” scatterer (V1)
with V0 = V2 and φ1 = π . (b) Diagram of the nonconstant “transpar-
ent” scatterer (V1,V2,V3) with V0 = V4, V1 = V3, k2/k1 = k1/k0 and
φ1 = φ2 = φ3 = π/2. (c) Diagram of the model with nonconstant
subscatterer sandwiched by two nonlinear δ functions.

D. Other reciprocal conditions

In Secs. V B and V C, we constructed two kinds of recipro-
cal model. Their essences are the same: the transfer matrix of
an interface between two neighboring nonlinear spots is a unit
matrix, thus the two nonlinear spots can be viewed as a single
one. However, to realize this, the linear interface need not be a
constant-potential and can be replaced by another one that has
a unit transfer matrix. Such an interface can be constructed by
a transparent scatter, whose transfer matrix is a rotation φ, and
a constant-potential which produces a rotation nπ − φ.

A well-known example of transparent media is the Fabry-
Perot resonance, which we used in the above sections. The
transparency of it can be explained by the interference of a
wave. As shown in Fig. 5(a), supposing that φ1 = π , V1 >

V0 = V2, the wave incident comes from the left and it splits
into a reflected wave and transmitted wave at x = 0. The trans-
mitted wave propagates forward along media V1 and picks a
phase π . Then it is reflected at x = D1,2 and picks a phase π

because of half-wave loss. Finally, the wave reflected at x =
D1,2 propagates backward and picks a phase π . Meanwhile,
the wave reflected at x = D0,1 picks no phase. So, the wave
reflected by the boundary at x = 0 and x = D1,2 have phase
difference 3π and are eliminated with each other, which is
why the media are transparent.

In analogy, we construct the model illustrated in Fig. 5(b).
V0 = V4,V1 = V3, k1/k0 = k2/k1, φ1 = φ2 = φ3 = π/2. We
expect that the wave reflected at x = 0 and x = D2,3 are
eliminated and the wave reflected at x = D1,2 and x = D3,4

are also eliminated. Different from the common Fabry-Perot
resonance, such transparent media are expected to generate
a rotation by angle 3π/2 instead of π since φ1 + φ2 + φ3 =
3π/2. So, to construct a reciprocal model, it should be

inserted into two nonlinear spots together with another
constant media, which generate a rotation by angle π/2.

For example, we use the nonconstant “transparent” sub-
scatterer to construct the nonlinear model illustrated in
Fig. 5(c). V0 = V6, V1 = V5, φq = ( 1

2 + mq)π for q = 2, 3, 4
and φ1 + φ5 = ( 1

2 + m1)π . The subscatterer formed by V2, V3,
and V4 is transparent according to an analysis of the method
we introduced above. V1 and V2 are added to fix the phase
difference of χ at two ends of the subscatterer such that the
wave function magnitudes at the two nonlinear spots are the
same and equals to |T |. So, the system is supposed to be
reciprocal according to our analysis.

It can be verified that the model illustrated in Fig. 5(c)
satisfies the general reciprocal condition Eq. (8). Substituting
φq = ( 1

2 + mq)π for q = 2, 3, 4 into Eq. (14), �q is

�q = (−1)mq

[
0 −1
1 0

]
. (33)

As k2/k1 = k3/k2 = k3/k4 = k4/k5,

�1,2 = �2,3 = �−1
3,4 = �−1

4,5 =
[

1 0
0 k2/k1

]
. (34)

Substituting Eqs. (33) and (34) into Eq. (19), the transfer
matrix of the subscatterer formed by V2, V3, and V4 is

�1,2

4∏
q=2

�q�q,q+1 = (−1)
∑4

q=2 mq

[
0 1

−1 0

]
. (35)

According to Eqs. (13) and (17),

χ1,l =
4∏

q=1

�q�q,q+1�5χ5,r

= (−1)
∑4

q=2 mq

[
sin(φ1 + φ5) cos(φ1 + φ5)

− cos(φ1 + φ5) sin(φ1 + φ5)

]
χ5,r

= (−1)
∑4

q=1 mqχ5,r . (36)

So, the wave magnitude at nonlinear spots are the same:
|ψ (D0,1)| = |ψ (D5,6)| = |T |, both for a wave propagating
forward and backward. The transfer matrix of the system is

	 f = 	b =
[

1 0
−|T |2

k0
(G0,1 + G5,6) 1

]
. (37)

So reciprocal condition Eq. (8) is fulfilled.

VI. STABILITY ANALYSIS

In this section, we analyze the stability of the reciprocal
condition. The dynamical stability in the conventional sense
is the stability against small perturbations of the initial condi-
tion, which has been thoroughly discussed in previous works
[48,49] for a wave packet propagating in a similar model.
Here we study the stability of the reciprocal conditions we
proposed, namely, whether the reciprocal models in Sec. V
remain approximately reciprocal under small perturbation.
Since the general derivation of stability is complicated for our
model, we examine several special cases as examples. We will
show that the global resonance condition is “approximately
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reciprocal” if it is slightly violated, either by perturbing the
value of the linear constant potential in Sec. VI A or replacing
the constant linear potential with a slowly varying one in
Sec. VI B. But other reciprocal conditions could be unstable
against the perturbation of the nonlinear coefficient as dis-
cussed in Sec. VI C.

A. Perturbation of φs

We reconsider the model in Fig. 2 which satisfies the
global resonance condition φn = mnπ , for n = 1, 2, . . . , N .
For stability analysis, we consider a small deviation from the
global resonance condition by changing one linear potential
labeled by n = s, which changes φs slightly to φ′

s : φ′
s =

(1 + ε)φs with ε � 1. Then according to Eq.(19), the transfer
matrix is

	′ = (−1)m

[
1 0

−Ql ks/k0

]
e−iσyεφs

[
1 0

−Qr k0/ks

]
, (38)

where Ql = Gl |ψ (D0,1)|2/k0 and Qr = Gr |ψ (DN,N+1)|2/ks,
Gl = ∑s−1

j=0 Gj, j+1, Gr = ∑N
j=s G j, j+1. As ε is small, substi-

tuting e−iσyεφs = 1 − iσyεφs + O(ε2) into Eq. (38), we can
derive

	′ = (−1)m

[
1 0

−(Ql + ksQr/k0) 1

]

+ (−1)mεφs

[
Qr −k0/ks

ks/k0 − QlQr k0Ql/ks

]
+ O(ε2). (39)

For a wave propagating forward, χ f ,N+1,l =
[T, iT ]T and Qr = Gr |T |2/ks. Substituting Eq. (39)
into χ f ,0,r = 	′χ f ,N+1,l , we can derive Ql = Gl (1 +
2εφsGr |T |2/ks)|T |2/k0 + O(ε2). Similarly, for a wave
propagating backward, Ql = Gl |T |2/k0 and Qr = Gr (1 +
2εφsGl |T |2/ks)|T |2/ks + O(ε2). By ignoring higher-order
terms, the transfer matrices for a wave propagating forward
and backward are identical:

	′
f
∼= 	′

b
∼= 	 + (−1)mεφs

⎡
⎣

Gr
ks

|T |2 − k0
ks

ks
k0

− 3Gl Gr
k0ks

|T |4 Gl
ks

|T |2

⎤
⎦,

(40)

where 	 is the transfer matrix of the original reciprocal
system: 	 = (−1)m[1, 0; −(Gl + Gr )|T |2/k0, 1]. So, the sys-
tem can still be viewed as reciprocal if the perturbation is
sufficiently small. To verify this, we define the quantity �A =
|S21, f − S12,b|2/4 and A = |S21, f + S12,b|2/4. If �A = 0, the
system is reciprocal. If �A/A � 1, we reasonably consider
the system “approximately reciprocal.” For small ε case, the
difference between forward transfer matrix and backward
transfer matrix is proportional to ε, then �A is proportional
to ε2. As shown in Fig. 6, for small ε though A changes
obviously, �A/A remains small compared with ε2.

B. Spatially varying linear potential

For the global resonance condition in the above section, we
consider only the constant linear potential. We now consider
a spatially varying symmetric linear potential to check the
stability of the reciprocal condition. The model would

1.60

1.62

1.64

0.0 2.0x10-5 4.0x10-5 6.0x10-5 8.0x10-5 1.0x10-4
0.0

3.0x10-10

6.0x10-10

A
ΔΑ

/Α

ε2

FIG. 6. A and �A/A for system under perturbation: φ′
s = (1 +

ε)φs with ε varying between 0 and 0.01. The model consists of
two nonlinear δ spots: G0,1 = 1 and G1,2 = 0.9. k1 = 1 k0 = 1
and T = 0.9.

satisfy a condition similar to the resonance condition:∫ Ds,s+1

Ds−1,s
k(x)dx = msπ and k jd j = mjπ for j �= s. For

mathematical simplicity, we assume that k(x) =
ks + A cos[εmsπ (x − Dc)/ds] for Ds−1,s < x < Ds,s+1,
where ks is to be determined from given ms and ds

and Dc = (Ds−1,s + Ds,s+1)/2. Then ignoring small
terms in order ε2, the solution of d2

dx2 ψ + k(x)2ψ = 0 is
ψ (x) = 1√

k(x)
(C1ei

∫
k(x)dx + C2e−i

∫
k(x)dx ). And 1

k(x)
d
dx ψ (x) =

− 1
2k(x)2

dk
dx ψ (x) + 1√

k(x)
(iC1ei

∫
k(x)dx − iC2e−i

∫
k(x)dx ). Similar

to the case for linear constant potential, the vector χ at
x = Ds−1,s and x = Ds,s+1 can be related: χs,l = �′

sχs,r

where �′
s = (−1)ms 1 + O(ε2) is identical to �s of the

original reciprocal system. So, the transfer matrix is
	′ = (−1)m[1, 0; −Q, 1] + O(ε2), which is identical to
the transfer matrix of the original system in Eq. (25) and the
system is approximately reciprocal. The simulation results
shown in Fig. 7 agree with these arguments.

1.5922

1.5924

0.0 2.0x10-5 4.0x10-5 6.0x10-5 8.0x10-5 1.0x10-4
0.0

3.0x10-17

6.0x10-17

A
ΔΑ

/Α

ε2

FIG. 7. A and �A/A for the slowly varying potential k(x) =
ks + A cos[εmsπ (x − Dc )/ds] with ε varying between 0 and 0.01.
The model consists of two nonlinear δ-spots: G0,1 = 1 at D0,1 = 0
and G1,2 = 0.9 at D1,2 = 4π and a linear interface with A = 0.4 and∫ 4π

0 k(x)dx = 4π . k0 = 1 and T = 0.9.
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1.56

1.58

0.0 2.0x10-5 4.0x10-5 6.0x10-5 8.0x10-5 1.0x10-4
0.0

3.0x10-5

6.0x10-5

A
ΔΑ

/Α

ε2

FIG. 8. A and �A/A under perturbation: G1,2 + G2,3 = ε(G0,1 +
G3,4) with ε varying between 0 and 0.01. The model consists of four
nonlinear δ spots: G0,1 = 1, D3,4 = 0 and G1,2 and G2,3 are to be
determined. k j = 1 for all j. φ1 = π/3 and φ3 = 2π/3. T = 0.9.

C. Perturbation of nonlinear coefficient

Changing the nonlinear coefficient does not violate the
global resonance condition, but it could violate other re-
ciprocal conditions. As an example, we examine the sys-
tem in Sec. V B and the condition for the nonlinear po-
tential is slightly violated G1,2 + G2,3 = ε(G0,1 + G3,4). So,
for the subscatter formed by G1,2,V2, and G2,3, we have
�1,2�2�2,3 = (−1)m2 [1, 0; −εQ1,3, 1] where Q1,3 = (G0,1 +
G3,4)|ψ (D1,2)|2/k1. The trace of the transfer matrix 	′ =
�0,1

∏3
n=1 �n�n,n+1 is

Tr(	′) = 2(−1)m2+m3 + (−1)m2εB
G0,1 + G3,4

k1

× |ψ (D1,2)|2 + O(ε2), (41)

where B = sin(m3π ) + sin φ1 sin φ3(G0,1 + G3,4)|T |2/k1).
As G0,1 and G3,4 can take arbitrary value, which makes
the forward and backward wave scattering different,
|ψ f (D1,2)|2 �= |ψb(D1,2)|2 in general. So, Tr(	′

f ) �= Tr(	′
b)

and thus the eigenvalues of 	′
f and 	′

b are different and the
reciprocal condition Eq. (8) does not hold anymore, even if
we ignore small terms in order ε2. As shown in Fig. 8, �A is
proportional to ε2, which also indicates that the model is not
approximately reciprocal.

VII. CONCLUSION

In the present work, we investigate reciprocal conditions
for a system consisting of multiple nonlinear layers separated
from each other by a linear potential. The geometric (global)
resonance condition in [40] is generalized: when the width
of linear region d j meets resonant condition k jd j = mjπ ,
all nonlinear spots merge and behave as a single nonlinear
spot and so that nonreciprocity vanishes. As an extension
of this idea, two reciprocal systems not satisfying the global
resonance condition are proposed. The resonance condition
can be also generalized for a system where the linear potential
between two nonlinear spots is transparent but does not need
not to be constant. Our results indicate that Lorentz reciprocity
will not be violated in a nonlinear system as well as some kind
of symmetry exits, such as the invariance of wave magnitude
at nonlinear spots while reversing the propagation direction
in Secs. V A and V D. So, to realize nonreciprocity in a
nonlinear asymmetric system, such symmetry must be broken.
This suggests further research about the general theory of
what kind of symmetry can ensure reciprocity for a nonlinear
system, independent of the exact potential form. Moreover,
another interesting topic deserving further investigation is the
reciprocity of the wave packet or soliton propagating in this
sand-witch structure. Since the superposition principle does
not hold anymore in the nonlinear system, the reciprocity
of the wave packet is not a trivial generalization of a single
frequency wave in our work and whether reciprocity still
exists is an open question. Instead of assuming the linear
potential to be constant and ignoring scattering outside the
media, one can also consider other configurations such as
a similar model with periodic boundary condition [53] or a
harmonic trap potential [47,54]. For two such kinds of models,
the wave packet is expected to be scattered repeatedly and
reciprocity in such a model deserves further investigation.
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