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Vortex knots on three-dimensional lattices of nonlinear oscillators coupled by space-varying links
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Quantized vortices in a complex wave field described by a defocusing nonlinear Schrödinger equation with
a space-varying dispersion coefficient are studied theoretically and compared to vortices in the Gross-Pitaevskii
model with external potential. A discrete variant of the equation is used to demonstrate numerically that vortex
knots in three-dimensional arrays of oscillators coupled by specially tuned weak links can exist for as long times
as many as tens of typical vortex turnover periods.
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I. INTRODUCTION

Vortices of different nature are ubiquitous objects of
high interest in hydrodynamics, optics, and condensed-matter
physics [1–3]. In particular, quantized vortices are persistent
“soft” excitations in nonlinear wave systems described by a
complex order parameter. Accordingly, some simplified math-
ematical models were suggested to study the phenomenon the-
oretically. A famous example is given by the Gross-Pitaevskii
equation (GPE) for a dilute Bose-Einstein condensate (BEC)
of cold atoms [4–6]. In general, quantized vortices are not
necessarily involving the Plank’s constant. They exist in clas-
sical nonlinear wave fields as well, since quasimonochromatic
waves in many cases are described by the defocusing nonlin-
ear Schrödinger equation (NLSE), though typically in moving
frames of reference. The static and dynamical properties of
quantized vortices have been extensively studied theoretically,
numerically, and experimentally (see reviews [7–12]).

In three-dimensional (3D) space, geometry and topology
of vortices can be quite rich. In particular, vortices can form
closed rings and simple filaments. Such structures were in-
vestigated, e.g., in Refs. [13–35]. More complicated config-
urations such as knots and links have also attracted much
attention and have been a subject for many theoretical and
experimental works [36–50]. Especially interesting are long-
lived knotted or linked vortex structures preserving their
topology over many typical vortex turnover times. Recently
within the GPE model it has been numerically found that
spatial confinement of BECs is able to enhance lifetimes of
simplest torus knots and links more than by an order of mag-
nitude as compared to the lifetimes on a uniform background
[51,52]. At a mathematical level, a nonuniform equilibrium
density profile for a BEC arises due to the trap potential,
while the dispersive term of the GPE (which is inversely
proportional to the atomic mass) remains homogeneous. But it
is worth pointing out that there exists another way to introduce
nonuniformity, namely, by allowing the dispersive terms in a
NLSE to have space-varying coefficients. To the best of the
author’s knowledge, an influence of variable dispersion on
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quantized vortices in 3D has not been investigated previously.
Here this gap begins to be partly filled.

We first consider a weakly nonlinear field of nonuniformly
coupled classical oscillators described by their normal com-
plex variables a(r, t ) = A(r, t ) exp(−iω0t ). In the mathemat-
ically simplest variant, an appropriate equation of motion for
the complex envelope A(r, t ) is

i(At + γ A) = − 1
2∇ · [F (r)∇A] + g|A|2A, (1)

where γ > 0 is a small linear damping rate, g is a nonlin-
ear coefficient, positive for definiteness [usually in physical
systems we have a relatively small nonlinear frequency shift,
so g|A|2 � ω0], and F (r) is a given scalar function of spatial
coordinates (in this work we do not consider the more com-
plicated though even richer case when F is a space-dependent
matrix).

To have in mind a definite example, let us consider the
following dynamical system:

q̇n = ∂H
∂ pn

, −( ṗn + 2γ pn) = ∂H
∂qn

, (2)

where n is a discrete (multi)index, qn(t ) is a canonical coor-
dinate, and pn(t ) is a canonical momentum. We assume the
Hamiltonian function H to be of the form corresponding to
coupled oscillators each distorted by a quartic potential (a kind
of Klein-Gordon lattice),

H =
∑

n

[ω0

2

(
q2

n + p2
n

) + κ

4
q4

n

]
+

∑
n,n′

Cn,n′

4
(qn − qn′ )2, (3)

with some coupling coefficients Cn,n′ = Cn′,n � ω0. In this
case we can introduce the normal complex variables an =
(q̃n + i p̃n)/

√
2 through the weakly nonlinear canonical

transform

qn = q̃n

(
1 − 5κ

32ω0
q̃2

n − 9κ

32ω0
p̃2

n

)
+ · · · , (4)

pn = p̃n

(
1 + 15κ

32ω0
q̃2

n + 3κ

32ω0
p̃2

n

)
+ · · · , (5)
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where the dots mean higher-order terms. As the result, the new
Hamiltonian is approximately

H̃ ≈
∑

n

(
ω0|an|2 + g

2
|an|4

)

+
∑
n,n′

Cn,n′

8
(an + a∗

n − an′ − a∗
n′ )2, (6)

with g = 3κ/4. It is easy to derive equations of motion from
here. For slow envelopes An(t ) = an(t ) exp(iω0t ), neglecting
quickly oscillating terms, we obtain

i(Ȧn + γ An) ≈ g|An|2An +
∑

n′

Cn,n′

2
(An − An′ ). (7)

Now we assume that multi-index n corresponds to nodes of a
lattice in 3D space, and a quasicontinuous long-scale regime
exists, when An(t ) −→ A(r, t ). Let the coupling coefficients
are of a short range, so that

∑
n,n′

Cn,n′ |An − An′ |2 −→
∫

F (r)|∇A|2 dr. (8)

Then in Eq. (7)
∑

n′ Cn,n′ (An − An′ ) −→ −∇ · [F (r)∇A], and
we arrive at Eq. (1).

Unfortunately, an experimental realization of the above
model, with arbitrary dispersion F (r) “on demand,” does
not exist yet. But it seems possible in the future as an
artificially created compound material consisting of a 3D
array of nearly identical nonlinear oscillators coupled by
tuned space-dependent weak links. Ideally, there could be full
controllability on each individual oscillator and each coupling
coefficient. Such a durable product could operate at not very
low temperatures and be used repeatedly, in contrast to a
BEC. Physically, the oscillators could be optical, electronic,
electromagnetic resonators, or something else. That is of
course a very important point, but here we do not concentrate
on the experimental side; only some mathematical aspects
of the problem are touched on. Since mathematics is quite
interesting in this case, the absence of experimental results
in this work may hopefully be excused, to some extent.

Thus, although Eq. (1) is more suitable for analytic studies,
it makes sense also to consider its spatially discrete variant
(7). It should be mentioned that discrete forms of NLSE with
translationally invariant coupling coefficients were investi-
gated previously in many works in a different context (see,
e.g., Refs. [53–57], and citations therein). Below, after a brief
discussion of general properties of the continuous model (1) in
comparison to the GPE with a trapping potential, we actually
study numerically a discrete equation (7) for some particular
choice of Cn,n′ . Similar to the recent results about persistent
vortex knots in the GPE [51,52], here we observe analogous
long-lived structures but, as we will see, with sufficiently
small values of the grid spacing parameter only.

II. GENERAL REMARKS ABOUT THE MODEL

It is convenient to get rid of the dissipative term in Eq. (1)
by introducing a new complex field ψ through the following
substitution:

A(r, t ) = A0ψ (r, t ) exp[−γ t − iσ (t )], (9)

where real A0 is a typical amplitude at t = 0. With an ap-
propriate real function σ (t ), we obtain a nonautonomous
Hamiltonian system

iψt = − 1
2∇ · [F (r)∇ψ] + gA2

0e−2γ t (|ψ |2 − 1)ψ, (10)

with the Hamiltonian functional

H = 1

2

∫ [
F (r)|∇ψ |2 + gA2

0e−2γ t (|ψ |2 − 1)2
]

d3r. (11)

What is characteristic for this model is that the equilibrium
vortex-free state is of the simple form ψ0 = 1. However, when
a vortex is present, its local core width ξ̃ (the healing length)
depends on r and t as

ξ̃ (r, t ) = [
F (r)/gA2

0

]1/2
exp(γ t ). (12)

A gradual broadening of the core takes place because in
Eq. (10) the effective nonlinear coefficient gA2

0 exp(−2γ t )
decays with time.

Below we use dimensionless time and length variables
determined by a typical value f of function F (r) and by a
typical spatial scale l where it varies: tnew = told · f /l2, and
rnew = rold/l . The new time unit corresponds to a typical
vortex turnover period. As a result, we have two dimensionless
parameters in the system,

ξ = (
f /gA2

0l2
)1/2

, δ = γ l2/ f , (13)

where ξ is a typical relative width of the vortex core at
t = 0, and δ is the dimensionless damping rate. For long-lived
vortices to be observable, both parameters should be as small
as ξ � 1/15 and δ � 1/40. Compatibility of these conditions
imposes severe constraints on the physical damping rate:
(γ /gA2

0) = ξ 2δ � 10−4. So a Q factor of the oscillators should
be very large, Q = ω0/γ ∼ 105.

We will assume F (r) to be positive inside some finite
domain D and be zero on the boundary ∂D. Such a domain
constitutes a closed system.

The standard Madelung transform ψ = √
ρ exp(i
) rep-

resents model (10) in hydrodynamic form. In particular, the
continuity equation is

ρt + ∇ · (ρF∇
) = 0, (14)

so the velocity field is defined by equality v = F (r)∇
. A
similar continuity equation for an appropriately nondimen-
sionalized GPE,

i�t = −(1/2)�� + [V (r) − μ + |�|2]�, (15)

is known to be

(|�|2)t + ∇ · (|�|2∇
) = 0. (16)

We see that vortical states in both systems have many features
in common, if the background density of the GPE is propor-
tional to F of our model, |�0(r)|2 ∝ F (r), where �0(r) is the
vortex-free ground state for the GPE. Indeed, far from a vortex
core we have ∇ · (F∇
) = 0 for the present model, and
∇ · (|�0|2∇
) = 0 for a GPE, which conditions are mathe-
matically equivalent. Around a vortex, the phase increment is
2π . However, unlike the GPE model, velocity circulation is
not constant in our case. Another important difference is that
a local healing length in our model is directly proportional
to

√
F , while in the GPE it is inversely proportional to |�0|.

Despite the differences, we have much similar equations of
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motion for a vortex line in the hydrodynamical limit for
both systems. Let a central vortex-core line be parametrized
by a vector function R(β, t ), with an arbitrary longitudinal
parameter β. Then in our model (where at equilibrium ρ =
1) the equation of motion for curve R(β, t ) has a general
variational form (the symbol δ̂ means variation; one should
distinguish it from the damping rate δ introduced previously)

2π [Rβ × Rt ] · 1 = δ̂H/δ̂R. (17)

It is assumed that in the hydrodynamical limit, the wave field
ψ is completely determined by the vortex line configuration,
that is, ψ (r, t ) ≈ ψ (r, {R(β, t )}). In Refs. [58,59], it is shown
how the standard Hamiltonian structure iψt = δ̂H/δ̂ψ∗ of
Eq. (10) gives Eq. (17). The vortex Hamiltonian is

H{R} = H{ψ (r, {R}), c.c.}. (18)

The same approach as in Refs. [58,59], but with taking into
account spatial nonuniformity of the ground density, gives for
the vortex line in the GPE model the equation

2π [Rβ × Rt ]|�0(R)|2 = δ̂HGPE/δ̂R (19)

(see also Ref. [43] and references therein for a detailed
discussion). What is important is that expressions for the
corresponding vortex Hamiltonians H and HGPE coincide
in the main order on the presumably large parameter � =
ln(1/ξ ) 
 1. Indeed, they are mainly determined by the
terms (1/2)

∫
F |∇
|2 dr and (1/2)

∫ |�0(R)|2|∇
|2 dr, re-
spectively. In particular, the local induction approximation
(LIA) for a single distorted vortex ring is given by the formula

H ≈ π [� − δt]
∮

F (R)|Rβ |dβ, [� − δt] 
 1. (20)

Here the factor [� − δt] is the logarithm of the inverse typical
vortex core width. The width depends on time since the dissi-
pation is present. For the GPE, the corresponding expression
is

HGPE ≈ π�

∮
|�0(R)|2|Rβ |dβ, � 
 1. (21)

Combining Eqs. (17) and (20), we obtain an explicit ap-
proximate equation of motion for a vortex ring (with some
particular longitudinal parametrization),

Rt = [� − δt]

2
{F (R)κb + [∇F (R) × t]}, (22)

where t is the local unit tangent vector along the curve, b is
the unit binormal vector, and κ is the line curvature. This sort
of LIA equation is a new result to the best of our knowledge.
Unfortunately, Eq. (22) is insufficient to describe vortex knots
and links because nonlocal interactions are known to be
crucially important for them. Besides that, actual values of
� are not very large in many interesting cases (so, in our
numerical simulations described below, � ≈ 3). Nevertheless,
some more words about LIA will be in place here. Since we
are mainly interested in axially symmetric F = F (z, r), with
r =

√
x2 + y2, it is convenient to parametrize a ring shape by

azimuthal angle ϕ in the cylindrical coordinates as z(ϕ, t ) and
r(ϕ, t ). In that case we have the following system of two scalar

equations:

rzt = [� − δt]

2
[FrS − ∂ϕ (Frϕ/S) + rF/S], (23)

−rrt = [� − δt]

2
[FzS − ∂ϕ (Fzϕ/S)], (24)

where S ≡
√

r2 + r2
ϕ + z2

ϕ . For example, if

F = max{(3/2 − (r2 + λ2z2)/2), 0}, (25)

with an anisotropy parameter λ, then there exists a stationary
perfect-ring solution r = 1, z = 0. For small ring distortions,
the linearized equations of motion for mth azimuthal mode
take form

żm = [� − δt]

2
(m2 − 3)rm, (26)

−ṙm = [� − δt]

2
(m2 − λ2)zm. (27)

These equations are easily solved as
√

|m2 − 3|rm − i
√

|m2 − λ2|zm = Cme−i�mτ (t ), (28)

where Cm are arbitrary complex constants, and

�m = sgn(m2 − 3)
√

(m2 − 3)(m2 − λ2), (29)

τ (t ) = [�t − δt2/2]/2. (30)

This solution has many features in common with the analo-
gous solution for the GPE [23,27,43].

Returning again to more general Eqs. (17) and (19), it is
important to note that recently found long-lived torus vortex
knots and links in trapped BECs exist in a region where the
condensate density |�0(R)|2 varies relatively weakly. That is
why one can expect qualitatively similar behavior of vortex
knots in the present model if we take for F nearly the same ax-
ially symmetric profile Eq. (25) as it was for the corresponding
density of anisotropic harmonically trapped BEC [51,52]. To
check this hypothesis, we performed numerical experiments
using a discrete variant of Eq. (10).

III. DISCRETE SYSTEM

A natural discrete approximation for Eq. (10) corresponds
to a simple finite-difference scheme with a grid spacing h �
1. Let nodes of a cubic lattice be numbered by an integer
vector n = (n1, n2, n3), so that rn = hn. Let the unit basis
vectors be i, j, and k. Then we have a 3D array of undamped
coupled oscillators, with space-dependent coupling coeffi-
cients between the nearest neighbors, and with a nonlinear
frequency shift exponentially varying in time (compare to
Refs. [53–57]):

iψ̇n = 1

2h2
([ψn − ψn+i]Fn+i/2 + [ψn − ψn−i]Fn−i/2)

+ 1

2h2
([ψn − ψn+j]Fn+j/2 + [ψn − ψn−j]Fn−j/2)

+ 1

2h2
([ψn − ψn+k]Fn+k/2 + [ψn − ψn−k]Fn−k/2)

+ [exp(−2δt )/ξ 2](|ψn|2 − 1)ψn, (31)

012205-3



VICTOR P. RUBAN PHYSICAL REVIEW E 100, 012205 (2019)

t=01.0(a)

-1.5 -1 -0.5  0  0.5  1  1.5

x

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

y

-0.4

-0.2

 0

 0.2

 0.4

t=21.0(b)

-1.5 -1 -0.5  0  0.5  1  1.5

x

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

y

-0.4

-0.2

 0

 0.2

 0.4

t=42.0(c)

-1.5 -1 -0.5  0  0.5  1  1.5

x

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

y

-0.4

-0.2

 0

 0.2

 0.4

t=47.0(d)

-1.5 -1 -0.5  0  0.5  1  1.5

x

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

y

-0.4

-0.2

 0

 0.2

 0.4

FIG. 1. An example of evolution of a vortex trefoil knot on a
cubic lattice. Parameters of this simulation are λ2 = 2.5, 1/ξ = 24.0,
h = 0.036, δ = 0.02, B0 = 0.17. Shown is an effective “surface” of
the vortex core where the density takes values near ρ = 0.5. The
color scale indicates the z coordinate.
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FIG. 2. Lifetimes of trefoil knot, determined by the moment of
first reconnection, for different parameters of system (31).

where Fn+i/2 = F (h[n + i/2]), and so on. Note that inter-
action coefficients are equal to zero if the corresponding
midpoints are outside the ellipsoid r2 + λ2z2 = 3. So we have
a compact structure with a finite number of interacting degrees
of freedom depending on h and λ.

The above dynamical system has been numerically
simulated using a fourth-order Runge-Kutta time
stepping. In our numerical experiments, we took
parameter values mainly from the following sets:
h = h1,2,3,4,5 = {0.02, 0.024, 0.03, 0.036, 0.05}; δ = δ0,1,2 =
{0.00, 0.01, 0.02}; 1/ξ = {16.0, 24.0}; λ2 = {2.5, 3.0}.
The initial vortex shape was a torus trefoil knot. When
parametrized in the cylindrical coordinates, it is

r(ϕ) − iz(ϕ) = 1 + B0 exp(3iϕ/2). (32)

We empirically found that optimal values for B0 lie within
interval 0.16 < B0 < 0.20.

To reduce undesirable potential perturbations in the initial
state, a special procedure was used, similar to that described in
Refs. [51,52]. Basically, it was an imaginary-time propagation
in a dissipative regime, with a temporarily added pinning
potential along the prescribed vortex core.

Some numerical results are presented in the figures. In
particular, Fig. 1 gives an example where, for ξ ∼ h, the
knot preserves its topology over more than 40 time units,
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FIG. 3. Lifetimes of trefoil knot over the anisotropy parameter,
for different damping rates.

and then reconnection occurs as the result of growing shape
perturbations, much like in the GPE simulations [51,52]. The
core width is seen to gradually increase with the time, in
accordance with the theory.

Figure 2 exhibits collected information about trefoil life-
times for different parameters. First, it should be noted that
grid spacing h has a strong influence on vortex dynamics. In
particular, for δ = 0 there are crossover regions in h from
a strictly discrete regime to a quasicontinuous regime. In
quasicontinuous regime and with small ξ , the lifetimes are
very large, more than a hundred vortex turnover periods. On
the other hand, the discrete regime, with a coarse grid h ∼ ξ ,
is not favorable for vortex. With a finite damping rate δ, the
situation is more interesting, since the crossover can occur

dynamically during the evolution. Figure 1 illustrates such a
case. At the beginning we have the discrete regime, but after
a time, the core width becomes more “fat,” ξ exp(δt ) � 2h, so
the vortex enters a quasicontinuous regime, however, with not
so thin core as is required for a very long lifetime. An overall
result is determined by interplay between the two opposite
factors, the quasicontinuous regime (good for vortex) and the
fat core (bad for vortex). Therefore in some cases a larger
value of δ results in a longer lifetime, and this somewhat
paradoxical result takes place entirely due to the discreteness.

Finally, Fig. 3 shows how the lifetime depends on the
anisotropy parameter. It is seen that there exists an optimal
interval for λ2 where the knot is long-lived.

IV. CONCLUSION

In this work, an alternative with respect to the Gross-
Pitaevskii equation theoretical model has been suggested
(namely, a NLSE with a space-varying dispersion) where
enhanced lifetimes of quantized vortex knots are possible.
There is the hope that possible physical implementations of
the model will potentially have practical advantages com-
pared with Bose-Einstein condensates, as vortex dynamics
is investigated. In numerical simulations we observed that
a discrete NLSE with space-dependent coupling coefficients
can demonstrate solutions having very interesting properties.
In particular, our numerical experiments have confirmed the
idea that vortex knots on a lattice can exist for relatively long
times.

In perspective, generalization of the present model to
the case when F (r) is a matrix function seems even more
promising, since vortices can have unusual local and global
anisotropic properties in such systems.
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