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We present an elementary, general, and semiquantitative description of relaxation to Gaussian and generalized
Gibbs states in lattice models of fermions or bosons with quadratic Hamiltonians. Our arguments apply to
arbitrary initial states that satisty a mild condition on clustering of correlations. We also show that similar
arguments can be used to understand relaxation (or its absence) in systems with time-dependent quadratic
Hamiltonians and provide a semiquantitative description of relaxation in quadratic periodically driven (Floquet)

systems.
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I. INTRODUCTION

In recent years, there has been much work on understand-
ing the nature of the equilibrium state, and the dynamics of the
relaxation to this state, in quantum many-body systems with
an extensive number of local conservation laws. The motiva-
tion for the study of these integrable models is twofold. First,
beautiful cold-atom experiments have successfully realized
many such models and studied their nonequilibrium dynamics
(for reviews, see Refs. [1-4]). Second, integrable models are
much easier to analyze theoretically than their nonintegrable
brethren (for reviews, see Refs. [5,6]).

When prepared in a generic initial state, an integrable
system does not thermalize in the usual sense of the word,
because of the extensive number of local conserved quantities.
Instead, the stationary behavior at late times can be described
by an appropriate generalized Gibbs ensemble (GGE). For
our purposes, the “GGE conjecture” put forth in Ref. [7] and
subsequently refined by many authors (Ref. [3] and references
therein) asserts the following: Assuming that local observ-
ables in an integrable many-body system relax to stationary
values, these values may be computed using the density matrix

1 .
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PGGE =
ZGGE

where {f,,} is the set of all local conserved quantities (here
“locality” means that each I, is a sum of local densities),
Zoce = Tr(e™2n A'"f'") is the partition function needed for nor-
malization, and {,,} are Lagrange multipliers chosen so as to
satisfy the constraints Tr(I:,, PGGE) = (im)(t = 0). The density
matrix pggg is readily obtained by the general prescription [8]
of maximizing the entropy S = —Tr(p log p) subject to these
constraints.

In this paper, we consider the simplest class of inte-
grable models: those whose Hamiltonians can be expressed

*cm@physics.ucsb.edu
"mark @physics.ucsb.edu

2470-0045/2019/100(1)/012146(25)

012146-1

as quadratic forms in a set of canonical particle creation
and annihilation operators. Such so-called noninteracting
integrable models describe not only truly noninteracting par-
ticles but also mean-field approximations to models of inter-
acting particles. In view of this, we will refer to the models of
interest as “quadratic” rather than “noninteracting integrable.”
In one dimension, certain other integrable models—some spin
chains and systems of hard-core particles—can be mapped to
quadratic ones. However, simple observables in the original
model often map to complicated operators in the quadratic
model, and one must take this into account when using the
mapping to study relaxation [9].

In quadratic models, the local conserved charges I, are
also typically quadratic (we demonstrate this explicitly in
Sec. VA), and therefore the GGE density operator pggg
is Gaussian. It is thus quite natural to divide relaxation in
quadratic models into two processes: (i) relaxation of the
initial state to a Gaussian one and (ii) relaxation of the Gaus-
sian state to the appropriate GGE. Our arguments will make
clear that these two processes occur for fundamentally distinct
physical reasons and also that the first process often (but not
always) occurs faster than the second. We will also show
that similar arguments can be used to understand relaxation
in systems with quadratic time-periodic Hamiltonians. Con-
sidering the great recent interest in driven quantum systems
(Refs. [10,11] and references therein), we believe that this is a
useful synthesis of ideas.

Recently, Gluza et al. [12] have argued that the first process
mentioned above (which they term “Gaussification”) can be
understood as a consequence of exponential clustering of
correlations in the initial state, together with “delocalizing
transport” (the sufficiently rapid suppression of the compo-
nent of an operator on any given site, due to its “spreading out”
over a large area), and have rigorously proven this implication
for fermionic lattice systems with quadratic time-independent
Hamiltonians. The importance of clustering of correlations in
the initial state for relaxation had earlier been emphasized
by Cramer and Eisert [13] and by Sotiriadis and Calabrese
[14], who had shown that it is in fact a necessary and suf-
ficient condition for relaxation to GGE in a broad class of
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translation-invariant quadratic models. Other early studies
of the validity of the GGE in quadratic systems (e.g.,
Refs. [15,16]) typically assumed Gaussian initial states and
hence addressed only the second process described in the
previous paragraph. Our results are consistent with and gener-
alize the results of these earlier works.

Note that in the decade since Ref. [7] appeared, the validity
of the GGE has been the subject of a large number of theoret-
ical and numerical investigations, of which the works cited
above comprise only a handful. It is beyond the scope of this
paper to give a reasonably complete summary and/or critical
discussion of all these efforts; for this, we refer the reader to
one of the recent reviews of the field, e.g., Refs. [3,5,6].

Here, we distill the basic ideas present in Ref. [14] and
especially in Ref. [12] and give an elementary, general, and
semiquantitative description of relaxation in quadratic lattice
models. To state our results, we need to introduce some
notation. Let 15)? denote the particle creation (a = +) or
annihilation (a = —) operator for the site at position x. Under
Heisenberg time evolution with any time-dependent quadratic
Hamiltonian A (1), these operators evolve linearly:

P =Y DGR )

b=+x y

This equation defines the single-particle propagator Gﬁﬁ(t),
which plays a central role in the following.
For most of this work, we assume delocalizing dynamics:

G| -0 as 1t — oo (3)

The terminology is adapted from Ref. [12]. Equation (3) may
be interpreted as saying that a particle (or hole) created at
x has vanishing probability amplitude to be found at any
given y after infinite time, because its wave function “spreads
out” indefinitely. In the case of bosons, we also require the
quasiparticle spectrum of H(t) to be uniformly bounded and
positive definite. Note that we do not restrict the Hamiltonian
to be time independent in general.

We treat arbitrary initial states that satisfy a mild condition
on (algebraic) clustering of correlations:

(e g = ollx; — x;174F9)
as |xi—xj| — 00, 4)

for some € > 0. Here, (- --)) denotes the connected correla-
tion function in the initial state, and d is the spatial dimension.
We emphasize that the initial state is not assumed to have any
relation whatsoever to the Hamiltonian under which the sys-
tem subsequently evolves. In particular, the initial state may
be strongly interacting. We also emphasize that the cluster
decomposition property (4) is an extremely weak constraint
on the state; one can expect it to hold for most initial states of
interest. In fact, a stronger version of (4) has been rigorously
proven for large classes of states, including ground states of
interacting local Hamiltonians with a spectral gap [17,18],
as well as thermal states of arbitrary short-ranged fermionic
lattice models at sufficiently high temperature [19].

Our emphasis throughout this paper is on simplicity and
physical transparency rather than on mathematical rigor; the
reader in search of the latter is encouraged to consult Ref. [12]
and similar works in parallel with our treatment. Nevertheless,

we believe that most of the arguments presented here can serve
as sketches for rigorous proofs.

A. Summary of results

Our main technical results are summarized below.

1. “Gaussification” under general conditions: In any
lattice system of fermions or bosons prepared in an initial
state satisfying (4) and evolving under a quadratic Hamilto-
nian H(¢) that leads to delocalizing dynamics (3), all local
(n > 2)-point connected correlation functions vanish at late
times:

(@) A @) — 0 as

Following Ref. [12], we refer to this vanishing as “Gaus-
sification,” because it is equivalent to the dynamical re-
covery of Wick’s theorem—the distinguishing property of
a Gaussian state. This result significantly generalizes that
of Ref. [12], where Gaussification was proven for time-
independent fermion lattice models and initial states with
exponential clustering of correlations.

2. Universal power-law Gaussification: In many cases of
interest, one can identify, for each x, a, and ¢, a definite volume
V() of y space in which the single-particle propagator G)‘jf, )
is meaningfully supported. In these cases, we obtain a more
quantitative version of Eq. (5):

(F@ @) .. T @) ~ VO ™D as t — 00, (6)

where 1 := (t; + - - - 4+ t,)/n. This asymptotic result holds in
the limit |f; — ;] < ¢, with V(1) :~ V{i(t;) ~ V;lf(tj). Typi-
cally, V(¢) grows like a power of ¢. Thus, Eq. (6) gives
power-law decay of the connected correlation functions in
time, with exponents that depend only on n and on how fast
the single-particle propagator of the system spreads.

3. Gaussianity of GGE: We prove that all local conserved
quantities of a time-independent quadratic Hamiltonian with
delocalizing dynamics (3) are also quadratic, and therefore
that the associated GGE density matrix is indeed Gaussian.
In past work, this property appears simply to have been taken
for granted.

4. Relaxation to GGE: For any time-independent Hamil-
tonian that satisfies (3), and any initial state that satisfies (4)
and an additional assumption to be described below, we show
that the system relaxes to the GGE; for any local operator O,

(O@) — (O

This result is consistent with and generalizes existing proofs
of relaxation to the GGE to a larger class of models and initial
states. The additional assumption is formulated precisely in
Sec. V C [Eq. (135)]. Roughly speaking, it excludes situations
in which the initial profiles of local conserved densities are in-
homogeneous on length scales comparable to the system size.
In such cases, the GGE conjecture fails for a trivial reason: It
takes infinitely long for the locally conserved density to flow
across the whole system in the thermodynamic limit.

5. Universal power-law relaxation: Under the conditions
of the previous result, we also obtain quantitative estimates
for how the local two-point function relaxes to its GGE value.
Consider the instantaneous deviation

SCE () = (YL )Py (1)) —

tj — 0. 5)

)GGE as t — oQ. (7)
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Assume, as is often the case, that the density of quasiparticle
states of H near the band edge has the form g(g) ~ &°. We
show that, generically,

8CH @) ~ 170 as 1 — oo, ©)

where o = 1 if there is a density wave of one or more of the
conserved quantities in the initial state and o = 2 if not. In
particular, for translation-invariant quadratic Hamiltonians in
d dimensions,

8CUh (1) ~ 172 gg

Xy

t — o0, (10)

where o is defined above. Note that this result holds for
generic Hamiltonians and initial states of the types consid-
ered; different exponents can and do occur if the Hamiltonian
and/or initial state is fine-tuned.

6. Floquet-GGE: For any time-periodic quadratic Hamil-
tonian H(z) = H(t + T) that satisfies (3), we prove that all
local conserved quantities of the associated Floquet Hamil-
tonian Ay are quadratic and hence that the Floquet-GGE
[20] density matrix, pg, is Gaussian. For any initial state
that satisfies the assumptions of result 4 above, we show that
the system eventually relaxes to this (time-periodic) Floquet-
GGE. In the limit T — 0 of fast driving, we expect to observe
power-law relaxation to pPp, with the exponents given by
results 2 and 5 above applied to Hy. In the opposite limit
T — oo of slow driving, we expect to observe power-law
relaxation toward a GGE of the instantaneous Hamiltonian
H (1), followed by much slower exponential relaxation ~e¢~"/T
toward pg. Our results are consistent with, and generalize, the
original treatment of this problem by Lazarides et al. [21] (in
which the initial state was assumed to be Gaussian, and no
estimates like the ones above were given for the relaxation
process itself).

7. Effects and noneffects of localized states: We find that
dynamics generated by a quadratic fermion Hamiltonian A
whose quasiparticle spectrum includes discrete localized lev-
els [so that Eq. (3) is violated] will still lead to Gaussification
and equilibration to an appropriate GGE, as long as (i) the
initial state has a finite correlation length & and (ii) the spatial
distance between any pair of localized levels is large relative
to £. This result should be viewed as an interesting (but easily
understandable; see Sec. VI) exception to the general rule
[22,23] that the GGE fails if the spectrum of H contains a
pure-point part coming from localized levels. If either of the
conditions (i) or (ii) above is violated, we recover the expected
failure of Gaussification and of the GGE. Thus, our results
are fully consistent with those of Ziraldo et al. [22,23], who
considered the case that H is disordered; in this case condition
(i1) will typically be violated.

B. Organization of the paper

In Sec. II, we introduce our arguments in a simple and
concrete setting: a one-dimensional (1d) tight-binding model
of spinless fermions. In Sec. III, we define the general problem
and fix terminology and notation. In Sec. IV, we present our
argument for Gaussification in arbitrary quadratic models (of
particles) and predict the exponents of the power-law decay
in time of all higher point connected functions. In Sec. V,
we describe the manner in which, for time-independent

Hamiltonians, the Gaussian state equilibrates to the GGE.
In Sec. VI, we describe how discrete localized levels in the
spectrum of the Hamiltonian affect relaxation. In Sec. VII, we
consider quenches to time-periodic quadratic Hamiltonians
and describe relaxation to the Floquet-GGE. In Sec. VIII, we
briefly comment on the application of our arguments to spin
models that can be mapped onto quadratic fermion models.
Finally, in Sec. IX, we summarize our results.

II. EXAMPLE: RELAXATION IN A NEAREST-NEIGHBOR
TIGHT-BINDING CHAIN

In this section, we introduce our arguments by working
them out carefully in a simple and concrete example, while
emphasizing the key ideas. This will also serve to motivate
the subsequent general development.

A. Setup

Consider a tight-binding model of spinless fermions in
d =1 dimensions, with nearest-neighbor hopping. The
Hamiltonian is

L
A 1 e P
Ho= =5 ) (Eec +¢,80), (11)

x=1

where ¢! and ¢, respectively create and annihilate a fermion
on the site at position x. These operators obey the standard
anticommutation relations

(12a)
(12b)

&8l +eéfe, =48,
y y )
88y 48,8, = 0.

We have set the lattice spacing equal to 1 and hopping energy
equal to 1/2. We will also set /i = 1. Periodic boundary
conditions are assumed (site L + 1 is identified with site 1).

Imagine a quench in which the system is prepared in
some nonequilibrium initial state, represented by the density
operator Py, at time = 0 and subsequently evolved with the
Hamiltonian Hy of Eq. (11). For the majority of this example
(up to and including Sec. I E), we make only two assumptions
about .

The first assumption is very important: py must obey the
principle of cluster decomposition [24]. Roughly speaking,
this principle requires correlations between local operators in
the state pp to factorize as the operators are taken far apart
from one another. We will make this precise in Eq. (43) (we
use a stronger version of the principle in this section than we
do in our general treatment).

The second assumption is not important, and we impose it
only to simplify the example. We assume that the initial state
conserves total particle number:

[N, o]l =0, (13)
where

N =Y cle. (14)

In the general treatment of Sec. III onward, we make no
assumption like Eq. (13).
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In the last part of this example, Sec. II F, we will add a third
assumption about pg, Eq. (66). Nothing in Secs. II B through
I E relies on this extra assumption; it is only needed for the
analysis of Sec. I F. Therefore, we do not state it here.

We will study whether and how local observables of the
system relax to their values in an appropriate generalized
Gibbs ensemble as time progresses. We first discuss the
construction of this GGE density operator.

B. Conserved quantities and GGE density operator

The Hamiltonian (11) can be diagonalized by introducing
quasimomentum mode operators:

. 1 ex A
b= Xk:ek ék), (15)

where k runs over all integer multiples of (27 /L) within the
Brillouin zone (—m, 7]. In terms of these mode operators,

Hy =Y o) kek). wk) =—cosk.  (16)
k

The various mode occupation number operators
k) = &'(kye k) a7)

clearly commute with Hy and with each other. Furthermore,
by forming appropriate linear combinations of them, we can
define an extensive set of local conserved quantities in involu-
tion:

by =) cos(mh)in(k) (18a)
k
1L
=3 D (@lecim + el ,e0) (18b)
x=1
and
By = sin(mk)ik) (19a)
k
L
(—i) At A A
= 5 D _(Elevin = El1t0), (19b)
x=1
where m =0, 1,2, .... These clearly commute with Ay and
with one another:
[Ho, £,] =0, (20a)
U, Ln]1 =0 (20b)

(in fact, Hy = b, so the second equation implies the first).
They are local because their densities,

o (Eerim £ &1 ,80), (1)

act nontrivially only on finite intervals of length m.

The set of local conserved quantities {f,,} defined in
Egs. (18) and (19) has the further property of being maximal:
Any local conserved quantity / that commutes with all of the
[, can be expressed as a linear combination of them,

U, 11=0 Vm = I e span({l,}), (22)

where
span({f,}) := {Zamfm | @y € R}. (23)

This claim is easy to verify if we assume that [ is a quadratic
operator; the only quadratic operators that commute with
A(k) for all k are indeed of the form [ = > i fon(k) for
some function f. However, once we drop this assumption, the
validity of the claim is much less obvious. One can certainly
write down many nonlocal conserved quantities that violate
Eq. (22)—products of mode occupation numbers, such as
i(k)i(k')—and one might wonder whether it is possible to
build a local quantity out of linear combinations of these, a
la Egs. (18) or (19). We will address this concern later in our
general treatment: In Sec. V A, we prove that, for a wide class
of quadratic Hamiltonians (to which Hy belongs), all local
conserved quantities / are themselves quadratic. The claim
follows.

Thus, one is tempted to assert that the GGE density opera-
tor for the tight-binding chain has the form

1 .
P = X - Amd (24a)
GGE Zoor P( %: )
: > ik (24b)
= X - l,L n 1)
ZGGE P P

where the Lagrange multipliers {},,} are fixed by requiring
that

Tty poce) = Tr(n po); (25)

this in turn fixes the function w(k), which is in general
unrelated to the function w(k) appearing in Hp.

One may also consider truncated GGEs in which only the
“most local” conservation laws are taken into account (i.e.,
only [, with m < 2¢ are retained in the density matrix) [25];
this is equivalent to truncating the Fourier series of w(k) at
order £. More generally, in the limit of infinite system size,
L — oo, one can require that ), decay in a certain manner as
m — o0; this is equivalent to placing a smoothness condition
on (k). Thus, the GGE (truncated or not) can be defined
either in terms of the local charges [, or in terms of the mode
occupation numbers 7i(k) [25].

Actually, pggg is not uniquely given by Eq. (24) for this
model. Although the set {fm} defined by Egs. (18) and (19)
is maximal, it is not complete: There exist local conserved
quantities I that cannot be expressed as linear combinations
of the f,,. A simple example [5] of such a quantity is

I'= (=1 (ecborr + 20,20 (26)
In k space, I’ takes the form
J = Z e *e(mr — k)e(k) + He. (27
k

This quantity is conserved because the mode spectrum w(k) =
— cos k of the Hamiltonian Hy [Eq. (16)] has the symmetry

w(k) = —w(r — k). (28)
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One can verify that I’ does not commute with the ,, so its
existence does not contradict maximality of {,}.

Note that the symmetry (28) is actually a degeneracy of the
spectrum |w(k)| = | cos k| of positive-energy quasiparticles of
Hy. In general, the existence of “extra” local conserved quanti-
ties such as /'—and the associated ambiguity in the definition
of the GGE—is related to degeneracies in the quasiparticle
spectrum of the Hamiltonian [26]. We discuss the general
relationship in Sec. V B.

One way to deal with an incomplete maximal set {f,} is
to simply complete it by adding to {f,,} additional local con-
served quantities, such as [’. This is the approach advocated
by Fagotti [26], who studied this problem in significant detail.
The operators comprising the expanded set will no longer be
in involution, but one can still assign to each one a Lagrange
multiplier and define pggg by maximizing the entropy sub-
ject to all constraints. We obtain an expression identical to
Eq. (24a), but where the index m ranges over the complete
set. This maneuver is valid because local conserved quantities
satisfy a closed algebra [26] (of which the various maximal
sets are maximal Abelian subalgebras). The advantage of this
approach is that the resulting pggg depends on the initial
state only through the Lagrange multipliers {A,,}. The primary
disadvantage is that one can no longer write pggg in terms of
a single set of mode occupation numbers, as in Eq. (24b).

Our approach to this problem, which we describe in
Sec. V B, is slightly different. In short, we retain pggg in the
original form (24) but allow the maximal commuting set {f,,},
or equivalently the set of mode occupation numbers {#,}, to
depend on the initial state. In this approach, pggg always has
a mode number representation similar to Eq. (24b); however,
different classes of initial states lead to inequivalent GGEs.

For now, we can ignore these subtleties, because we as-
sumed that the initial state py conserves total particle number
[Eq. (13)]. For this class of initial states, the GGE is correctly
given by Egs. (24) and (25), with [, defined in Egs. (18) and
(19) and 71(k) in Eq. (17). We leave the proof of this assertion
as an exercise for the reader.

C. Relaxation of local observables: Preliminaries

Having defined the GGE, we turn to the relaxation of
local observables. It is convenient to work in the Heisenberg
picture. The operators representing observables evolve ac-
cording to

O(t) = et Op=ifot (29)

while the density operator is always pg. The expectation value
of an observable at time ¢ is

(O@)) == Tr(O@) po). (30)

By a local observable, we mean any bosonic Hermitian oper-
ator O that acts nontrivially only on a finite interval (at time
t = 0). Consider the quantity

Ro(t) := lim [(O(I)) — (O)al, 3D

where

(0)aeE = Tr(O pecE)- (32)

We say that the system relaxes (locally) to the GGE if

Ro(t) - 0 as t— oo (33)

for every local observable O.
Now, any number-conserving local observable has a unique
expansion of the form

0=09+Y 0ele,
X,y

+ Y08 eieleey +-- (34)

xx'yy'
x,x

where locality implies that all sums over positions are re-
stricted to a finite interval and therefore that the expansion
terminates at a finite order (because the space of operators
supported on a finite interval in a system of fermions is finite
dimensional). Our simplifying assumption (13) on the initial
state means that we do not need to consider non-number-
conserving observables; their expectation values vanish iden-
tically.

Thus, it is sufficient to study the relaxation of local static
2n-point correlation functions:

(el @el@)... e e, e t)...8,0) (35)

More generally, one might also consider dynamic correlation
functions, in which the various #’s are allowed to be different.
These describe, for instance, the response of the system to an
external probe.

For systems with a Lieb-Robinson bound [27], there is a
general result [28] which states that, if the system relaxes
to a stationary state Py, as t — oo (as measured by local
static correlations), then all local dynamic correlations are also
described by Py, as t — oo. In this section, we will simply
appeal to this result and concentrate on static correlations,
but in fact, most of our arguments apply equally well to
dynamic correlations, and we will work directly with the latter
in the general treatment from Sec. III onward. We will do
this, despite the result of Ref. [28], for two reasons: first, to
keep our arguments self-contained, and second, because we
are interested not just in the limiting behavior of quantities as
t — 00, but also in the manner in which they relax to those
limits.

Note that the density operator pggg is Gaussian—it is the
exponential of a quadratic form in the creation and annihila-
tion operators. Therefore, all correlation functions computed
with respect to pgge Wick factorize into products of two-point
functions and are determined entirely by the latter:

AT A
(C)q Y ¢y Cyp e Cyn)GGE
= ngn(P) cxlc)P(n)>GGE < xncmn)GGE’ (36)
P
where sgn(P) is the sign of the permutation
P:(1,2,...,n)— (P(1),PQ2),...,P(n)). (37)
For instance,
At AT A A _[at A AT A
<Cxl Cxy Cx3Cxy >GGE = (Cm Cxy >GGE (sz Cxs )GGE
At A At A
- <Cxlcx3)GGE <CXzCX4>GGE' (38)
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Since the initial state pp need not be Gaussian, the real
correlation functions certainly need not behave in this manner
at early times. To show relaxation to the GGE, we therefore
need to show that, as time progresses, (i) Wick factorization
is recovered and (ii) two-point correlation functions approach
their stationary GGE values.

In any state, such as 0y, one can also define the connected
2n-point correlation function. Roughly speaking, this is the
part of the 2n-point correlation function that fails to factorize
into lower point correlation functions. For instance,

and

AT AT A A V| . [aT AT A A At A \[at A
((Cxl CL CxiCxy )) T (Cxl Ciz Cxs Cx4) - <CX1CX4> (CLCX3>
+ (& &) (] &4, )- (40)
The general definition of connected functions is reviewed in
Appendix A. The vanishing of all connected (2n > 2)-point
correlation functions is equivalent to Wick factorization, as is
evident from the formulas above:

((511 e cA‘L &y, - -+ &,) Wick factorizes V n)

= (e ---eley--6,)=0 ¥Yn=2). D

Xn

Therefore, we are led to study the relaxation of static local
connected 2n-point correlation functions:

(@ @el@) ... el ey e ). .. &,m)). (42)

These functions, and their dynamic brethren, will be the
primary objects of study in this paper.

We can now state precisely the cluster decomposition
condition that the initial state py is assumed to satisfy (in this
section). We assume that

<<6)T€1 e Ainéxn+l e éer;)) = 0(6_‘)("_)(!"/‘&-)
as |y —x;| — o0,  (43)
for any pair of indices i, j € 1,2, ...,2n, where & is some

finite correlation length and where “f(x) = o(g(x)) asx — a”
means that f(x)/g(x) - 0 as x — a. In the general treat-
ment of Sec. III onward, we will significantly weaken this
assumption and require only algebraic decay (rather than
exponential) of the initial connected correlation functions
[Eq. (43) will be replaced by Eq. (84)].

D. The single-particle propagator

Because H is quadratic, the fermion operators

&c(r) = e e (44)
evolve linearly; they obey
&) = Gyl)ey, (45)
3
where
1 ik(x—y)+it cos
Go(t) =7 Xk:e’“ yytireosk, (46)

1.0 s : : :
0.8} — t=0
t=5
— 06 I t = 20 1
Rl
o — £ =50
&
= 04y — =100 ]
0.2} ]
~100 ~50 0 50 100

X=y

FIG. 1. Magnitude of the single-particle propagator |G,,(t)| =
|Jx—y(¢)] for the model described by Eq. (11).

It follows from Eq. (45) that
(012:(1)E](0)]0) = Gy (1), (47)
where |0) is the fermion vacuum, specified by
&0y =0 Vax. (48)

Thus, Gy, (¢), which is defined as the coefficient appearing in
Eq. (45), may be identified as the single-particle propagator
(the amplitude for a particle added to the vacuum at site y to
be found after time ¢ at site x).

Equation (45) also implies that

Tr([6:(1), &)(0)]4 o) = Gy (1), (49)

where [a, b] L= ab + ba denotes the anticommutator. Thus,
G, (1) can also be identified with the retarded single-particle
Green’s function (if the Hamiltonian is quadratic, this quantity
is independent of the state pp).

These interpretations are useful for guessing properties of
G,,(t) in situations in which one cannot write down a simple
expression for it. We will not need to rely on intuition in this
section, however. In the limit L — o0, one has

T dk ;
ny(t) — / Eel(x—y)k-ﬁ-ll cosk — ix_ijfy([)v (50)

where J,(z) is the Bessel function of order n € Z. The mag-
nitude of the propagator, |G,,(t)|, is plotted for various values
of ¢ in Fig. 1.

We will show in the following that the leading late-time
behavior of the connected (2n > 4)-point functions (42) is
actually determined by very basic properties of the propagator.
All that matters is how the propagator “spreads out” with time.
Let us characterize this “spreading out” more precisely.

Although |Gy, (¢)] itself is a rapidly oscillating function of
x —y at fixed ¢, its smooth envelope is nonzero and slowly
varying inside the “light cone” |x — y| < ¢ and decays expo-
nentially to zero for |x — y| > t. Qualitatively, this can be seen
by glancing at Fig. 1. More quantitatively, one can apply the
method of stationary phase [29] to the integral expression in
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Eq. (50) to obtain

4 1/4
|Gy ~ [m}

cos (z (r - %) — rarcsin(r/t) — \/tz—rz)‘

X
2
oo Il -1/3
as t—> oo if T<1—O(t ), oy
and
|Gyy()|=0(t™) ¥n as t—oo if g>1+0(t_1/3),

(52)

where r = x — y. The | cos(- - - )| factor in Eq. (51) describes
the lattice-scale oscillations of |Gy, (1)|; we replace it with a
constant to obtain the smooth envelope.

The two relevant properties of the propagator are that the
interval of |x — y| values over which G,,(t) is non-negligible
grows linearly with 7 and that the matrix elements of G,,(¢)
inside this interval have a typical magnitude oc7~!/2. The
second property can be extracted from Eq. (51), but it can also
be deduced very simply from the first property, as follows.
Unitarity of time evolution implies that G(¢) is a unitary
matrix:

1= 1Gy®P. (53)
Y
We can restrict the sum to the interval over which |G,,(t)] is
non-negligible:
X+t

1~ ) 1G0)F. (54)

yRx—t

Since the envelope of |G,,(?)| is nonzero and slowly varying
within this interval, and since the interval grows linearly with
t, one must have |G, (t)| ~ =172,

E. Decay of local connected (n > 4)-point functions:
“Gaussification”

We are now in a position to understand why Wick factor-
ization is recovered as ¢ increases. Consider the equal-time
connected 4-point function (&f (1)é] (1)é.(t)é.(1)). Equation
(40) shows that this function measures the extent to which the
4-point function (6};10 )E;Z(t )Cx(2)Cy(t)) fails to Wick factorize.
Using Eq. (45) and its adjoint to express the operators at time
t in terms of operators at time zero,

([l @elene ) = D [Gr )G )Gy t)

Y1 y4
X GX4Y4(t)<(é;|éj’26-"3 6}'4))]‘ (35

We can estimate the magnitude of this quantity by multiplying
the number of significant terms in the sum by the typical
magnitude of each one. We have already seen that |G, (?)|
is negligible outside the light cone |x — y| ~ ¢, and that it has
typical magnitude |G,,(t)| ~ t~'/2 inside. By our assumption
(43) on exponential clustering of correlations in the initial
state, the function (] &] ¢,,é,,)) is negligible whenever |y; —

Y1 Y2
vl > &, where & is the finite correlation length. As aresult, the

1 To T3 T4
tA e e o o

< ~ 2t .
3
-
Ys Y1 Y2 Y4
0 oo o °
4>
> ¢

FIG. 2. Schematic showing spreading of operators in the model
of Eq. (11) and how this leads to the decay of connected correlation
functions as time ¢ increases. The points x; are the locations of
the operators on the left side of Eq. (55); the points y; are for a
representative term in the sum on the right side of this equation.
Each y; must lie inside the backward light cone of x; in order for the
propagator Gy, (f) to be nonzero. Configurations of the y’s in which
the distance between any pair is much greater than the correlation
length £ (as is the case in the figure) give negligible contributions
due to clustering of correlations in the initial state. This effectively
restricts the sum over y; . ..y, to a region of size ~&3t [Eq. (56)].

sum overy = (y; - - - y4) in Eq. (55) is restricted to a region of
size ~&3¢ (this is illustrated in Fig. 2):

Vol{y|[G% 1, ()G ()G (1) Gy (8)
x (@] el é,,¢,))] non-negligible} ~ &%, (56)
while each term in the sum is of order
Gy )] ~ 172 (57)

Hence, the right-hand side of Eq. (55) is of order ~¢~! and
the connected function on the left vanishes in this manner as
t — oQ.

As t increases, there will be additional constructive or
destructive interference between different terms in the sum of
Eq. (55), that we have not taken into account in our crude
accounting. Thus, we expect in general that

(el el megmregn)) ~ @ as t — 0o, (58)
where z(t) is some oscillatory function of time.

A similar argument shows that

(&) .. &t (e 1) ... e0,)) ~ tz/gi )1 (59)

as t — oo, where the z,(¢) are some other oscillatory func-
tions of time.

Thus, as t — oo, only the fully disconnected parts of local
correlation functions survive (the parts that factorize into
products of 2-point functions); in other words, we recover
Wick factorization as t — o00. As mentioned above, this is the
defining property of a Gaussian density matrix. We conclude
that, as t — oo, the “local state of the system” may be
described by a density matrix of the form

Pit) = Zs exp (— ;jéiny(t)éy), (60)
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where K, (¢) is chosen such that

Tr(El()e,()p1()) = (L(1)e,(1)) (61)

for all sites x, y with |x — y| finite in the limit L — oo, and
Z(t) ensures normalization. As long as K,,(¢) is chosen to
satisfy this condition at each time ¢ [actually, Eq. (61) only
needs to hold up to terms of order ~¢~'], we have

O®) ~ T OWp1 (1) +0¢™") as t — o0, (62)

for all local observables O.

We have shown that the state becomes “locally Gaussian”
at late times. Following Ref. [12], we refer to this process
as ‘Gaussification.” In Sec. IV, we describe Gaussification in
arbitrary quadratic lattice models by generalizing the chain of
reasoning leading from Eq. (45) to Eq. (59).

F. Equilibration of the local 2-point function to its GGE value

It remains to compute the local equal-time 2-point function
and to verify that it relaxes to its stationary GGE value. By
definition of the GGE, Eq. (24), this stationary value is

AT A 1 —ik(x;—x2) /1
<c§lch>GGE=Z;e k=) k), (63)

where (7i(k)) is the expectation of the mode occupation num-
ber 7i(k) in the initial state.

The results of this subsection depend on a third assumption
about the initial state py, in addition to Eqs. (13) and (43).
Roughly speaking, we want to exclude situations in which the
initial profiles of local conserved densities are inhomogeneous
on length scales comparable to the system size—for instance,
an initial state in which sites x = 1,2, ..., L/2 are occupied
by fermions and the rest are empty. True local equilibration
in such cases occurs on timescales of order L, simply because
that is how long it takes a locally conserved density to flow
across the system.

In order to formulate this assumption precisely, recall that
the local conserved quantities [Egs. (18) and (19)] are of the
form

L
fm = ij,m (64)

where the density Z,,, is supported on a finite interval of
length |m/2] near site x. Define the “local excess density”

Xo+Lo/2

STn(roiLo) = D (Lns) =
0
X=X0—L(]/2

1 .
—{Ln). 65
7 {m) (65)
We assume that these excess densities can be made small by
taking L sufficiently large (but finite and independent of L as
L — 00):

3Ly : 8L, (xo; L) = 0<%O> Vxp,m as L — oco. (66)

We emphasize that the results of the previous subsections
hold even when this assumption is violated. In particular,
the system still “Gaussifies” as described in Sec. IIE. Thus,
if the initial state violates Eq. (66), the natural description

of the local state of the system at late times is in terms of a
time-dependent Gaussian density matrix, given by Egs. (60)
and (61).

To study relaxation of the 2-point function, we will finally
need to use the diagonal form (16) of the Hamiltonian H,, or
equivalently, the full form (45) of the propagator G,,(z). We
may write

1 . .
(@il(t)EXZ(t)) = Z Z e—z(km _kZXZ)e_l(COSk‘_COSkZ)’F(kl, k),
ki k2

(67)
where
F(ky, k) := (¢'(k1)e(ky)). (68)

We begin by showing that, under the assumptions we have
made, the function F must have the form

Jmax

1
Flki, ko) = 8o (kD) + Y 81yg, 0, i) + 7 f (K, ko),
j=1

(69)

where each g; # 0 remains finite in the limit L — oo, and
where (i(k)), f;(k), and f(k, k") are smooth O(1) functions.
The various Kronecker 8s contain all of the singular depen-
dence of F (ky, k») on its arguments.

We arrive at Eq. (69) as follows. Invert the Fourier trans-
formation and write

1 i(k1y1—koy) [ AT A
F(ky, ky) = 7 Z etk kzy”(cj,]cyz)
Yiy2

- % 3 gttt 2 it 0t 26 )
Y1,)2
(70)

The sums over y; and y, in Eq. (70) may be performed
with respect to the central coordinate (y; + y,)/2 and relative
coordinate (y; — y). Because of clustering of correlations, the
sum over the relative coordinate converges absolutely (it is
effectively restricted to a finite window |y; — y;| < &), and
consequently F' must be a smooth function of (k; + k). On
the other hand, the central coordinate is summed over the
whole system, and so F' can depend in a singular manner
on (k; — k). In particular, F (k, ky) is O(1) if and only if
the terms in the sum over the central coordinate add con-
structively. This occurs when (k; — k) = 0 [in which case
the phase factor in Eq. (68) is independent of the central
coordinate], but it may also occur for (k; — ky) = ¢q # 0 if
the initial state has a density wave with wave vector g,
so that (é;I Cy,) e~ 101 +2)/2 Our extra assumption on the
initial state, Eq. (66), implies that ¢ / 0 as L — oo. This
establishes the validity of Eq. (69).
Using Eq. (69) in Eq. (67), we obtain

AT A _ l —ik(x1—x2) 25
(@ De) = ; ;e (A(k))

Jmax

+ ) 8C (1) +8Cy, 1), (T1)
j=1
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where

. 1 . . .
SC(j) ) = — e—zk(X|—xz)—quxze—t[cos k—cos(k—q_/-)]t ) k
GEEDY 136

X1,X2
k

(72)

and

1 : ; ,
SCxl ,xz(t) — ﬁ Z e*l(k])q 7k2X2)efl(COSk] 7C05k2)tf(k] , k2)
ki,ky

(73)

When t > 1, we may apply the method of stationary phase
to estimate the time-dependent pieces. The cleanest way to
do this is to first take L — oo, so that + >, — [ % and
only then take ¢ large, and that is what we will do here.
However, we note in passing that it is also possible to perform
a similar analysis without first taking L — oo; one can use
the Poission summation formula to represent % >, asasum
of integrals—each integral corresponding to a translated copy
of the finite system—and then estimate each of these integrals
by stationary phase. As long as t < L/vmax, Where vy is the
maximal group velocity of particles in the system, the extra
translated integrals generate only exponentially small (in 7)
corrections to the L — oo result.

For completeness, let us briefly review the method of
stationary phase. This method is described in detail in many
standard texts, such as Ref. [29]. A nice heuristic and math-
ematically elementary treatment may be found in Sec. 3.3 of
Ref. [30]. In the limit L — oo, Eqgs. (72) and (73) are both of
the general form

d'k ,
1(t) = [ Gy a(k) e ®r (74)

where a and ¢ are smooth functions. The k integral is one di-
mensional in Eq. (72) and two dimensional in Eq. (73). In both
cases, the integral is over a compact region without boundary.
As t — 0o, the dominant contributions to the I(¢) integral
come from the vicinity of points k, at which V; ¢(k,) = 0,
called critical points of ¢. A critical point k, is nondegenerate
if the Hessian matrix at that point,

J 0
Hp (k) := aTa_k,,‘p(k*)’ (75)
a

is invertible. Each isolated nondegenerate critical point k;
gives a contribution ;(#) to I(¢) that can be obtained (to
leading order in 7) by expanding the phase function ¢ (k) up
through quadratic order in (k — k;), extending the limits of
the k integral to infinity and performing the resulting Gaussian
integral; the result is

ei(n/4)s/

(2m1)d/2 | det H(k;)[1/?

Ii(t) = ak)e? ™" ... (76)

where s, is the signature (number of positive eigenvalues mi-
nus number of negative eigenvalues) of the symmetric matrix
H(k;). The dots are subleading terms proportional to higher
derivatives of a(k) evaluated at k;. Terms with n derivatives

are suppressed relative to the leading term by an additional
factor of 17"/,

We obtain I(¢) by simply adding up these contributions
(assuming ¢ has no other critical points):

1(6) ~ Y L), (77)
J

Thus, whenever the phase function ¢ has a finite number of
critical points, all of which are nondegenerate (and assuming
that the amplitude function a(k) does not vanish at all of these
points),

It)~1t7? as 1t — oo. (78)
This is the generic situation.

If, however, ¢ does have degenerate critical points, their
contributions must also be accounted for. The power of ¢
associated with such a contribution can often be estimated
very simply as follows. Assume that k, is a critical point at
which ¢(k) — ¢ (k) has a zero of order m, while a(k) has
a zero of order n (that is, the Taylor expansions of these
functions about k = k, start with monomials of order m and
n respectively). In spherical coordinates centered at k., we
would have ¢(k, + k) =~ ¢(ky) + [k|"P(0) and a(k, + k) =~
|k|"A(@), where @ and A are appropriate functions of the
angular variables, collectively denoted 6. Thus, the leading
contribution from the critical point is of the form

ki=1dk

() ~ Gy

/ dQUK"A(9) "0 (79)

Scaling ¢ out of the integral by changing integration variables
to p = t'/"k, we obtain the estimate

L) ~ = 4Himas 1 — oo (80)

Note that larger m leads to slower decay. Thus, in the
(nongeneric) case that ¢ has degenerate critical points,
the “most degenerate” of these will typically dominate the
t — oo behavior of 1(¢). This concludes our brief mathemati-
cal interlude.

For a given g; # 0, the phase function ¢(k; q;) = cos(k —
q;) — cos(k) appearing in Eq. (72) has precisely two distinct
nondegenerate critical points: k = ky = %(q j £ 7). Thus, as-
suming that f;(k) does not vanish at these points, the method
of stationary phase yields

SCY (1) ~ 1712 ag

X1,X2

t — 0o. (81)

A similar analysis applies to Eq. (73). In this case, the phase
function @(k;, ky) = cosk, — cosk; has precisely four dis-
tinct nondegenerate critical points: (k, k2) = (0, 0), (0, ),
(7,0), and (r, ). Thus, assuming that f(k;, k) does not
vanish at these points,

8Cyut) ~t™" as t — oo. (82)
Note that the locations of the critical points in k space are
determined by the dispersion relation of the Hamiltonian Hj,
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whereas the functions f;(k) and f(k;, k») are determined by
the initial state. Therefore, these functions will only van-
ish at the critical points for special, fine-tuned choices of
the initial state. We conclude that for generic initial states,
ast — 0o,

(el o) ~ (&] e0)gar + Rax (), (83)

where the remainder R,,(#) is of order ¢ ~!/? if the initial state
has a density wave [i.e., if (c'(k)é(k — g)) is sharply peaked
at one or more nonzero wave vectors g] and is of order ¢! if
not.

We have now explicitly shown that for any initial state pg
that satisfies Eqs. (13), (43), and (66), all local observables
of the system relax to their values in the GGE (24) as t —
oo under time evolution generated by Hy. Furthermore, we
have obtained the exponents of the power laws governing the
relaxation processes. We have shown that if the initial state
has a density wave, then we generically expect the system to
relax first to a (time-dependent) Gaussian state like ~¢~! and
then to relax to the GGE like ~¢~'/2. In Sec. IV, we describe
relaxation of the local 2-point function—and hence relaxation
of a Gaussified state to the GGE—in arbitrary quadratic
models, by generalizing the chain of reasoning leading from
Eq. (67) to Eq. (83).

Although we derived them for the specific model of
Eq. (11), the relaxation exponents 1/2 and 1 are actually
generic for quenches to clean quadratic fermion models in
one dimension. Different exponents may be obtained if the
final Hamiltonian is fine-tuned (so that the dispersion relation
has degenerate critical points) and/or if the initial state is
fine-tuned (so that the functions f;(k) and f(ki, k2) vanish at
the critical points). For instance, Ref. [31] studied parameter
quenches in a dimerized chain and in the Kitaev model of a
1d spinless p-wave superconductor and obtained parameter-
dependent relaxation exponents for the 2-point function. In
all cases, however, the exponents can be associated to de-
generate critical points and/or to the vanishing of f;(k) or
f(ki, ky) at the critical points, and their values agree with
the simple estimate (80) (the authors of Ref. [31] perform
a more sophisticated steepest descent analysis to also obtain
the prefactors). Moreover, one can easily verify that generic
small perturbations of the prequench state and postquench
Hamiltonian cause the exponents to return to the parameter-
independent values 1/2 and 1.

Finally, we briefly comment on relaxation from initial
states that violate Eq. (66). One might still expect the con-
clusions of this section to apply locally, so that the system
relaxes as described above toward a “local GGE” in which
the Lagrange multipliers are slowly varying functions of
position and time. This “local GGE” would in turn relax—
over timescales comparable to the system size—to the global
GGE of Eq. (24), in a manner consistent with a generalized
theory of hydrodynamics [32]. This is certainly a tempting
picture, but because one cannot associate a timescale to local
power-law relaxation, it is not immediately clear that such
a description—based on separation of timescales—is self-
consistent. We will not explore these questions further in this

paper.

III. GENERAL TREATMENT:
SETUP AND BASIC DEFINITIONS

A. System

We consider a lattice system of fermions or bosons in
d dimensions, with one orbital per lattice site and N sites
in total (the generalization to multiple orbitals per site is
straightforward, and merely complicates the bookkeeping).
Let /7 and ¥/ = (/7)" denote the annihilation and creation
operators respectively for the site at position x.

Although we work on a lattice, we believe that many of our
arguments also apply in the continuum limit, if the symbols
in the equations are reinterpreted correctly; in particular, 1/?}
should be regarded as the operator that creates or destroys
a wave packet at position x. With this in mind, we will also
make statements about relaxation in systems of massless
particles, etc.

B. Initial state

At time ¢t = 0, the system is prepared in some nonequilib-
rium initial state represented by the density matrix py. For the
majority of this paper, the only condition that we impose on
Do is that it have the cluster decomposition property [24]:

(i -

~

Yl = o(lx; — x;| 7)) s |y —x;| > o0
(84)

for any pair of indices i, j € 1,2, ..., n, where € > 0 is some
positive real number. Here ((- - - )) denotes the connected corre-
lation function or cumulant of the operators 1}?11 . 1/7;’ in the
state Py (the definition of connected correlation function is re-
viewed in Appendix A). Equation (84) says that the connected
function vanishes at least as rapidly as |x; — x;|~@*¢) when
|x; — x| — oo, for some € > 0. The cluster decomposition
property ensures that correlations in the state py factorize
as groups of operators are taken far away from one another,
and it is quite reasonable from a physical standpoint. The
cluster decomposition property (in fact a stronger exponential
version of it) has been rigorously proven for large classes of
initial states. These include ground states of interacting local
Hamiltonians with a spectral gap [17,18], as well as thermal
states of arbitrary short-ranged fermionic lattice systems at
sufficiently high temperature [19]. We emphasize again that
the initial state py need not be related in any way to the
Hamiltonian of the system. For instance, it can be the ground
state or thermal state of some completely different interacting
Hamiltonian; the only requirement is that it satisfy Eq. (84).

In Secs. VC, VID, and VIIC, we will require the initial
state to satisfy a second condition, in addition to cluster
decomposition. This extra assumption is needed in these three
sections and nowhere else, so we state it when it first becomes
relevant, in Sec. V C. In the rest of the paper, only Eq. (84) is
assumed.

C. Hamiltonian

For t > 0, the evolution of the system is governed by a
quadratic, possibly time-dependent, Hamiltonian of the form

N A o 1 . o
A=Y [w;hxy(mw; S Ay (00 + H.c.)} (85)

X,y
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where hj(‘y = hy, and A,y = £A,, for bosons and fermions,
respectively. This is the most general possible form of a
quadratic Hamiltonian. The term involving /4 accounts for
hopping and on-site potentials, while the term involving A
allows for pairing. In the bosonic case, we assume that any
linear terms have been eliminated by appropriately shifting
the operators and that the quasiparticle spectrum of H(t) is
positive definite.

It is often convenient to organize the annihilation and
creation operators into a 2N-component column vector .
If one orders the sites in some manner from 1 to N and
temporarily denotes the operators acting on site number j by
ﬁf, then

U= by Uy 00T (86)

The Hamiltonian can then be written in the form (column
vector times matrix times row vector)

H(@) = %\iﬂ'?-[(t)\i/ + constant, (87)

where

h(t) A(t)
and where the plus (minus) signs apply to bosons (fermions).
H(t) is a 2N x 2N Hermitian matrix whose blocks are the
matrices & = h" and A = £ AT with components /,, and A,,
(ordered to match the operators). In the bosonic case, we
require H(¢) to be positive definite at each ¢ (this is equivalent
to requiring the quasiparticle spectrum of H (t) to be positive
definite).
In general, we will refer to any 2N x 2N matrix M as a
canonical Hermitian matrix if it is of the form
X Y
M= (ﬂ* :I:X*)’ M =M. (89)
We find it preferable to work in the Heisenberg picture
throughout our analysis, so that the operators 1/7§(t) evolve
with time 7, while the unspecified density matrix py does not.

D. Observables and relaxation

The observables of interest are local correlation functions;
by this we mean any n-point function (1/;;’[‘ ) lﬁfn" (ty)) in
which |x; — x;| < L for all pairs of indices i, j € 1,2, ...,n,
where L is the physical extent of the system (assumed to be of
the same order of magnitude in each spatial direction). This
notion of locality can be made precise in the thermodynamic
limit L — oo, by requiring that all distances |x; — x;| remain
finite.

We say that the system (whose true state in the Heisenberg
picture is always given by pg) relaxes to a state described
by the density matrix p;(¢) if the latter reproduces all local
correlation functions at late times.

E. Gaussian density matrices

A density matrix p is Gaussian if it is of the form

1 1o,
ﬁ:—exp(— —lI/'K\II), (90)

where K is a 2N x 2N canonical Hermitian matrix [that is,
it satisfies Eq. (89)]. The quadratic form %\iﬁK ¥ may be
regarded as a “statistical Hamiltonian” for the Gaussian state
[compare Eq. (87)].

A density matrix p’ is Gaussian if and only if, for each
n # 2, all connected n-point functions with respect to o’
vanish (this is equivalent to Wick’s theorem). Any Gaussian
state is therefore entirely determined by its 2-point functions.

IV. “GAUSSIFICATION” OF THE INITIAL STATE

We will first study the relaxation, in the sense defined
above, of a system prepared in the initial state py and evolv-
ing according to the quadratic Hamiltonian (85) to a state
described by a Gaussian density matrix. Following Ref. [12],
we refer to this process as “Gaussification.”

This section can be regarded as generalizing the logic that
led from Eq. (45) to Eq. (60) in Sec. II.

A. Spreading of operators: General properties of the propagator

As stated earlier, we work in the Heisenberg picture. Since
the Hamiltonian (85) is quadratic, the Heisenberg equations of
motion for 1/})? () yield a system of linear ordinary differential
equations. These may be written in matrix form, following the
notation of Eq. (87), as

%@(r) = —iM@)b(@), O
where
h(t) A(r)

Recall that i = h and AT = £A for bosons (fermions).
Thus, for fermions, the matrix M(¢t) = H(¢) is always Her-
mitian, whereas for bosons it is only Hermitian if A = 0.
In either case, one may immediately integrate this matrix
differential equation to obtain

$(t) = G(t)¥(0), (93)

which defines the propagator G(t); in general, G(¢) is the
time-ordered exponential of the matrix-valued function M (¢):

G(t) = <g+g§

- L
&gi) = Te MO (94)
One always has G' () =[G~ ()]* and G T(t) =
[G™~(®)]*. The matrix G(t) is unitary in the case of
fermions (or bosons with A = 0), since in these cases it
is the time-ordered exponential of a Hermitian matrix-valued
function. For bosons in general, G(¢) is instead pseudounitary;
it satisfies G'nG =1, where n = Iy ® —Iy and Iy is the
N x N identity matrix. We will at first restrict attention to the
cases in which G(¢) is unitary and postpone the discussion of
the slightly more subtle case of bosons with nonzero pairing
(with A # 0) to Sec. IVE.
Equation (93) can be written in component form as

VHOED P INEHOS 95)

b=% y

012146-11



CHAITANYA MURTHY AND MARK SREDNICKI

PHYSICAL REVIEW E 100, 012146 (2019)

where lﬁé’ = 1/}yb (0). The components Gﬁyb (t) of the propagator
may be interpreted as giving the amplitude for a particle
(b= —) or hole (b = +) added to the “vacuum” at position
y to be found, after time ¢ has elapsed, as a particle (a = —)
or hole (a = +) at position x. Gﬁﬁ (t) also equals the retarded
single-particle Green’s function of the system (both normal
and anomalous parts); with a quadratic Hamiltonian H (1), this
Green’s function is independent of the state pg.
Unitarity of the matrix G(¢) ensures that

S Y jGkm) =1. (96)

b=% y

In accordance with the interpretation of G)‘C‘;’ (t) given above,
this equation may be understood as expressing conservation
of probability of particles along with holes.

Our argument for “Gaussification” depends only on very
coarse properties of the propagator—on whether and how
rapidly it “spreads” as time progresses. Let us make these
notions precise. Following the terminology used in Ref. [12],
we say that the dynamics are delocalizing at (x, a) if

|G&(W)| -0 as t—o00 V(b (97)

otherwise, we say that the dynamics are localizing at (x, a).

If the dynamics are delocalizing at (x, a), then for any
¢ > 0, at sufficiently late times ¢ one has |Gjﬁ§?(t)| < ¢ for
all (v, b). In order to satisfy Eq. (96), |Gf§yb(t)| must then
be nonzero for at least 1 /c2 pairs (y, b). Thus, “delocalizing
dynamics” requires spreading of the propagator. In order
to quantify how rapidly this spreading occurs, consider the
smooth envelope Gﬁf (t) of |G§f§? ()|, obtained by coarse grain-
ing the latteNr in x and y (in the example of Sec. II, for instance,
we obtain G,,(t) by averaging the curves in Fig. 1 over their
rapid oscillations on the lattice scale). For given position x,
index a, time ¢, and constant § > 0, define

Di(t;8) = {y| G4 (1) > 8 or GL (1) > 8} (98)
and
Va(t;8) == Vol, [ DL(136)]. (99)

By choosing § small enough, we can ensure that, to any
desired accuracy,

Yo Yetof =1 -l s,

yeDi(t;6) b=+

(100)

where the first equality defines (¢, §). Thus, whenever Gj;;’(t)
is present in a sum over y, we may restrict the sum to y €
Di(t; 8) while only making an error of order €(z, §). In what
follows, we will assume that § = §,(¢) has been chosen small
enough so that the error €(z, 8,(¢)) is negligible and suppress
it in writing

Di(t) = Di(t;6.(1)) (101)

and
Vi) = Vit 8.(1)). (102)

In many cases of interest, including lattice systems with
Lieb-Robinson bounds [12,27,33], V¢(¢;8) depends much
more weakly on & than does €(¢,§) in the limit § — 0 (a

glance back at Fig. 1 shows that this is true in the example
of Sec. II). In order to satisfy Eq. (100), the non-negligible
components Gﬁf(r), which belong to the region y € D{(z),
must then have magnitude

G @0)| ~ V@)™ fortypical y € D(r).  (103)

y
If the dynamics are delocalizing, one must have V¢(¢) — oo
ast — 0o.

Usually, the dimension d’ of the region D¢(¢) equals the
dimension d of the ambient space. However, there are also
cases in which d’ < d. For instance, for a system of massless
particles with an isotropic dispersion relation, D¢(¢) is the
d’ = (d — 1)-dimensional surface of a d-dimensional sphere
centered at x.

Before proceeding, let us comment on three generic ways
in which the dynamics may fail to delocalize:

(1) The most obvious one is that A describes a system
that is Anderson localized [34]; in this case, the dynamics are
localizing at all points x.

(2) More generally, imagine that the quasiparticle spec-
trum of A includes a level whose wave function is expo-
nentially localized in space near position xy. The propagator
Gfﬁf (t) will then include a term, due to the localized state, that
does not vanish as t — o0o. However, this contribution will
be exponentially small in the distances |x — x| or |y — xg| if
either of these is large. Thus, to an excellent approximation,
the dynamics will only be localizing very near x, and will
remain delocalizing elsewhere. We will discuss the special ef-
fects that arise when the quasiparticle spectrum of H contains
one or more localized states, in addition to extended states, in
Sec. VI. For the remainder of the paper, we exclude this pos-
sibility. Because we define relaxation as a local phenomenon,
however, our general conclusions also apply to systems with
localized states, as long as we consider a region of space that
is sufficiently far from them.

(3) Finally, consider a system of noninteracting particles
moving in two dimensions in a constant perpendicular mag-
netic field. In this case, the dynamics are again localizing;
the propagator G(¢) is a periodic function of time [35]. This
may be inferred from the fact that, in the classical problem,
all particles move in circular orbits at the cyclotron frequency
wop = eB/mc, regardless of their initial velocity (here m is the
mass and e the charge of each particle, B is the magnitude
of the magnetic field, and c is the speed of light). Conse-
quently, the wave function of a single particle prepared in a
wave packet at some point ry simply expands and contracts
rhythmically with period 27 /w.

B. Decay of connected correlation functions: “Gaussification”

Using Eq. (93), any time-dependent connected n-point
function can be expressed as a linear combination of con-
nected n-point functions at time zero:

(e adew) .. )= Y. > [Guhm)...
by by=%y1-Yn
x Goyr |y by -y )]
(104)
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AFIG. § SchAematicA showing how the spreading of operators in d =2 dimensions causes the connected 4-point function
«Wfl' (1) P (z‘)w)‘;3 (t)w;’;‘(t)» to decay as time ¢ increases. As in Eq. (104), this function is expressed as a weighted sum of connected 4-point
functions at time zero, ((ﬁfll 1ﬁv”22 I[f)”j gﬁfj ). Cluster decomposition ensures that only configurations of the y’s of the form depicted in the left
panel contribute to the sum; configurations like that shown in the right panel do not, because the connected function ((1/};?11 ﬁy”zz 1/}}',’33 1&5’44 ) is
negligible. This restriction in allowed phase space is ultimately responsible for the power-law decay of all connected 3- and higher-point

functions, as explained in the text.

We are interested in local correlation functions, so we assume
that the x;’s are all close to one another (relative to the
size of the system). We can estimate the magnitude of the
connected n-point function by simply multiplying the number
of significant terms in the sum by the typical magnitude of
each one. Based on the discussion in Sec. IV A, the summand
is negligible unless each y; is contained in the appropriate
region Df;!f (¢;). Assume for a moment that the initial state
po obeys a strong version of cluster decomposition and has
a finite correlation length & such that ((1/fyb]‘ wybzz e yb: ) is
negligible whenever |y; — y;| > &. Then, the summand aty =
1, ¥2, ..., Yy is significant only if y € D({x;, #;}), where

D({xi, ;) ~{y|y; e DE () V j
and |y, —y;l <& Vi, j}

and the number of significant terms in the sum, A (z), is
proportional to the volume, in y space, of D({x;, t;}).

With delocalizing dynamics, each region fo/’ (t;) grows
without bound as t — o0, so that ijf ) > £4 at late times.
In this case, it is easy to see that the number of significant
terms in the sum is

N(@t) ~ V()=

(105)

(106)
where
V() = min{Vfl' (1), Vf;(tg), R Vf’:'(t,,)}. (107)

The factor of V(¢) comes from a sum over the central coor-
dinate y = %(yl +y2 4+ -+ + yu), while the (n — 1) factors of
£? come from sums over the relative y coordinates; the latter
are restricted by cluster decomposition, while the former is
not. This straightforward geometric argument is illustrated in
Fig. 3.

Meanwhile, each G)“f, (¢;) factor in the summand has typi-
cal magnitude ~[V4(t;)]""/* < [V(1)]7/%. We conclude that
(W ()Y (1) . @D S VO1 2D as 1 — oo, If

the various times ?; are comparable (quantitatively, if the
time differences |t; — ¢;| are small compared with the average
timef = (t; + 1t + - - - + 1,)/n), then we expect that fo (tj) ~
V(¢) and we may boldly promote this bound to an asymptotic
estimate of the relaxation rate: (( A;’ll ()Y w(t). .. 1/};’* ) ~
[V(@#)]~"/>~D as t — oo. This estimate ignores all interfer-
ence between terms in the sum in Eq. (104). We briefly
comment on some of these neglected interference effects at
the end of this section.

With localizing dynamics (as in quenches to disordered
Hamiltonians in d = 1 or 2 dimensions), the result depends
crucially on the ratio of the localization length &, to .
If &0 > &, the conclusions of the previous paragraph are
essentially unchanged, except that V(¢) — (Eloc)d' ast — oo.
Thus, the connected functions still relax like [V(z)]~®/2~D,
but to a finite value of order ~(&c)~ /2~ rather than
to zero, and subsequently oscillate forever. If &, < &, then
the y sums in Eq. (104) are always restricted to regions
of size ~($10C)d’, cluster decomposition plays no role, and
one expects little or no relaxation to occur. One can also
consider the intermediate case in which the dynamics has both
a localizing and a delocalizing component. We study this in
some detail in Sec. VL.

A slight refinement of the argument just presented allows
us to handle initial states in which the correlation length
& is infinite but which nevertheless obey the weaker alge-
bra}ic gorm of cluster decomposition (84). Thus, assume that
(ol ) ~ i — 3179 as |y — yj| = oo, with
€ > 0. Let £ now denote the length scale beyond which this
power law is valid. Each propagator Gﬁ}b, (t) factor in Eq. (104)
still has typical magnitude < [V(t)]~!/2. We may rewrite the
sum over y; ...y, as a sum over one central coordinate j and
(n — 1) relative coordinates z;. The sum over j is unrestricted
by cluster decomposition and yields a factor ~V(¢) as before.
In order to estimate the sums over the relative coordinates,
assume that each region Dfﬁ/’ (¢;) is d dimensional and let r(z)
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denote some typical length scale of these regions. Then,

Z ’<<1/,})b-IFZ1 I'&)l')-zfzz t 1‘&)Z’)i(21+zz+-~+zn—1)>>’

21 Zn—1

r _ n—1
~ g0 (/ @ |z 1dlzl)
! |Z|d+e
~ gD g gD e (108)

where we have retained only the leading terms in the limit
r(t) > & (if the dynamics are delocalizing, r(t) — oo as
t — 00, so this limit will be reached at late times). The impor-
tant point is that this leading term is a constant independent
of t. Consequently, our earlier asymptotic estimate of the
relaxation rate of the connected n-point function is not mod-
ified. If instead the regions Dj/’ (t;) are d’ dimensional (with
d’ < d), the requirement that each y ; lie on the appropriate
d’-dimensional manifold places some additional constraints
on the z;’s, but this is a detail that does not affect the main
conclusion.

Thus, whenever the initial state obeys cluster decomposi-
tion, as defined in Eq. (84), we expect that

(V& OPE ) .. e @)))| ~ VO™,
with V(¢) given by Eq. (107). Our arguments suggest that
this result holds whenever V(¢) > Sd’, where d’ < d is the
effective dimension of the regions ’Dj/’ (¢j), and & is an appro-
priate length scale in the initial state (either the correlation
length, if this is finite, or the length scale beyond which
the initial connected n-point functions exhibit the power-law
decay required by cluster decomposition).

Notice that Eq. (109) does not give any information about
the relaxation behavior of the 2-point function, since the expo-
nent of V(¢) vanishes when n = 2. This is easily understood.
As we saw in the example of Sec. II, and as we will show later
in generality, the relaxation of the 2-point function is governed
by interference between the terms in the sum in Eq. (104).
This interference was completely ignored in our derivation of
Eq. (109), which relied only on gross phase-space arguments.
For n > 2, we hypothesize that the neglected interference ef-
fects merely lead to an additional oscillatory time dependence
about the power-law decay exhibited in Eq. (109), without
modifying the exponent of the power law itself.

(109)

C. Relaxation power laws

Equation (109) gives estimates of the leading time de-
pendence of all local (n > 2)-point connected functions of
the system in terms of the coarse spreading behavior of
the propagator [as encoded in the function V(¢)]. Although
a detailed study of possible spreading behaviors is beyond
the scope of this paper, we describe some generic types of
spreading below.

Typical spreading behaviors fall into two broad classes. In
the first class, which we call “volume spreading,” the smooth
envelope ij;’ (t) of the propagator (as defined in Sec. IV A) is
non-negligible for most points y inside a d-dimensional region
of characteristic size r(t) centered at position x, so that V(¢) ~
[j(t)]d. In the second class, which we call “area spreading,”
ijf(t) is non-negligible only for points y near the (d — 1)-
dimensional surface of such a region of size r(¢) centered

“Dispersive” “Non-dispersive” “Localized”
r(t) ~vt r(t) ~vt r(t) ~VDt r(t) ~&loc

V() ~td V() ~ t@D V() ~t°

FIG. 4. Paradigmatic spreading behaviors of 1-particle propaga-
tors. This list is certainly not exhaustive, but the spreading behaviors
shown may be regarded as typical.

at x, so that V(¢) ~ [r(¢)]“~ V. In either case, the dynamics
are delocalizing if r(t) — oo as t — 00, and localizing if not
(with the exception of area spreading in d = 1, a case that we
discuss separately in Sec. IV D).

We expect behavior of the volume type for massive parti-
cles in a slowly varying potential (dispersive spreading) and of
the area type for massless particles (nondispersive spreading).
In both these cases, r(t) ~ vt, where v is the maximum
local group velocity of the particles. In the presence of weak
disorder, we again expect behavior of the volume type. In
d > 3 dimensions, the expectation is diffusive spreading of the
form r(t) ~ /Dt (here D is the diffusion constant), while in
d = 1 and 2 dimensions the expectation is that r(¢) saturates at
a finite localization length, r(t) ~ & as t — oo [36]. These
four paradigmatic spreading behaviors are depicted schemat-
ically in Fig. 4. The corresponding relaxation exponents may
be easily obtained using Eq. (109).

For a time-independent Hamiltonian A with a Lieb-
Robinson bound [27,33], we expect the propagator to gener-
ically behave in one of these manners; in the example of
Sec. II, for instance, the propagator exhibited what we are now
calling dispersive spreading (of course, there are exceptions,
such as the pathological ones noted in Sec. IV A). More
complicated behavior is certainly possible for time-dependent
Hamiltonians A (1), but generically we expect that these will
still lead to spreading of either the “volume” or “area” types,
with some characteristic size r(¢) that must be computed on a
case-by-case basis.

If the Hamiltonian A contains nonlocal terms, so that there
is no Lieb-Robinson bound, we cannot say as much about
the envelope of the propagator. However, the unitarity condi-
tion (96) still relates the typical magnitude of non-negligible
matrix elements Gﬁ;’ () to the volume V(¢) of the region on
which the propagator is meaningfully supported: Gf;yb ) ~
[V(t)]~'/2. Since, in the absence of a Lieb-Robinson bound,
we expect V(t) to grow quite rapidly, the basic argument of
Sec. IV B still applies, and we expect the system to “Gaussify”
rapidly (as measured by local operators).

Therefore, if the Hamiltonian describes a delocalized sys-
tem in the sense that r(r) — oo as t — oo, then all local
(n > 3)-point connected functions decay with the power laws
obtained above, and the system can be described at late times
by a Gaussian density matrix. As mentioned earlier, there is
one important exception to this result, which we now discuss.

D. Nondispersive spreading in d = 1 dimension:
Absence of Gaussification

Recently, Sotiriadis [37] has analytically studied the
quench dynamics of a massless free bosonic scalar field in one
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spatial dimension and has shown that the system always re-
tains significant memory of non-Gaussian initial correlations.
Thus, the system fails to relax to the corresponding bosonic
GGE, which is Gaussian. A very similar result was obtained
earlier by Ngo Dinh ez al. [38].

This result can be understood very easily within the frame-
work that we have established above. The propagator of
massless particles is supported entirely along the light cone.
In d = 1 dimension, at each instant of time, the light cone
simply consists of two points. Therefore, unitarity implies that
the propagator can never decay; it follows from the analog of
Eq. (104) that higher connected correlation functions never
relax to zero.

More generally, for any system whose propagator exhibits
area spreading, we have V(¢) ~ [r@)]“~D, and so |Gy ()] ~
[r(t)]~“=D/2 In d = 1 dimension, these factors are constant,
implying that higher connected correlation functions fail to
relax, and the system fails to “Gaussify.” This conclusion is
special to 1 dimension; in d > 1 dimensions, the same type of
system will relax to a Gaussian state. It is important to keep in
mind, however, that the observables for massless particles are
typically not correlation functions of the fields themselves but
rather correlation functions of vertex operators (exponentials
of the fields) or of derivatives of the fields, so that the precise
arguments and decay rates for these are slightly different. We
will not delve into these details here.

Many properties of (seemingly diverse) gapless systems
in one spatial dimension can be obtained within the unify-
ing framework of Luttinger liquid theory [39], which, in its
simplest incarnation, can be formulated as a theory of nonin-
teracting massless bosonic fields. However, this formulation
relies on linearization of the single-particle dispersion relation
and while this is innocuous for most static properties, it is
clearly dangerous when considering relaxation behavior: Even
a slight dispersion nonlinearity will cause a crossover from
nondispersive to dispersive spreading of the propagator at late
enough times, and hence lead to the relaxation that is absent
in the free massless bosonic field theory. Thus, any consistent
description of the quench dynamics of a one-dimensional
system (even an exactly integrable one) using Luttinger liquid
theory must account for dispersion nonlinearities [40,41],
unless the initial state is itself Gaussian in terms of the bosonic
fields [42].

These points were emphasized by Ngo Dinh et al. [38] and
also by Sotiriadis [43] in followup work to Ref. [37]. These
references contain a comprehensive analysis of relaxation in
the Luttinger model and conclude that any weak nonlinearity
of the dispersion would ultimately lead to Gaussification,
in agreement with the intuitive argument sketched above.
We refer the reader to these works for a detailed discussion
of most of the issues mentioned in this subsection and to
Ref. [42] for a general pedagogical discussion of quenches
in the Luttinger model.

E. Bosons with pairing

We now comment on how our “Gaussification” results are
modified in the case of bosons with pairing. As noted in
Sec. IV A, the propagator for bosons has the general form

G(t) = Te oM, (110)

where

(111)

M) = < h(1) A(r) )

—A*(t) —h*(@)

and where 1" = hand AT = A. When A # 0, the propagator
is not unitary but rather pseudounitary; it satisfies G'n G = 1,
where n = Iy & —Iy and Iy is the N x N identity matrix.
Consequently, the right-hand side of Eq. (96) is no longer
simply 1 but rather some function of time:

Y Y |Gt =g > o.

b=% Yy

(112)

The non-negligible matrix elements of Gf)b, (t) thus have typ-
ical magnitude ~[V4()]~"/?[g“(¢)]'/*. Repeating the phase-
space arguments of Sec. IV B, we obtain the appropriately

modified form of Eq. (109):

. . . n/2
(08 )F= () . 1)) ~ D%t)% (113)
where
g0 = [¢2)g2n) ... 87 w)]". (114)

In general, g(t) could be a complicated function of time,
whose form is difficult to predict without some further knowl-
edge of M(¢). However, if the Hamiltonian is time indepen-
dent, we can easily derive the bound (see Appendix B for
details)

2
1<) < (“"“) , (115)

€min
where wp,x 1S the largest boson mode energy and epi, > 0
is the smallest eigenvalue of the Hermitian matrix 7 that
defines the Hamiltonian via Eq. (87) (recall that, for bosons,
we require H to be positive definite). In this case, although the
relaxation behavior described by Eq. (113) is complicated, it
has a power-law envelope determined entirely by V(¢).

Time evolution in bosonic systems approximately de-
scribed by unstable or metastable quadratic Hamiltonians
(those whose mode spectra are not positive definite) has been
studied in Ref. [44].

V. EQUILIBRATION TO THE GGE

We have shown in Sec. IV that, if the initial state has the
cluster decomposition property (84), and if the dynamics are
delocalizing in the sense of Eq. (97), then, as t — oo, all
local (n > 2)-point connected correlation functions relax to
zero in a manner given by Eq. (109). Thus, as t — oo, local
correlation functions themselves Wick factorize and are deter-
mined entirely by the local 2-point function (gﬁ;‘ (t)gﬁf (t)), up
to corrections of order 1/V(¢). All the results of Sec. IV hold
for general time-dependent quadratic Hamiltonians H (t).

If A is time independent, we can go further—as we do
now—and show that the system locally equilibrates to the
appropriate GGE. In Secs. VA and VB, we construct the
GGE density operator and show that it is Gaussian; these
sections generalize and complete the discussion in Sec. II B. In
Sec. V C, which generalizes Sec. II F, we study equilibration
of the local 2-point function to its GGE value. Combined with
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the results summarized in the previous paragraph, this analysis
proves equilibration to the GGE for a wide class of quadratic
lattice models and also furnishes predictions for the leading
time dependence of local observables as t — co. A similar
analysis is carried out for time-periodic A (¢) in Sec. VII.

A. Conserved quantities

Consider any quadratic time-independent Hamiltonian H
which gives rise to delocalizing dynamics. We begin by
showing that in this case all local conserved quantities f,, are
themselves quadratic in the particle creation and annihilation
operators.

By definition of the conserved quantities, we must have
I,@) = I,,(0). Without loss of generality, we can take I, to
have a definite order n in terms of creation and annihilation
operators, because the latter evolve linearly:

alaz R ay,f.da
’”_Z Z X1X2. X 1'[/Xll/j)fz

{xj} {a /—i

P (116)

Locality (recall that this means that the f,, are sums of local
densities) requires that the coefficients I;‘]‘_'_'Af”" vanish unless
all |x; — x;| <« L. Using Eq. (93), we have
o= Y [Zrreo.. 6o
{xjoyi}Haj.bj=+}
XYL . (117)

The conservation condition £,,(0) = £,,(¢) then requires that

=y > Ta G @) ..

b} laj==}

Ned ) (118)

The same “phase space” arguments that we used in the pre-
vious section to show decay of all local connected (n > 3)-
point functions also apply to the right-hand side of Eq. (118);
locality of the coefficients Z7! " here plays the role of cluster
decomposition. We conclude that for n > 3, the right-hand
side of Eq. (118) must vanish as t — oo if the dynamics are
delocalizing. The left-hand side, however, is obviously time
independent and finite. This contradiction proves the claim.

Thus, all local conserved quantities of A must be of the
form

Iy = 3977, b, (119)

where 7, is a canonical Hermitian 2N x 2N matrix in which
each block is banded to ensure locality.

B. GGE density operator

A quadratic Hamiltonian A = %@'T’H\il (with H positive
definite in the case of bosons) can always be diagonalized
by a Bogolyubov transformation [45]; we can introduce new
canonical “quasiparticle” operators {yi} that obey the same
(anti)commutation relations as the {wx } and are related to the
latter by a linear transformation,

=51, (120)
where
| NN RIS A Al S A A L (121)

The transformation S has the block form

uov
=(v o)

(to preserve adjoints), satisfies S'S =1 for fermions or
S™nS = n for bosons, where n = Iy @ —Iy (to preserve the
operator algebra), and is diagonalizing:

STHS = Q := diag(wy, . ..

(122)

9wN9_w15""_0)N) (123)

for fermions or
STHS =0 Q (124)

for bosons. In terms of the quasiparticle operators, we have

N
ﬁ:E0+ijﬁj, (125)
j=1

where
i=PP (126)
and w; > 0 (in the case of bosons, w; > 0 is required for
physical stability).
The mode occupation number operators 7i; commute with
H and with one another. If the spectrum {w i} is nondegenerate
(that is, if w; = w; implies i = j), then the set of operators
{71;} is uniquely defined and forms a linear basis for the set
of all quadratic conserved quantities of H. We have already
shown (in the previous section) that all local conserved quan-
tities f,, of H are quadratic if A gives rise to delocalizing

dynamics. Therefore, in this case we may conclude that the
GGE density operator has the form

exp( Z,\ 1)

PGGE = (127a)

Z/’Ljnj )

where only the Lagrange multipliers {A,,}, or equivalently
{1}, are left to be determined by the initial state. We em-
phasize again that this conclusion relies on two assumptions
in addition to A being quadratic: (i) that the dynamics are
delocalizing and (ii) that the mode spectrum {w;} is nonde-
generate.

If the mode spectrum is degenerate, on the other hand,
there is some freedom in the choice of diagonalizing canonical
transformation S, and consequently in the mode operators and
conserved quantities. For instance, if w; = w,, consider the
family of quasiparticle operators defined by

() =e(’0).
a, V2

where Q € U(2) is any 2 x 2 unitary matrix. It is clear that
the new number operators

= exp

(127b)
ZGGE

(128)

(129)

also commute with the Hamiltonian H. However, they do not
in general commute with the old #i;, 71, operators:

[, #]=0 but [A, A1#0 (,j=12). (130)
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Therefore, the primed (#') and unprimed (7) operators yield
inequivalent sets of conserved quantities. This ambiguity is
fundamental [26]—it is present whenever the mode spectrum
is degenerate—and it leads, in principle, to additional depen-
dence on the initial state, as we now describe.

Each inequivalent set of conserved quantities gives rise to
its own family of GGE density operators (parameterized by
the Lagrange multipliers of that set of quantities). Given an
initial state py, we must chose the canonical transformation
S to also diagonalize the correlations within each degenerate
subspace; that is, we must choose S so that, for all pairs i # j
such that w; = w;, we have

(7 97) =Te@ 97 bo) = 0. (131)

In the case of fermions, we must also choose S to ensure that,
whenever w; = w; =0,

79 =0.

It is always possible to find a canonical transformation S that
diagonalizes H and also satisfies these conditions. The GGE
density operator can then be constructed using the associated
mode operators in the usual manner, following Eq. (127b).

Thus, in general, pggg, written in the form (127b), depends
on the initial state pg in two distinct ways: (i) the definition of
the occupation numbers operators {71;} corresponding to de-
generate modes {w;} of H and (ii) the values of the Lagrange
multipliers {u;}.

The general construction of the GGE density operator
that we have outlined in this section can be applied to any
quadratic Hamiltonian A that gives rise to delocalizing dy-
namics; it will indeed yield a density operator pggg that
correctly describes all local observables of the system at
late times (as we demonstrate in the next section). However,
we have in some sense “cheated” by phrasing our general
construction in terms of the mode occupation numbers {7}
rather than in terms of the local conserved quantities {f,}.
Since we are studying local relaxation, the latter are really
the quantities of fundamental importance.

From a more fundamental point of view, then, a set {71}
is admissible only if, by taking linear combinations of the 7,
one can construct a maximal set of local conserved quantities
{£,,} (recall that the set {f,,} is maximal if any local conserved
quantity [ that commutes with all of the f,, can be expressed
as a linear combination of them). Given a maximal set {IAm},
we can always obtain a corresponding admissible set {7} by
finding the Bogolyubov transformation S that simultaneously
diagonalizes the I,. Sets {i;} that are inadmissible can—
regardless of the initial state—be ignored for the purpose
of writing down pPgge, and one only needs to use initial
correlations to distinguish between admissible sets. Thus, the
construction outlined in this section, although valid, might
overestimate the degree to which the GGE depends on the
initial state.

(132)

C. Relaxation of the local 2-point function

Having constructed the GGE density operator, we now
study relaxation toward it by analyzing the long-time behavior
of the local 2-point function. As in the example of Sec. II,
this part of the analysis requires us to make an additional

assumption about the initial state pg; roughly speaking, we
need to exclude situations in which the initial profiles of
local conserved densities are inhomogeneous on length scales
comparable to the system size. True local equilibration in such
cases occurs on timescales of the order of the linear dimension
L of the system, simply because that is how long it takes a
locally conserved density to flow across the system.

In order to formulate this assumption precisely, recall that
the local conserved quantities are of the form

~ ~
Im = E Im,)c’
x

where the density fm,x is supported in a finite region centered
at position x. Define the “local excess density”

(133)

~

. 1,
E <Im,x> - V<—)’
0l(Sys)

x€B,(x0)

8T(xo51) 1= (134)

Vol(B,)

where B,(xg) is the d-dimensional ball of radius r centered
at xp, Vol(B,) is the volume of this ball, and Vol(Sys) is the
volume of the entire system.

We assume that these excess densities can be made
small by taking r sufficiently large (but keeping r fixed as
Vol(Sys) — o0):

3r: 8Z,(x0;r) = Or~ %) Vxo,m as Vol(Sys) — oo.

(135)

We emphasize that the “Gaussification” results of Sec. IV
hold even when this assumption is violated (the results of
Secs. VA and VB hold as well). Thus, if the initial state
violates Eq. (135), the natural description of the local state
of the system at late times is in terms of a time-dependent
Gaussian density matrix, of the form

1. N
b1(t) = — K@) ), 136
p1(t) ZI(I)GXP( 2 (1) > (136)
where K(t) is a canonical Hermitian matrix [it satisfies

Eq. (89)] that must be chosen so that
Te[ L (OPL @) pr()] = (P @)

for all pairs of indices a, b = & and positions x, y with [x — y|
finite in the limit of infinite system size.

Also as in the example of Sec. II, this part of the analysis
requires more detailed knowledge of the spectrum of the
Hamiltonian, or equivalently, of the propagator, than is needed
to show “Gaussification.” Consequently, our treatment will be
somewhat schematic.

In terms of the matrix S of the Bogolyubov transformation
¥ = ST that diagonalizes the Hamiltonian H, the propagator
may be written as

(137)

G(t) = Se~ ™ 571, (138)

where

Q = diag(wy, wy, ..., 0y, —©], —®3, ..., —wy), (139)

and {w; > 0} is the spectrum of quasiparticle excitations. This
form of G(¢) is valid for both fermions and for bosons; the
difference between the two is the unitarity or pseudounitarity
of the matrix S. It is standard to regard the 2N columns of S
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as eigenvectors of a fictitious single-particle problem whose
eigenvalue spectrum is symmetric about zero (while keeping
in mind that, for bosons, the eigenvectors are orthonormal
with respect to n = Iy @ —Iy rather than Ly). If we label
these eigenvectors by their energy € (¢ = £w;) and additional
quantum numbers o, so that (¢, o) together form a complete
set, we can write

G = Sie, o) e (ST(e, 0),

&,0

(140)

The equal-time 2-point function is then given by

(gt o)= > {[Sie. )]SI 0"y e e
x F(e, 056", 0"}, (141)

where

F(e,0:¢,0") = (I(e,0)[(, 0")), (142)
and where

. P(e,0) if ¢>0

[, 0):= ) 143

(o) {fﬂ(—e,a) it £<0 (143

The GGE value of the same 2-point function is

(D) ar = Z [Si(e. )] Si(e. 0) (I (e, o) (e, 0)).

&£,0
(144)

Equations (141)—(144) are the obvious generalizations of
Egs. (67), (68), and (63).

In the limit of large system size, the spectrum {¢} will in
general consist of a continuous part due to spatially extended
quasiparticle states and a discrete part due to localized states.
For now, we assume that all quasiparticle states are extended.
We will discuss what happens when the spectrum includes a
discrete part coming from localized states in Sec. VI (see also
the comments in Sec. IV A).

Since the spectrum is by assumption purely continuous
in the limit of large system size, the sums over ¢ and &’ in
Eq. (141) become integrals in this limit (whether the other
quantum numbers o are discrete or continuous is less impor-
tant). The t — oo asymptotics of the (e, &') integral is then
determined by the analytic structure of the function F'. This
structure can in turn be deduced from general arguments of the
type used in Sec. II. Inverting the Bogoliubov transformation,
we have

F(e,0:¢,0') = Z Z {[

a,b=+ x,y

(S™Hie, )] (STHIE, o)

x (Y 9y}
The sums over x and y in Eq. (145) may be performed
with respect to the central coordinate (x 4+ y)/2 and relative
coordinate (x — y). The sum over the relative coordinate con-
verges absolutely (due to clustering of correlations), whereas
the central coordinate is summed over the whole system
(because the states are extended). It follows that F can be-
come singular only along curves in (e, 0; &', 0’) space, which
we may identify with the zero sets of appropriate functions
Cj(e,0;¢’, 0’). The most obvious such curve is the trivial one,

(145)

(¢/,0") = (e, o), which may be identified with the function
Co(e, 03¢, 0") ~ (¢ — ¢')(0 — ¢’); additional curves C; can
occur if the initial state has an appropriate order (in Sec. II,
for instance, we found that such curves were present if the
initial state had a density wave with nonzero wave vector q).
We conclude that F has the (highly schematic) general form

F(e,o:¢',0")=8(s —e)s(o — o) (I'(e, o) (g, 0))
+) 8(Ci(e, 036, 0") fi(e, o)
J

+ f(e,0;¢',0"), (146)

where the sum in the second line is over a finite number of
curves C; that, as a consequence of our assumption (135),
remain distinct from the trivial curve in the limit of infi-
nite system size. The various § functions represent all of
the possible singular dependences of F on its arguments;
(I'f(e, o) (e, o)), fi(e,0), and f(e,0;¢',0’') are smooth
functions in the relevant domains of integration.
Taking account of this structure, Eq. (141) becomes

(b @) = f [Si(e. 0)]"Si(e, 0) (T (e, o) (e, 0))

+ D BCHOIL + [BCO1L. (147)
J

The first term reproduces the GGE result, Eq. (144). The
remaining 8C; and 6C pieces come from the second and third

terms in Eq. (146) respectively.
Let us first analyze the 5C term

[BCO)y = f/
x f(e, 056, 0")}.

The behavior of the integral as t — oo can be extracted from
a straightforward stationary phase analysis (apart from the
factor e~“¢—¢" the integrand is a smooth function of the
integration variables). The phase function ¢(e, &) = (¢ — ¢’)
clearly lacks stationary points, so the dominant contribution to
the integral as r — oo comes from the corners of the (¢, &')-
integration region. Near each corner, the smooth function f
can be regarded as a function of o and ¢’ alone. The integrals
over o and o’ will then yield factors proportional to the (local)
density of states g(¢) and g(¢’) near the band edges. We are led
to conclude that, as t — oo,

{[S¢e.0)]" S 0"y e e

(148)

2

8C(t) ~ (#)‘ / deg(e)e ™ (149)

If, as is often the case, the density of states near the band edge
has the form

gle) ~ &, (150)

then [deg(e)e ™ ~ =% [dzz% %, and we obtain the
estimate
SC(r) ~ 1720+ (151)

This result assumes that f does not vanish at the corners of the
(g, &’)-integration region. Generically, this will be the case.
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In special fine-tuned circumstances, in which f does vanish
at the corners, the exponent of the power law may be larger
(more negative).

We can perform a similar stationary phase analysis of each
8C; term in Eq. (147). In this case, the phase function ¢ is
the restriction of (¢ — &) to the curve C;. If ¢ is nonstationary
along this curve, and if the curve terminates at the boundary
of the (e, &') integration region, then the same reasoning that
we applied to 6C in the previous paragraph yields the estimate

8C;(t) ~ 1=+, (152)

Again, this result may be modified if the initial state or final
Hamiltonian are fine-tuned. More complicated time depen-
dence will occur if the phase function ¢ is stationary some-
where along the curve C;; such a contribution, if present, will
likely dominate the # — oo relaxation behavior. However, this
must be analyzed on a case-by-case basis, and we will not
attempt to make any further statements about the general case.
If the Hamiltonian A is translation invariant, then one
typically has
@/2-1 (153)
at each band edge, where d is the dimension of space. In this
case, the above estimates become

gle)~e

8C(t) ~1t7¢, (154a)

8C;(t) ~ 17912, (154b)

The results obtained in the example of Sec. II—Egs. (81)
and (82)—are recovered if one sets d = 1.

It is interesting to compare Eq. (154), which gives the
asymptotic relaxation of the 2-point function in a translation-
invariant lattice system, to the asymptotic power law with
which such a system should Gaussify according to the re-
sults of Sec. IV. The latter power law is set by the lowest
nonvanishing (n > 2)-point connected correlation function.
Assuming that this is n = 4, Eq. (109) suggests that the system
Gaussifies like ~[V(#)]~!, where V(¢) is the volume on which
the 1-particle propagator is meaningfully supported. In a
translation-invariant lattice model, the propagator spreads at
the maximal group velocity, so we expect this volume to grow
like V(¢) ~ t¢. Hence, we conclude that the system Gaussifies
like ~¢~¢. If there is a density wave of one or more of the
conserved quantities in the initial state, then 6C;(¢) terms are
present in the 2-point function; these relax like ~t~4/2 by
Eq. (154b). Thus, the system first gaussifies like ~¢t~¢ and
then relaxes to the GGE like ~¢~9/2. If, on the other hand,
the initial state lacks such order, then only the §C(¢) term
is present in the 2-point function; this relaxes like ~¢~¢ by
Eq. (154a), so Gaussification and relaxation to the GGE both
occur with the power law ~¢ 4.

Notice that Gaussification and relaxation of the 2-point
function are controlled (in translation-invariant systems) by
fundamentally different aspects of the band structure: Gaus-
sification is controlled by the maximal group velocity—
typically a property of the middle of the band(s)—whereas
relaxation of the 2-point function is controlled by the density
of single-particle levels at the band edge(s).

VI. EFFECTS DUE TO LOCALIZED STATES

Assume now that the quasiparticle spectrum of A contains,
in the limit of large system size, both discrete localized
states and a continuum of extended states. We can write the
diagonalizing Bogoliubov transformation as

e _/fS“(s o)f(e.o)+ > Y REPE (159)
b=%

where, as before,

A P(e,0) if €20
I'(e,o):=1 .. . . (156)
y‘(—s,a) if ¢<0

The operator 7' (w, o) creates a quasiparticle in the contin-
uum level with energy w > 0 and additional quantum num-
bers o; the operator f/;’ creates a quasiparticle in the discrete
level j with energy w; > 0.

A. The propagator

The propagator splits naturally into two pieces:

G(t) = Gext(t) + Gloc(t)a (157)

where the first piece G (¢) involves only the extended states,
and the second piece G, (¢) involves only the localized states.
For fermions,

[Gext (D] = / / Sie.0)e ™ [Si(e. 0)]" (158)

and

[Groe (1155 (159)

ZZRM icwjt Rbc

=%+ j

For bosons, one must multiply the integrand in Eq. (158) by
—bsgn(¢e) and the summand in Eq. (159) by bc.

The dynamics of the propagator G(¢), as defined in
Sec. IV A, are thus in general the sum of a delocalizing part,
due to Gex(t), and a localizing part, due to Gyoc(¢). We have
already discussed general properties of Gex () in Secs. [V A
and IV C. Let us now briefly discuss general properties of
Gloc (t):

Each level j of the discrete spectrum is exponentially
localized near some position x;; in other words,

R ~ e Pl for  |x —x;] 2 ¢, (160)
where ¢; > 0 is the decay length. It follows from Eq. (159)
that

[Gloc(t)]zf ~ ef"‘*y\/é“x for

K=yl Z& (6]
where ¢, is roughly the largest decay length of the states
localized near x. Thus, [Gioc (t)])“ci’ is negligible whenever
|x — y| > ¢,. Given a position x, we may restrict the sum over
j in Eq. (159) to those levels that are localized within a few
decay lengths ¢; of x, because the remaining levels give neg-
ligible contributions. Finally, for fixed x and y, the propagator

[Groc(t )])“f, oscillates forever without decaying as t — 0.
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B. Gaussification

Having understood how the propagator is modified, let
us study how the localized states affect Gaussification and
the conclusions of Sec. IV. Consider the time-dependent
connected n-point function. Equation (104) becomes

(o). ) =" > {IGent)+Groclt) 1! . ..
{vi} {bi=%}
X [Gext (tn)+ Groc t)I (W00 )}
(162)

Write this as

n

(s ) o)) = 3o ) - ) e
k=0
(163)
where ((- - - )x—1oc contains all terms in Eq. (162) that have k

factors of G, and (n — k) factors of Gey,.

We have already studied the contribution {(- - - ))o_joc, in
which all the propagators are Gy, in detail in Sec. [V B. As
t — 00, (- - - Yo—10c decays to zero as described by Eq. (109).
Next, consider the contribution (- - - )| _joc, in Which a single
propagator is Gjoc.. According to the discussion above, this
contribution is significant (at any time ¢) only if one or
more of the x; are located within a few decay lengths of a

(Fer@) . A& @), o ZZ[GR)C@I)K;;‘.

Using Eq. (159) or its bosonic version, we have

ZZ[Gloc(t) w‘ _ZZRGC lcwt

b=+x y

Consequently,
((¢;1 t)... 1&;1: (t" n—loc —

Ji ¢i=

Each sum over j; in Eq. (169) may be restricted to those levels
that are localized near x;, in accordance with our previous
discussion. It is evident that the localized contribution is
negligible as t+ — oo if and only if (()?]‘l‘ )?}‘22. )?]‘”)) itself
is negligible. In bosonic systems prepared in generic initial
states, this condition will be violated as soon as there is a
single localized level. This is because the nth cumulant of
the occupation of this level, {($+$7)"), will be nonzero
in general. In a fermionic system, on the other hand, the
occupation of a single localized level is characterized entirely
by the expectation value ("9 ™), so these higher cumulants
all vanish.

Thus, consider a system of fermions in which the quasipar-
ticle spectrum of H contains, in addition to a continuum of
extended states, a set of discrete levels {j} that are localized
near positions {x;f} with decay lengths {¢;}. Assume that the
initial state py has a finite correlation length £ and that for each
pair (i, j) of localized levels, |x} — x7| > & + ¢ + ¢;. Then
any connected function involving the operators of two distinct

Ralcl

=22

localized state. The sum over the corresponding y; is restricted
by the propagator [Gloc(t,-)]f;,f;’if to a region of volume ~¢
around x;. Repeating the analysis of Sec. IV B, the sums
over the relative y coordinates converge absolutely due to
cluster decomposition, so the entire y sum yields a finite,
t-independent contribution as ¢ — oco. Meanwhile, typical
matrix elements of the propagators are of order Gex(r) ~
[V(#)]~"? and Goe(t) ~ 1/{;{_. We conclude that, as t — o0,

(- Nictoe ~ DOV,

This decay is faster, by a factor of [V(t)]~!/2, than that of
« o »O—loc~

By similar reasoning, we conclude that

« o »kfloc

Note that, fork > 1, (- - - )) (,k+1)—10c decays slower, by a factor
of [V(t)]7!/?, than does (- - - ) x_1oc. Thus, the leading  — oo
behavior of the connected (n > 2)-point function is

(164)

~ VO (e = 1), (165)

(0 @) .. )
~ <<1/;)?1] (t1)... 1/;)‘;:’ (t,,)>>n710C + 0([1)(”]71/2).

Only the fully localized contribution (- - - )),—joc Survives in
the limit # — oo. Let us analyze this term in more detail:

(166)

[Groe @I () -y (167)
(168)

c=% j
LR X entt(pan L penl). (169)

(

levels i # j, such as (pf f/}’ .-+ ), is negligible. Of course,
any connected function involving three or more operators of
the same level, such as (P} f/j’ ;- -+, vanishes identically. It
follows that all (- - - )) k>2)—1oc contributions to the connected
n-point function are negligible. Since the k = 0, 2 terms decay
in the same manner with time, and since the k = 1 term decays
faster than either of them, we reach the following somewhat
surprising conclusion:

Discrete localized levels in the quasiparticle spectrum of
a quadratic fermion Hamiltonian H have a negligible effect
on Gaussification if (i) the initial state has a finite correlation
length & and (ii) the spatial distance between any pair of
localized levels is large relative to £.

C. GGE density operator

Next, we study how the localized states affect the conclu-
sions of Sec. V. Before considering equilibration, we must
revisit the construction of the GGE density operator itself.
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In Sec. VA, we showed that, for any quadratic time-
independent Hamiltonian A which gives rise to delocalizing
dynamics, all local conserved charges I, are themselves
quadratic in the particle creation and annihilation operators.
Let us see how this argument changes with localized states.
Equation (118) remains valid, but each propagator factor now
has an extended piece and a localized piece:

B =3 X (B Ga®) + e
{xi} {ai==}
- [Gext(t) + Groe (D)1,

As we did with the connected n-point function in Sec. VI B,
write this as

(170)

n
by..by __ § : b,
Iyllmyn — [Ik loc([)]yll R

k=0

(171)

where Z;_1o.(t) contains all terms in Eq. (170) that have k
factors of Gioc(t) and (n — k) factors of Gex(?). Repeating
the arguments of Sec. VIB, we conclude that for n > 2, only
the Z,,_1o.(¢) contribution survives as ¢ — oo. Then, Eq. (171)
requires that 7, j,. actually be time independent and that
T =T, 10c- It is clear that the corresponding local conserved
quantities are those that can be built from the quasiparticle
operators f/ji of the localized levels:

n

o~ €180 ~Cn : —

1, A S with E ciwj, =0.
i=1

(172)

In addition, the participating levels {j;} must all be local-
ized in the same region of space (otherwise [, will not
be local). Conversely, all local conserved charges involving
products of n > 3 creation or annihilation operators must
be of this form. Thus, in a bosonic system, the existence
of even a single localized level leads to nonquadratic local
conserved charges [powers of the occupation of this level,
(T97)"]. In a fermionic system, however, one can only
construct nonquadratic local conserved charges if there are
two or more localized levels close enough to one another in
space (how close depends on how local we want the charges
to be).

We conclude that, in a quadratic bosonic system, the GGE
(defined in terms of local conserved quantities) is Gaussian if
and only if there are no localized levels at all, whereas in a
quadratic fermionic system, the GGE remains Gaussian to an
excellent approximation even when localized levels do exist,
as long as they are located sufficiently far apart in space. In
the latter case, the mode occupation numbers 7; = f/j+ y; of
these levels are local conserved charges and must be included
in pgge. The general analysis of Sec. VB does not require
modification.

D. Equilibration to the GGE

Finally, let us consider equilibration. As in Sec. VC,
we must make an additional assumption on the initial state,
Eq. (135), to exclude situations in which the initial profiles of
local conserved densities are inhomogeneous on length scales
comparable to the system size.

Following Sec. VIB, we may identify three contributions
to the equal-time 2-point function:

2

Z <I//}x_a(t)1/7}l’)(t )>k—loc'

k=0

(b @l @) = (173)
We have already studied the fully extended piece,
(Yo (PL(t))o—tc, in detail in Sec. VC. It generically
relaxes to its GGE value as t — oo in a manner described by
Eq. (151) or (152), and this relaxation is due to “interference”
effects. On the other hand, the 1-loc piece vanishes as t — oo
for simpler “phase space” reasons: The results of Sec. VI B,
in particular Eq. (164), show that

<1[f;a(t)l/;)é(t)>1floc ~ V12 as

This piece is fully off diagonal in the quasiparticle basis of A,
so its GGE value is also zero.

Therefore, we only need to study the fully localized (2-loc)
piece. It is given by [compare Eq. (169)]

a acy by —z(c wj, — Wi, )t
(1‘” (l)w (t)Z loc Z Z RX]I R‘Jz e

Jisj2 €1,02=%

t—oco. (174

< (75,7} (175)
where the sums over j; and j, are over all levels in the discrete
part of the spectrum. Recall (Sec. V B) that the mode operators
7;j can (and should) be chosen so that, in each degenerate sub-
space (i.e., when w;, = w),), one has (P, ' P7*) o 8¢,c,8},j,-
This ensures that the infinite time average of Eq (175) agrees

with its GGE value:
—a GGE ac c [s—CpC

(d’ I/I 2—loc ZZ R Rh yj J/l) (176)

j =%

In general, the instantaneous difference
GGE

[8Ca10c (I = (b OV D)), oo — (T V) e (17T

oscillates forever about zero without relaxing as ¢ — oo.
However, if the localized states are located far enough apart in
space that the initial correlations (f/ “ f/cz) between them are
negligible (this must hold for all nondegenerate pairs ji # j»),
then it follows that §Cy_joc(¢) is negligible at all times. We
conclude the following:

Dynamics generated by a quadratic fermion Hamiltonian
H whose quasiparticle spectrum includes discrete localized
levels will still lead to Gaussification and equilibration to the
GGE, as long as (i) the initial state has a finite correlation
length & and (ii) the spatial distance between any pair of
localized levels is large relative to &.

VII. TIME-PERIODIC HAMILTONIANS
AND THE “FLOQUET GGE”

Our arguments for Gaussification in Sec. IV were ex-
tremely general; they relied only on clustering of correlations
in the initial state and on spreading of the propagator G(¢).
Thus, they apply to any quadratic Hamiltonian A (¢), as long
as it leads to delocalizing dynamics. In this section, we
consider the particularly interesting time-periodic case:

H(t) = 3 "H(t)¥ + constant, (178)
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where
h(t) A(t)

LAR() R () (179)

H() = < ):H(tJrT),
and where, as before, the plus (minus) sign is for bosons
(fermions). H (t) describes a periodically driven, or “Floquet,”

closed quantum system.

A. Floquet theory basics

Let us briefly review some simple facts about this problem
[46]. In order to give a complete “stroboscopic’ description of
the system at times t = nT (n =0, 1,2, ...), one only needs
to know the time-evolution operator over a single period,

O(T) = Teiho @ (180)

(to describe the system at intermediate times, one also needs
to know U (¢) for all 0 < ¢t < T'). Since U (T) is unitary, it has
a spectral decomposition of the form

Oy =) e la)al, (181)

where {|o)} forms a basis for the (many-body) Hilbert space
of the system, and where the quasienergies ¢, are defined
modulo 27 /T. The associated Floquet Hamiltonian

Hp =) eala)(e] (182)

generates

U(T) = e ifeT (183)

by construction. Hy is quadratic because H(r) is quadratic
(quadratic forms in fermion or boson operators form a Lie
algebra, and the unitary group is compact). Thus, apart from
the subtlety that the quasienergies {¢,} take values on a circle
rather than on the real line, the dynamical problem at times
t = nT is formally identical to one with a time-independent

quadratic Hamiltonian
HrW + constant, (184)

where

(185)

B. Propagator and Gaussification

Recall that the propagator G(¢) is defined by the solution
of the Heisenberg equations of motion,

U (1) = G@)V(0). (186)
Since W) :=U0T)¥0)U(), and since U(T)=
S S S

Te iJo HWHdt" — o=ilrT — one  obtains two equivalent

expressions for the propagator over one period:
G(T) — Te—if; TM(t"dt' _ e—iMpT7 (187)

where
h(t At
M@) = ®) ®) (188)
—A*(t) —h*(@)

and

My = ( e Ar ) (189)
—Ap  —hg
As one might expect for a quadratic system, G(7) completely
determines Ay (modulo shifting the quasienergies by multi-
ples of 27 /T).
The propagator at any timet = nT + ¢/, where 0 <t' < T,
is given by

G(nT +1) = GHG(T)I". (190)

As t — o0, the relaxation behavior will be dominated by the
[G(T)]" factor, except possibly in some pathological cases.
Therefore, we expect any local connected 3- or higher-point
function of the driven system to relax (or fail to relax) with
time in exactly the same manner as that of an undriven system
with Hamiltonian A, up to a multiplicative periodic factor
f(@) = f(t + T) coming from the G(¢') part of the propagator.
The results of Secs. IV C, IV D, and IV E may thus be applied
with only minor modifications.

C. Relaxation to the Floquet-GGE

Having discussed gaussification in the Floquet context, let
us next consider the eventual fate of the effectively Gaussian
state. Following Sec. V B, we may construct a GGE density
operator pr out of the local conserved charges of the Flo-
quet Hamiltonian Hy; the argument of Sec. V A, applied at
stroboscopic times t = nT’, shows that these charges are all
quadratic, so that pr is indeed Gaussian. It is natural to suspect
that the system eventually relaxes to a state described by p.
Note that such a state is a limit cycle: For any operator O, one
has

Tr(O(t)pr) = Te(U(T)O + THU(T)pr)
= Tr(O(t + T)pr)

(the second equality follows from the definition of pg), but in
general

(191)

Tr(O(t)pr) # Tr(O ) pr).

This time-periodic limiting state has been called the periodic
Gibbs ensemble (PGE) or the Floquet GGE [20,21,47].

We can generalize the analysis of Sec. V C to study relax-
ation of the Gaussified state to the Floquet GGE. It is sufficient
to study this at stroboscopic times t = nT. As in Sec. VC,
we must make an additional assumption on the initial state,
Eq. (135), to exclude situations in which the initial profiles of
local conserved densities are inhomogeneous on length scales
comparable to the system size. Equations (138)—(147) are un-
changed, except that S must now be understood as the matrix
of the Bogoliubov transformation ¥ = § [" that diagonalizes
the Floquet Hamiltonian A, and ¢ as a quasienergy defined
modulo 27 /T.

First consider the limit of very fast driving, 7 — 0. In this
limit, we expect that we can ignore the periodicity of ¢ (since
the period 27 /T — 00) and that the quasiparticle states of
Hy are organized into one or more well-defined bands. If this
is so, the remainder of the analysis in Sec. V C applies, and
we conclude that the Gaussified state relaxes to pr with a

(192)
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power law; in the simplest cases, this power law is given by
Eqgs. (151) or (152).

Next consider the opposite limit of very slow driving, so
that T — oo and H (¢) is a slowly varying function of 7. On
time scales r < T, we expect, based on an adiabatic approx-
imation and our arguments in the time-independent case, to
observe power-law relaxation to a GGE of the instantaneous
Hamiltonian H(¢). On much longer time scales t > T, the
Floquet drive becomes important, and we except to eventu-
ally observe relaxation to the Floquet GGE, pr. Stationary
phase analysis suggests that this relaxation will be exponen-
tial in time, ~e /T, To see this, consider Eq. (148). The
quasienergies ¢ are defined on a circle of radius 27 /T — 0,
so the spectrum is likely to be relatively smooth, without
well-defined bands. Therefore,

27 /T 27 /T ) ,
8C(t) ~ f de / de'a(e, &) e e
0 0

1 2 27 / ) ,
=73 | dz f dz/a(%z?)e'(z“’”, (193)
0 0

where a(z/T, 7/ /T) is a smooth function of z and z’ on the
torus T. It follows that 8C(t) must vanish faster than any
power of (¢/T) as (t/T) — oo. Similar arguments apply to
3C;(t).

Thus, in the limit 7 — 0 of fast driving, we expect to
observe power-law relaxation to pr, the (time-periodic) GGE
of the Floquet Hamiltonian A . In the opposite limit 7 — oo
of slow driving, we expect to observe power-law relaxation to-
ward a GGE of the instantaneous Hamiltonian A (¢), followed
by much slower exponential relaxation ~e~/7 toward pr. It
is more difficult to make semiquantitive general statements
about the regime of intermediate driving, and we leave this as
an interesting question for future work.

VIII. A COMMENT ON SPIN MODELS MAPPABLE
TO QUADRATIC FERMION MODELS

Everything that we have said also applies to any spin
system that can be mapped to a quadratic model of fermions
(via a Jordan-Wigner transformation or otherwise), assuming
(i) that the observables of interest map to local operators
in terms of the fermions and (ii) that the initial state pg
obeys cluster decomposition with respect to the fermion op-
erators. It is by no means obvious that a given physical
initial state, which obeys cluster decomposition with respect
to spin operators, also does so with respect to the fermions.
It would be interesting to identify which states have this

property.

IX. CONCLUSIONS

We have presented a general framework for understand-
ing relaxation phenomena in systems described by quadratic
fermion or boson Hamiltonians that may or may not be time
dependent. We have shown that, as long as the Hamilto-
nian yields delocalizing dynamics, and for any initial state
that satisfies a condition on algebraic clustering of corre-
lations, all local operators of the system relax to values
consistent with a Gaussian state at late times—the system

“Gaussifies.” Furthermore, we have shown that Gaussification
can be understood as a simple consequence of the spreading
of operators in real space and that the exponents of the power
laws with which quantities Gaussify can be extracted from
the smooth envelope of the one-particle propagator of the
system (which does not depend on the initial state). In this
sense, Gaussification in quadratic systems appears to be quite
universal in character.

Using similar arguments, we have given a simple proof
that all local conserved quantities of a quadratic time-
independent Hamiltonian with delocalizing dynamics are
themselves quadratic, and hence that the GGE density op-
erator of such a system is Gaussian. We have described
how to construct the GGE out of mode occupation numbers
in a manner that properly accounts for degeneracies in the
mode spectrum. Under an additional assumption on the initial
state (needed to avoid having to deal with hydrodynamic
timescales comparable to the system size), we have shown
that the local 2-point function of the system relaxes to its
GGE value with a power law whose exponent can typically
be extracted from the local density of single-particle levels at
the band edge. Combined with our Gaussification results, this
proves relaxation to the GGE for a large class of quadratic
systems and a large family of initial states and also gives
quantitative information about how local observables relax.
We find that if the initial state has a density wave of some
conserved quantity, the system generically relaxes first to a
Gaussian state, and then, with a smaller inverse power of time,
to the GGE. If the initial state is not ordered in this sense,
“Gaussification” and relaxation to the GGE occur with the
same powers of time and cannot be distinguished as easily in
general.

We have also studied situations in which these conclusions
break down, such as the case of free massless bosons in
one dimension [37,43], or when the mode spectrum of the
Hamiltonian includes localized levels, and have explained
precisely why the breakdown occurs in these cases. We have
argued that, perhaps unexpectedly, well-separated localized
levels in a system of fermions do not hinder Gaussification or
relaxation to the GGE. Finally, we have applied our arguments
to the case of periodically driven systems and have shown that
the relaxation of such systems to the Floquet GGE can also be
understood semiquantitatively within our framework.

Note added in proof. Closely related work has recently
come to our attention [48]. Our work places more emphasis
on physical intuition and on estimating in a simple manner the
exponents of the power laws by which local observables relax
in quadratic models, while Ref. [48] places more emphasis
on rigorous results and error bounds. The methods used are
also different (though related in spirit): Where we employ the
stationary-phase approximation, Ref. [48] uses the machinery
of Kusmin-Landau bounds.
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APPENDIX A: CONNECTED CORRELATION FUNCTIONS

For completeness, in this section we review the standard
definition of a connected correlation function [24].

Let (X) := Tr(X ) denote the expectation of the operator
X in a given state p. The connected correlation function or
cumulant ((- - - )) of a set of operators X, X», . . ., X, is defined
inductively by the formula

KX X)) =Y B[ [ ReXey -0 (AD
P aeP
where the sum is over all partitions P of the set {1, 2, ..., n},

each element «; of the partition is ordered so that o;(1) <
a;(2) < ---, and the sign is + or — according to whether the
rearrangement

(1,2,...,n) = (a1 (1), 0;(2), ..., 2(1), 22(2),...) (A2)

involves altogether an even or odd number of exchanges of
fermionic operators, respectively. Unpacking the definition for
small values of n,

(A3a)
(A3b)

and so on.

Informally, the cumulant (XX ... %) equals the cor-
relation function (}21}22 .. .X,,), minus all possible ways of
factorizing this function into products of two or more lower
order cumulants (with additional minus signs as needed to
account for exchanges of fermionic operators).

APPENDIX B: BOUNDS ON g(¢) FOR BOSONS
WITH PAIRING

Any quadratic time-independent Hamiltonian H =
%\IITH\II for a system of bosons, in which H is positive
definite, can be diagonalized by a Bogolyubov transformation
[45]:

¥ =sT, (B1)
where
. (B

f‘:(?177)/)277"")71\7’7>1+7)>2+7-~~

The transformation S has the block form

u vr
S=(V U*), (B3)

satisfies STnS = n, where n = Iy ® —Iy, and diagonalizes the
Hamiltonian matrix: STHS = n<, where
Q= diag(w;, w2, ..., 0N, —01, —W2, ..., —wy). (B4)

Since H is positive-definite, all w; > 0 (by Sylvester’s theo-
rem of inertia). The condition S'nS = n may be rewritten as

ST = nS~'n. It follows that
nH = SQSs~!. (B5)

In terms of the quasiparticle operators, we have

N
ﬁ:EO—I—ijﬁj, (B6)
Jj=1

where 2; = ;7.

It is very important to note that since S is not in general
a unitary transformation, the boson mode energies w; are not
the eigenvalues of the Hermitian matrix H. We will denote
the eigenvalues of the matrix H as €;. We recover w; = €;
only when all pairing terms in the Hamiltonian vanish; in this
limit, S is indeed unitary.

The propagator G(¢) may be written in matrix form as

G(t) = e MM = S §71 = g QTy. (B7)

At each time ¢, it satisfies G(¢)n G'(¢) = n. From this fact, we
easily obtain the lower bound 1 < g{(7), as follows (no sum
onx,a):

1= |ny]

D O GO i IGT)1

b=+ y
<Y Y lesol
b=+ y
= g (). (B8)

More work is required to derive an upper bound on g%(z).
We have

g0 =" |c%n[

b=% y

= [G'(t)G®)]**  (nosum on x, a). (B9)

By definition of the operator norm || - ||,

gi0) < IGT OGO (B10)
For bounded operators A and B, one has [|AB|| < ||A|||B]| and
IAT] = |lA]l. Since ||n]] = |le”"¥ || = 1, it follows that
HOR (B11)
We can derive a bound on ||S|| from the condition STH.S =
nQ = diag(w;, wy, ..., wy, w1, @y, ..., wy). Since the Her-
mitian matrix H is positive definite, it has a unique positive-
definite square root, H'/% Let R := #H'/?S, so that RTR = n<Q.
The operator norm of R equals the square root of the largest
eigenvalue of R'R, so
B12)

2 .
IRII* = @max := max{w;, ws, ..., wy}.
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Since § = (#'/?)~IR, it follows that

ISI < ICHS IR (B13)

The operator norm of (#!/2)~! equals the square root of the
largest eigenvalue of ((H'/2)")T(H'/?)"' = H, s0

1
IHAH = —,

Ne (B14)

where €, = min{ey, €, .. ., €y} is the smallest eigenvalue of

H. Thus,
ISI < /2, (B15)
and we finally obtain the desired upper bound:
() < <wmf‘*)2. (B16)

Equations (B8) and (B16) together yield Eq. (115).
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