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The Landau theory of phase transitions has been productively applied to phase transitions that involve
rotational symmetry breaking, such as the transition from an isotropic fluid to a nematic liquid crystal. It even can
be applied to the orientational symmetry breaking of simple atomic or molecular clusters that are not true phase
transitions. In this paper, we address fundamental problems that arise with the Landau theory when it is applied
to rotational symmetry breaking transitions of more complex particle clusters that involve order parameters
characterized by larger values of the / index of the dominant spherical harmonic that describes the broken
symmetry state. The problems are twofold. First, one may encounter a thermodynamic instability of the expected
ground state with respect to states with lower symmetry. A second problem concerns the proliferation of quartic
invariants that may or may not be physical. We show that the combination of a geometrical method based on the
analysis of the space of invariants, developed by Kim to study symmetry breaking of the Higgs potential, with
modern visualization tools provides a resolution to these problems. The approach is applied to the outcome of
numerical simulations of particle ordering on a spherical surface and to the ordering of protein shells.
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I. INTRODUCTION

The freezing of fluids has fascinated generations of sci-
entists. When temperature is lowered, interacting atoms and
molecules can transform spontaneously from a shapeless,
entropy-dominated fluid into an ordered crystal that has a
well-defined, faceted shape. The ordering transition involves a
loss of symmetry: An extended fluid is symmetric with respect
to any translation or rotation but as a crystal, this same system
is symmetric only with respect to a discrete set of translations
and rotations. Spontaneous symmetry breaking of this type
is not restricted to the phase transitions of extended or bulk
systems. When a nanometer-sized cluster of atoms freezes, it
also can adopt an ordered state with reduced symmetry [1]. An
important difference between the freezing of bulk liquids and
that of particle clusters is that the freezing of a particle cluster
cannot be a true phase transition because it only involves
a small, finite system. Nevertheless, an extended system of
interacting atomic clusters—a possible model of a glass—still
can exhibit a genuine phase transition of this type [2].

Another important difference is that a cluster of atoms in
the liquid state has full rotational symmetry but no trans-
lational symmetry. The symmetry group of a cluster in the
liquid state typically is O(3), the group of all rotations and
reflections, or the group of all rotations SO(3) in the case
of chiral molecules. Neither the ordered nor the disordered
cluster has any form of translational symmetry. Rotational
symmetry breaking without translational symmetry breaking
is encountered as well in extended systems, such as the
transition from an isotropic fluid to a nematic liquid crystal
with broken orientational symmetry [3]. In an important pa-
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per, Steinhardt, Nelson, and Ronchetti [2] (SNR) proposed
that a version of the Landau theory for orientational phase
transitions of liquid crystals could be applied to the freezing
of particle clusters. The order parameter was the radially
averaged angle-dependent density p(2) of the cluster, with
2 being a solid angle measured from the center of a cluster of
atoms or molecules. This density is then expanded in series of
spherical harmonics:
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(1.1

Under the symmetry operations of O(3), each set of 2/ + 1
expansion coefficients ¢;, in this series transforms as an
irreducible representation of O(3). One of the principles of
the Landau theory of phase-transition states that continuous
or near-continuous symmetry-breaking transitions should be
associated with just one irreducible representation of the
symmetry group of the high-symmetry phase, so just one
particular value of [ should characterize spontaneous ori-
entational symmetry breaking. The set of 2/ + 1 expansion
coefficients ¢;,, associated with that / value is then the
primary order parameter of the transition. For example, the
onset of orientational order in nematic and cholesteric liquid
crystals are associated by / = 2, with various combinations of
the azimuthal quantum number m. Irreducible representations
with different / values may well be “entrained” by the primary
order parameter through nonlinear terms in the free energy
but these play only a limited role, so the associated ¢; ,, are
known as secondary order parameters. SNR proposed that
the ordering of small particle clusters is dominated by an
| = 6 state with icosahedral symmetry. This was based on
the construction of a variational free energy in the form of
a functional F([p(£2)]) expressed in terms of the ¢; ,,. Such
a variational free energy has to transform as a scalar under
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FIG. 1. Left: Icosahedral state of N =72 Lennard-Jones par-
ticles on a sphere (from Ref. [4]). Right: the / = 16 icosahedral
spherical harmonic with 72 maxima (from Ref. [5]).

the symmetry operations of O(3) of the disordered state.
This is achieved by constructing F([p(£2)]) from sums of
combinations of ¢; ,, that transform individually as invariants
under O(3) or SO(3).

The focus of the present article is on orientational ordering
transitions with / values larger than 6. Numerical simula-
tions of 72 particles on a spherical surface interacting via
a Lennard-Jones potential reported that there were various
competing forms of orientational ordering [4]. The example
shown in Fig. 1 (left), has icosahedral symmetry. Icosahedral
states can be constructed from certain linear combinations of
spherical harmonics known as icosahedral spherical harmon-
ics, though only for certain values of /. The / = 16 icosahedral
spherical harmonic has 72 maxima, as shown in Fig. 1, right,
so it could serve as the primary order parameter for the
icosahedral ordering of 72 particles on a spherical surface. A
second case is provided in the work of Lorman and Rochal [6],
who systematically compared the surface densities of icosa-
hedral viral capsids with the icosahedral spherical harmonics.
An example is shown in Fig. 2 where the capsid of the canine
parvovirus, which is composed of 60 identical proteins, is
compared with the [/ = 15 icosahedral spherical harmonic,
which also has 60 maxima. The parvovirus belongs to the
smallest class of icosahedral viruses. Larger viral capsids
correspond to icosahedral spherical harmonic values of [ that
are larger than 15 [6,8]. Since transitions from disordered to
ordered viral capsids have been observed experimentally [9],
one could ask whether such transitions can be described by
SNR-type Landau theories.

Fundamental problems are encountered if one attempts to
directly extend SNR to larger values of /. The first prob-
lem concerns thermodynamic stability. The simulations for

FIG. 2. Left: Capsid of the canine parvovirus, as reconstructed
by x-ray diffraction (from Ref. [7]). It is composed of 60 identical
proteins placed in an icosahedral pattern. Right: The / = 15 icosahe-
dral spherical harmonic with 60 maxima (from Ref. [5]).

72 particles on a spherical surface and the observations on
the parvovirus seem to indicate that icosahedral shells that
have a primary order parameter that transforms either as
an [ =16 or as an [ = 15 icosahedral spherical harmonic
should be thermodynamically stable for some appropriate
choice of thermodynamic system parameters. However, when
the =15 and [ = 16 cases were investigated, states with
icosahedral symmetry turned out to be thermodynamically un-
stable [5,10]. Separately, Matthews [11] found that rotational
symmetry breaking in the / = 16 sector produces states with
tetrahedral symmetry. Strangely, the thermodynamic stability
of the [ = 15 icosahedral state could be restored by mixing
in small amounts of / = 16 [5,10]. The fact that icosahedral
symmetry appears to be associated with a mixed I = 15 4+ 16
state is unsatisfactory from the viewpoint of Landau theory
because it seems to associate rotational symmetry breaking
with rwo irreducible representations of the symmetry group of
the uniform state. Note that the / = 16 contribution could not
be viewed in this case as a secondary order parameter since
secondary order parameters should not determine the stability
of the primary order parameter.

A second issue concerns the number of invariants that are
to be included in the Landau variational free energy. SNR
effectively included two invariants for / = 6 (one cubic and
one quartic) but Jaric [12,13] showed that there are actually
three independent quartic invariants for / = 6. Depending on
the coefficients of these three invariants, the / = 6 icosahedral
state may or may not be the ground state. We will see that
the number of independent quartic invariants increases in a
stepwise linear fashion with / and that these new invariants in
general are nonlocal. Do all these nonlocal invariants really
have to be included even if the underlying physical system
itself only involves short-range interactions? We will show
that these two issues are actually intimately connected.

To analyze this confusing state of affairs, we apply in
this article a geometrical method that was developed by
Kim [14] in the context of symmetry breaking of the Higgs
potential. This method starts from a vector space spanned by
a set of linearly independent invariants constructed from the
order parameter. By letting the order parameter range over all
possible values, a volume is generated in the invariant space.
This “Kim volume” is a purely mathematical construct that
is independent of the parameters of the physical system. For
the present case, the invariants are polynomial expressions of
the ¢;,, parameters in Eq. (1.1). A schematic example of a
Kim plot is shown in Fig. 3 for the case of three invariants
A1-3. Next, families of constant free-energy hypersurfaces are
constructed by allowing the physical parameters to vary. A
broken symmetry state is associated with a point where such
a constant free-energy surface touches the Kim volume.'

In Sec. 11, we show how these invariants can be constructed
systematically in terms of the ¢; ,, parameters. Next, we prac-
tice with the Kim method for the simpler cases of [ = 2,1 = 6,
and [ = 7. In Sec. III, we apply this method to orientational
ordering in the [ = 15 sector, the [ = 16 sector, and the

'To be precise, we will generalize the approach of Kim, which
applies in its standard form to a free energy, or effective Hamiltonian,
with only quadratic and quartic, but no cubic, contributions.
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FIG. 3. Three-dimensional space of invariants. The surface en-
closes the set of points generated when the order-parameter set
Q. m varies over its allowed values. The plane represents a surface
of constant free energy. Intersection of the plane with the surface
corresponds to a state with broken symmetry (from Ref. [14]).

combined [ = 15 4 16 sector. The fact that the icosahedral
state is unstable in the pure [ = 15 sector and largely unstable
in the pure [ = 16 sector is confirmed in full generality for
variational free energies with local invariants. We also confirm
that stable icosahedral states appear in the mixed [ = 15 4 16
sector. Finally, we show that the principles of Landau theory
can be “saved” if one includes the nonlocal invariants, at
least for the case of the / = 15 sector. Using diagrammatic
perturbation theory, we show that the nonlocal invariants are
generated from a purely local variational free energy when
one integrates out the [ # 15 sectors. At least formally, an
orientational symmetry breaking transition from an isotropic
to an [ = 15 icosahedral state can be constructed within the
I = 15 sector—including the thin sliver of intervening tetrahe-
dral states that was noted in the earlier numerical work—using
a Kim construction with nonlocal invariants. More generally,
a mixed [/ = 15 + 16 representation provides an economical
description of such transitions.

II. INVARIANTS AND THE KIM METHOD

In this section, we lay the mathematical groundwork. We
first demonstrate a systematic construction method to obtain
the independent invariants for given / based on the Wigner
3-j symbols. The method generalizes that of Ref. [12] for the
| = 6 case. Next, we construct Landau free energies, in the
form of sums of invariants, up to quartic order for the / = 2,
I = 6,and ] = 7 cases. The [ = 6 case will be the prototype of
a discontinuous orientational ordering transition that is, from
the viewpoint of the Kim method [14], nontrivial while the
[ =7 case will be the prototype of a nontrivial continuous
orientational ordering transition. Finally, we demonstrate how
the Kim geometrical method (“Kim construction”) works for
these prototypes.

A. Construction of invariants

A square-integrable function defined on the surface of a
sphere, such as the mass density p(6, ¢), can be expanded
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FIG. 4. The number of distinct quartic terms, n§4), plotted for /
ranging from O to 40. See Appendix B, Eq. (B3).

in a spherical harmonics series in the form p(0,¢) =
S c1.mY™(0, ¢). If the scalar quantity of interest is
to be real (as will be the case throughout this article), then
cm = (=1)"¢; _,,. When we write the expansion as

oo 1 oo
pO.9)=2 " pm®.¢)=) p@.¢), (2.1
=0

=0 m=—1

then p; _,, is the complex conjugate of p; ,, and p; is real.

When we turn to the Landau variational free energy for
the density, if the expansion in powers of ¢; , parameters is
limited to terms no higher than fourth order and confined to a
single value of /, then the most general form of the free energy
Fiis

4 n
P S

k=2 n=1

2.2)

Here, ngk) is the number of independent kth-order invariant

polynomials in the ¢; ,, parameters for the / value in question.
Its value is determined by the Molien polynomial [15]. Next,
ID s the nth invariant polynomial, a system-independent
mathematical construct. Finally, the expansion coefficients
Jfx.n depend on the thermodynamic parameters of the par-
ticular physical system in question. As discussed further in
the Supplemental Material [16], the expansion coefficients
/2 = fo1 of the k =2 quadratic invariant can be related
to two-point correlation functions of the system such as the
linear susceptibility, the static structure factor, and the pair
distribution function. For convenience, we will refer to #; as
the “reduced temperature” of the system.

We demonstrate in Appendix A that, for any value of
[, there is only one quadratic invariant, namely the integral
12D = [ p)(6, ¢)*sin dOd¢p. There also is at most one cu-
bic invariant /%" = [ p;(0, $)* sinf dfd¢ for even values
of / and none for odd [ values. By contrast, using heuristic
arguments we show in Appendix B that the number n§4)
of independent quartic invariants rises in a stepwise linear
manner with /, as shown in Fig. 4 (note the triplet grouping).
Two of the quartic invariants are straightforward. They are
obtained, respectively, from the integral of the fourth power
of p;(8, ¢) and the square of the quadratic invariant (A8).
We term the first invariant the local quartic invariant and the
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second the frivial quartic invariant, which is nonlocal. For
[ =0,1, and 2, those two quartic invariants are identical to
within an overall multiplicative constant while for / > 3 the
two invariants differ in form [see Fig. 4 and Appendix B,
Eq. (B3)].

One can systematically construct the fourth-order invari-
ants using the following quantity as a building block [12]:

Vi, my, b, my, I3, m3)

= / Y0, 9V (O, )Y (0. ¢)sin 6 dOd¢p

QL+ DCL+ DL+ D (L L L
- 477 0 0 O

X(h b 13).
my mp m3

The terms in brackets are Wigner 3 j symbols [17]. For exam-
ple, the cubic expression

(2.3)

l
Z V(lv mi, la msp, lv mS)Cl,lm Cl,mzcl,m38m1+mg+m3 (24)

my,my,m3=—I

is the invariant under rotation that is proportional to the local
cubic invariant f 01(0, ¢)3 sin @ dOd . Next, the fourth-order
local invariant, arising from the integral of the fourth power
of the density p;(6, ¢) over the surface of the sphere, can be
expressed in terms of the Wigner 3 j symbols as

21 !
YooY TV m Lmy, o —my — my)

J=0 my,my,mz,my=~1
x V(I,m3, 1, my, j, —m3 — ma)Cp i, Cl,my Cloimy Clomy
X 8m1+m2+m3+m4' (25)

Both (2.4) and (2.5) can be depicted graphically. Figure 5(a)
shows the graphical element for V(li,my, l,, my, I3, ms),
while Fig. 5(b) depicts the combination of V’s in (2.5). Not
all values of j contribute to the summation over the internal
line: For odd values of j, the expression evaluates to zero.

Figure 5(b) provides a clue as to how additional quartic
invariants could be generated: The individual terms in the
summation of the internal line over different j each are sepa-
rately rotational invariants. The reason is that a rotation of the
sphere in 3-space in general scrambles the 2/ + 1 coefficients
c;.m when the z axis is rotated. However, such a rotation
cannot mix ¢, coefficients with ¢,y coefficients when I’ #1,
since they belong to different irreducible representations.
Similarly, rotations will not scramble the different j terms in
the summation. The new terms can be graphically represented
as shown in Fig. 5(c). It is easy to check that the j = 0 term
corresponds to the trivial invariant.

It might seem that this method provides a scheme to con-
struct infinitely many quartic invariants for all even j, though
we know that these invariants cannot be all independent.
First, j and the two [’s must satisfy the triangle inequalities:
0 < j < 2l. For a given [, start from j =0 and recall that
the trivial quartic invariant is separate from the local quartic
invariant for / > 3. Next, go to the j = 2 case and check if
this generates an independent invariant, which is the case for

1, m
I,M3
@)
[, mj Lm  [,mp
(b)
[, my lymy
lamS l, my
,,,,,,, J.
©
[,my l,mZ

FIG. 5. Diagrams useful in the evaluation of third-order and
quartic vertices. (a) Graphical representation of the quantity
Vi, my, b, my, I3, m3), as defined in (2.3). (b) Graphical
representation of the product Zj VU, my,l, my, j, —my —my)
V(,ms, 1, my, j, —mz — my)(—1)"*" in (2.5). The double-dashed
line expresses the fact that the overall index j carried by that
line is summed over. (c) Graphical representation of a quartic
invariant generated from the third-order vertex in panel (a),
mediated by a single value of j. This diagram corresponds to the
expression VI, my,l,my, j,—my —mp)V(, ms, 1, my, j, —mz —
my)(— 1)+ the intermediate value of j having been fixed.

| > 6 (see Appendix B). This suggests a pattern and one can
indeed repeat this for any even j until j = 2/ after which
no more invariants are generated. For all values of / that we
checked, this method produces the full number of independent
invariants that is imposed by the Molien polynomial.

The nonlocal invariants also can be viewed as being gener-
ated from the expression

/ dod¢ / de'de'[p(6, $)° K0, 4,0'¢)p®, ¢ )1, (2.6)

where

J
Ki6.¢.6'¢) = Y"O. 9O ¢,

m=—j

2.7)

which, by inspection, is a rotational invariant for any j. The
new invariants are produced by replacing the squared scalar
densities with plz. The graphical representation of this term is
reminiscent of a Feynman diagram for the interaction between
two particles mediated by the exchange of a mode with
“propagator” KC; so we will call these “mediated invariants.”
In the Supplemental Material [16], we discuss how nonlocal
invariants can be generated by coupling the density profile p
to a harmonic scalar field such as the shape profile associated
with variation of the sphere radius. The mediated invariants
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appear after the shape variables are integrated over. The
coefficients of the mediated quartic invariants produced in this
manner are always negative.

To recapitulate: the Landau free energy with invariants up
to quartic order constructed from a single value of / has only
one quadratic invariant, obtained by integrating the square of
the relevant density, p;(0, ¢), over the surface of the sphere.
Next, it has at most one cubic invariant, obtained in the same
way from the cube of p;(8, ¢), or alternatively from Wigner
3j symbols via (2.4); when [ is odd, the cubic invariant
evaluates to zero. Quartic invariants will vary in number,
depending on the value of /, but there is always the local
invariant, obtained by integrating p;(6, ¢)* over the surface of
the sphere, and the trivial invariant, obtained by squaring the
quadratic invariant. From / = 0 to [ = 2, those two invariants
are identical to within a multiplicative constant. For [ = 6
and above, there are additional, mediated, quartic invariants,
which can be obtained via the approach illustrated in Fig. 5(c),
up to the required number shown in Fig. 4.

B. Landau variational energies for/ =2,/ =6,andl =7

Having in hand a systematic construction method for the
invariants, we are now in a position to construct Landau
energies for specific cases.

1. Landau energy forl =2

We start with [ = 2, which is realized by the familiar case
of nematic ordering in liquid crystals [3]. We will reformu-
late the standard treatment in a manner that brings out the
connection with the Kim method. Configuration space is five
dimensional for [ = 2. Imposing the condition that the density
is real leads to the relations

C2,—p =11+ sy, (2.8)
Cr—1 =1+ s, 2.9)
20 = V2r3, (2.10)
1 = —(ry —isy), (2.11)
Cro =r| —1S], (2.12)

where the r;’s and the s;’s are real numbers. This parametriza-
tion is readily generalized to arbitrary values of /. In terms of
these variables, the quadratic invariant has the form

(62) = [ pato. 97 sino ao dg

2
Y camer m(=1)"

m=-2
= 2(}’% + r% + r§ +s% —i—s%).

Next, we construct a linear, five-dimensional vector space
(“configuration space”) from the five variables r; and s, with
five-component vectors defined as

(2.13)

)
)
r3|. (2.14)
S1
52

The quadratic form on the right-hand side of (2.13), the square
of the modulus of the five-component vectors, corresponds
to the unique quadratic invariant under rotations in config-
uration space. As is well known, infinitesimal rotations in
three-dimensional space (“Euclidean space”) are generated by
three 3-by-3 antisymmetric matrices. There are three 5-by-5
matrices in configuration space that correspond to the three
generators in Euclidean space:

X axis:
0 0 0o 0 1
0 0 0 1 0
0 0 0 0 3|, (2.15)
0 1 0 0 0
-1 0 —=V/3 0 0
y axis:
0 -1 0 0 0
1 0 =3 0 0
0 3 0 o o] (2.16)
0 0 0o 0 -1
0 0 0 1 0
and z axis:
0O 0 0 2 0
0O 0 0 0 1
0O 0 0 0 0 (2.17)
-2 0 0 0 0
0 -1 0 0 0

Since these are antisymmetric, it follows that an infinites-
imal rotation in Euclidean space generates an infinitesimal
rotation in configuration space. Similarly, finite rotations in
Euclidean space generate finite rotations in configuration
space. Next, in terms of the real expansion coefficients, the
single cubic invariant is

(,023> = /,02(9,¢)3 sinf do d¢
6 /10 , 3 /10 , 3 /30 ,
+ g\/@”zslsz + z\/T—Or; - g\/ﬁrfig
TV 7V 7 7V 7
+ E\/Ergm + E\/T—Orlrg.
VA RF 1 7V 7

This expression is not invariant under general rotations in
configuration space though—by construction—it still is an in-
variant under rotations in Euclidean space. Finally, the unique

fourth-order term
o 153 +3+3+s8+s3)
<’02) - T

is invariant under rotations in both Euclidean and configura-
tion space.

Define spherical coordinates in configuration space with A
being the modulus and with the four angular variables v ’s,
with k =1,2,3,4, determining direction in configuration
space. In these coordinates, the [ = 2 Landau free energy has,

(2.18)

(2.19)
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up to fourth order, the general form
t u v
FaA ) = ZA% + 3ATQs({0) + A*,

The system parameters t,, u, and v incorporate information
about the physics of the particular system in question while
O3({¥}) = (p3)/A? is a combination of trigonometric func-
tions of the four angles ¥ that is universal in the sense that it
does not depend on the system parameters.

Fix the set of angles {1} and decrease t,, starting from a
large, positive value. For large and positive f,, the only solu-
tion of the equation w = 0is A = 0, which is the sym-
metric state with /(A = 0, {¢4}) = 0. The transition temper-
ature ¢.({}) for the first-order phase transition is obtained
by demanding that the pair of equations F,(A, {y})=0
and w = 0 has a nontrivial solution. Eliminating A
gives an expression for the transition temperature in terms of
the direction in configuration space:

(2.20)

M2 2
20:({n}) = — Qs ({1

The equation marks the rotational symmetry breaking transi-
tion, along a particular direction in configuration space. Now,
allow the set of angles {y} to vary. Symmetry breaking
takes place at the highest possible value of t.({1y}). The
determination of the prevailing symmetry for orientational
ordering in the [ = 2 sector is reduced to the purely mathe-
matical question of determining the maximum of the modulus
of the universal expression Q3({y}) in configuration space.
Numerical minimization of |Qs] is straightforward. Only r3
is nonzero at the maximum of |Q3|, which corresponds to
the expected [ = 2, m = 0 nematic state for the case of liquid
crystals.”

2.21)

2. Landau energy forl = 6

Next we turn to [ =6, the case explored by SNR. For [ =6,
configuration space expands to 124 1 =13 dimensions.
There is, as always, only one quadratic and one cubic invari-
ant, but now there are three quartic invariants: the trivial in-
variant, the local invariant, and the j = 2 mediated invariant—
or, equivalently, any three independent linear combinations of
those three invariants. It is instructive to start by first including
only the local quartic invariant Q4 ;. Following the same steps
as for / = 2, the variational energy is

Fo = 16A> + §A3Q3<{w,»}> + §A4Q4.1<{w,»}>, (2.22)

where the set {y;} refers to the 12 angular variables that
collectively define a direction in the 13-dimensional config-
uration space. Next, apply the method we used to determine
the transition temperature for / = 2, i.e., set the derivative with
respect to A to zero for a fixed set of angles {y/;}

5
0= e
2A

= A2t + uAQs({¥;}) + vA*Qu 1 ({¥iD)]  (2.23)

Historically, maximizing the cubic invariant was the criterium
proposed by Alexander and McTague [18] in their pioneering study
of melting viewed as an orientational phase transition.

and then demand that at the transition point the free energy
itself must be zero:

0=F
— A [r n gAQ3<{wi}> + §A2Q4,1<{wi}>]. (2.24)

Solving the the simultaneous equations (2.23) and (2.24), for
te and nonzero A, we find

122
o — Os({vi})u ’ (2.25)
9041 ({¥iHv
A 203({¥iHu . (2.26)
304.1({¥ibv

Now, as # is lowered, ordering first occurs for those values
of {1} at which f¢ on the right-hand side of (2.22) takes on
the largest value. This means that we must seek the maximum
value of the ratio Q3 ({1/;})?/Q4({;}) instead of the I = 2 cri-
terion of maximizing the modulus of Q3. The numerical effort
required to maximize Q3({1/;})*/Qs({¥;}) again is modest:
The maximum corresponds to the [ = 6 icosahedral spherical
harmonic, in agreement with SNR. The transition is again first
order.

Now include the j = 2 mediated quartic invariant and also
the trivial nonlocal quartic invariant. The full / = 6 Landau
free energy can be expressed as

F o= 1o A2 U 3 1 4
6=5A"+ §A 05 + ZA [aQa1 +bQuo +cl,  (2.27)
where the subscript 4,1 indicates the local quartic invariant
and the subscript 4,2 is the j = 2 mediated quartic invariant.
Next, a(= v), b, and c are three system-dependent expansion
coefficients. The coefficient ¢ accounts here for the trivial
invariant. Thermodynamic stability requires that only coeffi-
cients a, b, ¢ are permitted such that for any set of angular
variables the complete quartic term is positive. The transition
temperature is

2 2

o= = & (2.28)

9 [aQ4,1 + bQ4s + ]
(we suppressed here the dependence on the angular variables).
The optimal direction in the 13-dimensional configuration
space corresponds to the maximum of Q% /(aQ4,1+bQ4r+c).
Unlike the / = 2 case, numerical maximization is more com-
plicated because the quantity to be maximized (fs) now de-
pends on the physical parameters a, b, and c.

3. Landau energy forl =17

Unlike the [/ =2 and [ = 6 cases, / =7 has no (as yet
known) physical realization. However, it represents an impor-
tant contrast when it is compared to the [ = 6 case, in that
there is no cubic invariant because / is odd. This means that
an / = 7 orientational ordering transition will be continuous
in Landau mean-field theory. Just as for [ = 6, there are
three independent quartic invariants: The local invariant, the
trivial invariant, and the j=2 mediated invariant. For [ =7,
configuration space has 15 dimensions with 14 angular vari-
ables {y;} plus the modulus A. The Landau variational free
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energy has, up to fourth order, the form

Fr = %AZ + §A4[aQ4,1({wk}> +b0Qu2({Yn)) +cl. (229)
The four coefficients a,b,c, and t; are again system-
dependent parameters while the expressions Qa1 ({y«}) and
Q4. 2({¥}) are universal functions of the angular variables.

For any set of angular variables, the critical point for
the continuous symmetry breaking transition is now #; = 0,
which provides no information about the selection of the
angular variables. However, for 7 < 0, minimization of the
free energy with respect to A leads to

t7 + AlaQa 1 ({¥i}) + bQa({Yi}) + ] = 0. (2.30)
The corresponding angle-dependent free energy is
2
Fnin({¥ic})) = ! (2.31)

 4aQu (Vi) + bQar (W) + 1’

Minimization of this expression with respect to the angle
variables determines the broken symmetry state. This means
that for / = 7 the broken symmetry must be determined by
minimizing the positive quantity

A =aQ4 1 ({Yx}) + bQar({Yi}) +c,

which is again dependent on the system parameters.

(2.32)

C. Kim constructions for/ = 6and ! =7

The Kim construction [14] can be used as a graph-
ical method for performing the minimization of system-
dependent quantities such as A and Q% /A in a manner that
reveals system-independent information about competing bro-
ken symmetry states. Here, we apply the method to the cases
l=6and! =7.

1.1=7

We will start with / = 7, in which case we need to min-
imize A as defined in (2.32). Construct a two-dimensional
invariant vector space with linear combinations of the two
independent nontrivial quartic invariants Q4 ; and Q4 as
coordinate axes. While any independent pair of combinations
of Q41 and Q4 can be used as coordinate pairs, we found,
by trial and error, that X = Q4.1 + Qs and Y = Q4 with
AX,Y)=a(X —Y)+ bY + ¢ was a convenient choice for
revealing the structure of the Kim regions in a more readily
observable fashion. The set of points in the X-Y plane for
which A(X,Y)=a(X —Y)+ bY + c is constant is then a
straight line. Let 6 be the angle this line makes with the X
axis. It is convenient to absorb an overall factor v = /a2 + b?
in A and express the line as

AX,Y)=(X —Xp)cosO 4+ (Y —Yp)sinb. (2.33)

Note that a change of the values of the parameters X, and Y
amounts to an affine translation of the lines that leaves angles
unchanged.

Next, randomly sample the 14 angles {i} in the 15-
dimensional configuration space over the full range of

0.196 0.198 0.200 0.202 0.204

0.00
002}
S ~0.04}
-0.06}

0.186 0.198 0.200 0.202 0.204

Q41+042

FIG. 6. Collection of allowed states for / = 7 in the X-Y plane
where X = Q41 + Q4 and Y = Q4. Solid red curve in the upper
left-hand portion of the plot, sixfold axis; green dashed curve adja-
cent to the red curve, fivefold axis; purple dashed curve in the upper
right-hand portion, fourfold axis; blue curve skirting the right-hand
boundary, sevenfold axis. The long and short dashed curves denote
the boundary of the pink stippled twofold symmetry region; see
Appendix C. The yellow region corresponds to threefold symmetry.
Both regions are labeled with the corresponding symmetries. Finally,
the blue solid dot on the upper left-hand corner is a point of
tetrahedral symmetry.

mathematically allowed values.® This generates the colored
area in the X-Y space shown in Fig. 6, which is a first example
of a Kim plot. Note that this volume still is independent of
the physical system parameters. Additional symmetries can be
imposed that generate subsets of the Kim plot. For example,
the darker, pink-colored area has twofold symmetry, and the
lighter, yellow region corresponds to threefold symmetry. The
demarcation between the two regions is somewhat mislead-
ing; the twofold symmetry region actually extends into the
area covered by the threefold region (see Fig. 8). This is
because there are instances of configurations with twofold
symmetry that have precisely the invariants of a configuration
with threefold symmetry. Clearly, there is not a one-to-one
relationship between detailed order parameter structure and
invariant values.

As described in the caption, the curves in the Kim plot cor-
respond to the imposition of a four-, five-, six-, and sevenfold
symmetry axis. Those curves meet at a point in the interior
corresponding to C,, symmetry. Imposition of tetrahedral
symmetry leads to a single point in the plot (blue dot in the
upper left-hand corner). This means that tetrahedral symmetry
corresponds to unique values of Q4 and Q4,. Within our
numerical precision, the blue dot lies on a sharp corner of the
perimeter of the plot. Note that the / = 7 Kim plot gives the
impression of being the projection of a surface from a higher
dimensional space (as indeed it is).

The next step is the Kim construction. This involves, for
| =7, drawing lines of constant A(X, Y) in the Kim plot with
different lines corresponding to a different sets of physical
system parameters. These are the surfaces of constant free

3In practice, we sample the parameters r; and s;, divided by the

square root of the sum of their squares, e.g., r;/,/>_ ; rjz. + > st
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0.196 0.198 0.200 0.202 0.204

0.00

~0.02~-

Ql 2

-0.04}

-0.06

0.186 0.198 0.200 0.202 0.204

Q4,1+042

FIG. 7. Kim construction for / = 7. The dashed lines are lines of
constant A that graze the Kim plot. They are drawn for increasing
values of the system parameter 6, starting with the positively sloped
dashed line for which 8 = —0.01. The point where it grazes the
Kim plot has tetrahedral symmetry, indicated by the blue dot. The
other lines, listed in increasing value of intercept with the horizontal,
Q41 + Qu, axis are the red dashed line, 6 = 0.01, corresponding to
a sixfold axis; the green dashed line, & = 0.05, corresponding to a
fivefold axis; another red dashed line, # = 0.11, again corresponding
to a sixfold axis; and a blue dashed line, 8 = 0.2, corresponding to a
sevenfold axis. Finally, the blue long-short-dashed line is parallel to
the blue fivefold axis line and is associated with the same thermody-
namic parameters, but with a larger value of A. This line intrudes into
the interior of the Kim plot and passes through twofold symmetry
states and a sevenfold symmetric density with a higher free energy.

energy referred to in the introduction. Examples are shown in
Fig. 7 for the case that a is positive while b and ¢ are negative.
Recall that negative b and c can represent the physical case
of coupling between density and an additional scalar field.
The dashed lines in Fig. 7 are lines of constant A for different
values of 6. The values of Xy and ¥, were—with the exception
of the blue dash-dotted line—chosen so the constant A line is

0.1956 0.1957 0.1958 0.1959 0.1960

0.000

e

\
v
}
I
I
?

I

I

1
!

-0.001}

!
1

-0.002

1
H

2

O,

-0.003¢

-0.004

-0.005¢ \

0.1956 0.1957 0.1958 0.1959 0.1960
04,1+042

FIG. 8. Kim construction for the upper left-hand portion of the
Kim plot shown in Fig. 7. The straight lines correspond to those
shown in that figure. Note the darker pink stippling in the lighter
threefold region, indicating that states with different order parameter
structure can have the same invariant values.

T 6V 5 62 7
m 6 -
0 0.093 0.198

0.051 0.154

FIG. 9. Phase plot for [ = 7 for the case that the system param-
eter a is positive while b and ¢ are negative. For increasing 6 and #;
negative, the system passes from a tetrahedral state to a state with a
single sixfold symmetry axis, a fivefold axis, again a sixfold axis,
and finally a sevenfold axis. The loci of the transition points are
independent of #;.

tangent to the Kim plot. Changing the values of X and ¥, for
fixed & amounts to a parallel shift of the line. Suppose the
shift is such that the line lies entirely in the white region, for
example by sliding the blue dashed line to the left without
changing its slope. The value of A is reduced by this shift
and this would lower the free energy, Eq. (2.31). However,
symmetry breaking is not possible in this case since there is no
set of allowed invariants corresponding to the set of angles ;
that are allowed along the line. We thus can disregard constant
A lines that lie outside the Kim plot. Next, shift the blue
dashed line to the right without changing its slope (so toward
the blue dash-dotted line). The line enters the interior of the
Kim plot. While the states along the dash-dotted line in the
interior of the Kim plot are mathematically allowed broken
symmetry states, they are not the minimum free-energy states
because the value of A was increased in order to produce the
rightward shift. This means that the free energy Eq. (2.31)
increased. We thus can also disregard lines of constant A that
enter the plot. In short, broken symmetry states that minimize
the free energy are represented by straight lines in the Kim
plot that graze the border of the plot without entering it, which
is precisely the essence of the method developed by Kim [14].

We are now in a position to construct a phase diagram for
| =7 symmetry breaking. Restricting ourselves to constant
energy surfaces in the form of straight lines that touch the
Kim plot at one point, there is only one physical parameter
that can be varied, namely the angle 6 of the lines. Start
from the dashed black line that passes through the blue point
corresponding to tetrahedral symmetry (with 6 = —.01). It is
evident that tetrahedral symmetry has a large stability range,
since lines passing through the blue point can be drawn over
a range of angles. Continue to increase 6. When the angle
reaches 0.01, the constant A line (red dashed line) grazes the
Kim plot at a point where a line of sixfold symmetry states just
touches the border of the Kim plot (see Fig. 8). Continuing
on in this fashion, one finds that the system passes through
states with fivefold symmetry, again sixfold symmetry, and
then sevenfold symmetry. The stability range is small for
six- and fivefold symmetries, while the sevenfold symmetry
state has a larger stability interval. We observe that prominent
asperities of the Kim plot correspond to states with large
stability intervals.*

4 As an additional validation of the Kim method, we directly verified
the thermodynamic stability of all solutions identified through that
approach and listed above with the use of the Hessian matrix [5,10].
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FIG. 10. Kim construction for the shifted Kim plot with newly
defined quartic invariants. The symmetries are sevenfold (blue
dashed line grazing the left boundary of the region), threefold
(green dashed line grazing the lower left-hand corner), and multiple
(horizontal red dashed line).

A phase diagram for / = 7 can be obtained by the following
steps: (i) construct the Kim plot; (ii) draw a family of lines that
graze the Kim plot; and (iii) plot the symmetry of the point on
the boundary of the Kim plot as a function of the angle of
the straight lines. The final step is to determine the relation
between the angle 6 and the thermodynamic parameters that
enter the Landau variational free energy. If we assume that a
is positive and that b and ¢ are negative, then this last step
excludes lines that graze the Kim plot along the solid blue
border of the Kim plot and along the horizontal border that
runs along the top of the plot at Q4> = 0. A phase plot is
shown in Fig. 9. While the reduced transition temperature for
states with different symmetry is the same, that does not mean
that there can be no transitions between states of different
symmetry when the physical temperature is varied because the
system parameter 6 could depend on the physical temperature.

Next, assume that a is negative while b and ¢ are positive,
with a small enough so the overall sign of the quartic term
remains positive. While this is (probably) an unphysical range,
this case provides useful insights into the Kim construction.
Figure 10 shows an example of the Kim plot and construction
for that case. The net effect is an overall rigid-body translation
and rotation of the Kim plot. The Kim construction now is
focused on the vertex of the Kim volume that previously was
inaccessible in Fig. 7. As noted in the caption to Fig. 10, there
are now three regimes.’ The ordering has a sevenfold axis in
the regime associated with the dashed blue line along the left-
hand side of the volume and a threefold axis in the regime
indicated by the dashed green line at its lower left-hand corner.
The fourth regime, indicated by the horizontal red line, allows
for a variety of symmetries as a result of the degeneracy of
state with respect to the local invariant Q4 ;. This is because
of the structure of the mediated invariant Q4 », which is now
the sole quartic invariant in the free energy. In this case, the
ordered state allows for a continuous, degenerate set of {1}
angles. The ordering possibilities include a twofold symmetry
axis, a threefold axis, a fivefold axis, a sixfold axis, sevenfold
symmetry, and tetrahedral ordering. Additionally, the ordering

5 Actually, there is a fourth regime; see Fig. 12.

FIG. 11. Example of the outcome of an “ordering” transition for
the Kim plot shown in Fig. 10 in which the only quartic invariant
is proportional to O, and there is a continuous degeneracy. The
degeneracy is signaled by the extended contact between to the red
dashed line and boundary of the Kim plot. Other possible symmetries
in this case are two-, three-, and fivefold.

may have no discernible symmetry at all; an example is shown
in Fig. 11. As shown in the Supplemental Material [16], the
degeneracy arises from the structure of the quadratic invariant
Qa.2. One might expect a physical realization of such a system
to have the character of an orientational glass. A phase plot
for negative a as a function of 6 is shown in Fig. 12. Figure 13
shows realizations of the density associated with some of the
other / = 7 symmetric structures.

The numerical effort involved in the Kim construction
appears to be minimal as compared to a brute-force mini-
mization of the Landau functional in a 15-dimensional space.
This is indeed the case if one accurately knows the Kim plot.
However, the boundary of the Kim plot of Fig. 7 was obtained
by random sampling and along part of the dash-dotted line of
Fig. 7 the boundary is quite sparse. This is because the Kim
plot is in this case actually the projection of a five-dimensional
volume onto a two-dimensional plane. Consequently, random
sampling can be expected to generate a far higher fraction
of points in the interior of the volume than near its surface.
This problem will only become worse for larger values of /.
Because the precise location of the boundary of the Kim plot is
crucial for predicting the possible symmetries of free-energy
minima, we developed a convenient method to precisely trace
out the boundary of the Kim plot for any symmetry of interest,
which is described in Appendix C.

7 2 3 Multiple

60—

%0.117 /2

FIG. 12. Schematic phase diagram for / = 7 for the case that the
system parameter a is negative while b and c¢ are positive. For increas-
ing 6 and negative #7, the system passes from a state with a sevenfold
axis (blue) to a state with a threefold axis (green). As indicated in
the figure, there is also a very narrow window between the three-
and sevenfold states in which the minimum free energy possesses
twofold symmetry. If & = 7 /2, then a continuous degeneracy arises,
which allows for a multiplicity of minimum free-energy states.
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FIG. 13. Symmetric states encountered for the Kim plot /=7
(a) tetrahedral, (b) fivefold, (c) threefold, (d) sevenfold, and (e)
sixfold.

2.1=6

Our next example is the Kim construction for / = 6. First,
consider the case that only the local quartic invariant is kept.
To find the transition temperature 7., we then only need
to maximize the ratio Q3({1/;})?/Qs({¥;}). It is instructive
to do this by adapting the Kim method. Construct a two-
dimensional invariant space with Q3({¥;})? and Q4({v/;} as the
coordinate axes and construct a Kim plot by random sampling
of the two invariants over the allowed set of orientations {v;}.
As shown in Fig. 14, the resulting Kim plot has three sharp
corners.

The Kim construction that finds 7. involves drawing
straight lines starting at the origin in the Q4-Q3 plane
with various slopes, corresponding to fixed values of fg =
O3({¥i)?/Qs({1;}) for that orientation in the 13-dimensional
configuration space. The highest transition temperature corre-
sponds to the line with the highest slope that just grazes the
Kim plot at its tip, which has icosahedral symmetry, so the
Kim construction reproduces the results of SRN. For lower
values of 75, we need to draw lines of constant free energy Fiin
in the Kim plot. Such contours are constructed in Appendix D,
with an example shown in Fig. 38.

Next, include the trivial and j = 2 mediated invariants.
Using the notation of the previous section, the full [ =6
Landau free energy can be written as

te P u s UV oy
Fo = EA + §A 0s + ZA {[(Q4.1 +0.950Q42) — Xo]cos &

+(Q42 — Y) sin 0}
and the transition temperature that needs to be maximized is

te = (u*/9u)

(2.34)

03
{[(Qs,1 +0.95042) — Xolcos O + (Q4,2 — Yp) sin 6}
(2.35)

X

R

2
0.04} N
,r' fa
0.03 s
0.02f n
001 2~
/,, l'l
. . . ,yl--\‘\ )
005 010 0.5 020 025 O

FIG. 14. Kim plot for / = 6 with only the local invariant. The
curves in the Kim volume correspond to symmetries as follows: solid
black curve, a single fourfold symmetry axis; thick, dashed orange
curve, single fivefold axis; dashed black curve, a single sixfold axis;
and green curve along the left-hand border of the Kim volume,
tetrahedral symmetry. The apex of the plot has icosahedral symmetry,
as indicated by the blue point. The red point on the right-hand
boundary corresponds to Dy, symmetry, and the black point on the
lower left-hand corner corresponds to octahedral symmetry. The
slope of the dashed red curve indicates the highest possible ratio
of Os({¥i))?/Q4({¥;}) and hence the highest value for fs at the
transition. The black line, which misses the Kim volume, represents
a higher value of the ratio that is not physically realized.

(where we did not explicitly display the dependence on the
angle variables ;).

The Kim plot is now a three-dimensional volume with a
tentlike, concave surface spanned between four sharp corners.
Redefine the coordinate axes as X = Q4.1 +0.9504,,Y =042,
and Z = Q% (the small numerical shift in the definition of the
X coordinate is for visual convenience.) Figures 15 and 16
show different perspectives of the three-dimensional Kim plot
in the space spanned by these three axes. The thick orange
curve is a ridge with fivefold symmetry; the green curve
on the right-hand side of the plot corresponds to tetrahedral
symmetry; the blue dot, on the upper boundary of the plot,

(_)4 1+0.95 Q)_;_:

0.183

0.195

FIG. 15. The Kim plot for / = 6 including all quartic invariants.
The labeling I, O, and D identify points corresponding to icosahe-
dral, octahedral, and D, symmetry. For a description of the curves,
see the accompanying text.
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FIG. 16. Second perspective of the / = 6 Kim plot.

corresponds to icosahedral symmetry; the black dot at the
lower left-hand corner of the plot corresponds to octahedral
symmetry; and the embedded purple dot at the lower end of
the orange curve corresponds to D, (full rotational symmetry
and mirror reflection about an axis). The solid black curve
corresponds to a fourfold symmetry axis and the dashed black
curve to sixfold symmetry. A second perspective of the Kim
plot is shown in Fig. 15. The invariant Q4 is zero in the
facing surface. The green tetrahedral symmetry curve has two
branches that meet each other and the fivefold symmetry curve
at the icosahedral symmetry point. The upper branch ends at
the lower left-hand corner of the plot, also a sharp point, at
the black dot corresponding to the octahedral symmetry point
noted earlier.

Following the same steps as before, we first use the Kim
method to locate the transition temperature #.. This requires
maximizing

03

T {[(Qa1 +0.9504,) — Xolc0s 6 + (Q42 — Yo)sin 6}
(2.36)

Is

Surfaces of constant g are planes in the three-dimensional
invariant space. The surface with largest 7 value that just
grazes the “Kim volume” determines the symmetry of the first
broken symmetry state when 7 is reduced. For temperatures
below 7., we need to construct surface of constant free energy.
As can be expected from the case of only local invariants,
these surfaces are not flat planes. Figure 17 shows an example
of a constant free-energy surface passing through the point
of icosahedral symmetry. The minimum free-energy state
always has icosahedral symmetry for the physical case that
the coefficient a of the local quartic invariant is positive while
the coefficients b and c of the nonlocal invariants are negative.
We show in the Supplemental Material [16] that if the local
quartic invariant has a negative coefficient and the nonlocal
quartic invariants have positive coefficients, then octahedral,
sixfold, and D, symmetries can be realized, together with

041+0.9504 5
10.191

sl w

10.04
O3
0.02

-0.04
Os2

FIG. 17. The intersection of a constant free-energy surface with
the icosahedral symmetry point in the / = 6 Kim plot.

icosahedral symmetry, in agreement with the findings of Jari¢
[12]. A phase plot is shown in Fig. 18.

III. ORIENTATIONAL ORDERING AND THE KIM
CONSTRUCTION FOR ! =15+ 16

With the experience gained for / = 6 and / = 7, we now
apply the Kim construction to the [ = 15 and / = 16 sectors
that are the focus of our physical interest. We will restrict our-
selves to a variational free energy with only local invariants;
even with this simplification, there still are six local cubic and
quartic invariants in the combined / = 15 + 16 sector. While
we know of no simple method that would allow us to carry
out complete Kim constructions in a six-dimensional space, it
is possible—as we will demonstrate—to combine Kim plots
for restricted versions of the variational free energy with
numerical minimization to arrive at a reasonably complete
analysis. We start by examining the / = 15 and I = 16 sectors
separately.

A. Thel = 15 sector

As for [ =7, the [ = 15 ordering transition is continuous
because of the absence of a cubic invariant. If only the
single local quartic invariant is included, then the state with
minimum free energy corresponds to the minimum of the
ratio of quartic invariant Q4 and the square of the quadratic

0] 6 Do I
te—

-12.5 -9.44 -4.28 fo

FIG. 18. Schematic phase diagram for [ = 6 for the case that
the system parameter a is negative while b and c¢ are positive. The
octahedral portion continues to arbitrarily large and negative #5. The
value of 1y is 0.0017.
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TABLE I. Ordered list of minimum values of the invariant com-
bination, R as defined in (3.1), by imposed symmetry. Note that
the magnitude for Cs is the same as the magnitude for no imposed
symmetry.

Symmetry Magnitude of the invariant R
All 0.208797
Cs 0.208797
G 0.208809
G 0.208857
G 0.208904
Cy 0.209495
T 0.210448
Cs 0.21052
I 0.210534
Cu 0.21121
Ci, 0.211582
Cyo 0.212131
Ci3 0.213575
Cy 0.214088
Cs 0.217175
Ci4 0.21796
(9] 0.220681
Cis 0.227049
Coo 0.261008
invariant Q,:
4
R = <p2‘5>2 = 0. 3.1)
{ofs5)

Numerical values of R are displayed in Table I. In the table, T’
refers to tetrahedral symmetry, O to octahedral symmetry, and
I to icosahedral symmetry. The fact that odd-/ spherical har-
monics are odd under reflection precludes D, symmetry. The
top entry, labeled “All,” records the result of an unconstrained
search for the minimum quartic invariant. The entry labeled
“Cs” gives the value of R for a state with a fivefold symmetry
axis. The two values are identical. Comparison with the results
of numerical minimization using the method of Refs. [5,10]
confirms that the global minimum in the / = 15 sector has Cs
symmetry.

The Hessian matrix—constructed by taking the second
derivative of the quartic magnitude with respect to the 2/ +
1 = 31 degrees of freedom of the density [5,10]—allows us to
assess the stability of the various symmetry states. This matrix
has three zero eigenvalues corresponding to the generators of
global rotations in three dimensions. If all other eigenvalues
are positive, then the symmetry state is locally stable with
respect to infinitesimal distortions of the density. If any of
the other eigenvalues is negative, then the quartic term can
be reduced by introducing an additional density that distorts
the symmetry. In this way, we find that the Cs state is stable.
The C; state also is stable and corresponds to a metastable
free-energy minimum. None of the other symmetries were
found to be stable. The table highlights an important point.
The difference between the values of R for the Cs; and C;
states appears only in the fifth decimal: The two states are
practically degenerate. The other symmetry states listed in the
table are all unstable and have comparable values of R. The

O3

0.0201

0.015f

0.010f

0.005

Q4

0.35 0.40

FIG. 19. The Kim plot for / = 16 with only local invariants.
The symmetries corresponding to the prominent colored regions are
sevenfold (green region on the far right, also protruding on the upper
left-hand side), tetrahedral (orange region on the left), and eightfold
(blue region just to the right of the tetrahedral region). The various
dark purple curves correspond to symmetries ranging from nine- to
16-fold. Those curves meet at a point in the interior of the Kim
region corresponding to D, symmetry. The orange curve in the
lower left-hand portion of the Kim region corresponds to octahedral
symmetry. The blue dot on the leftmost boundary is the point of
icosahedral symmetry.

free-energy landscape of the I = 15 sector is apparently quite
flat with only a few shallow minima.

B. Thel = 16 sector

For [ = 16, we follow the same steps as for [ = 6 with
local invariants. There is a single cubic invariant, Q;—so the
ordering transition must be first order—and a single quartic
invariant, Q4. The state that appears at the point where the
symmetry of the uniform state is broken corresponds to a max-
imum the ratio Q% / Q4. Figure 19 shows the corresponding
Kim volume.

Just as for [/ = 6, the Kim plot has a roughly triangular
outline with a protruding tip, but here there is a crucial dif-
ference. For [ = 6, a unique state with icosahedral symmetry
was located at the tip, with the result that only states with
icosahedral symmetry emerged from the Kim construction.
For [ = 16, this icosahedral state is missing from the tip.
By contrast, the tip has tetrahedral symmetry everywhere for
1 =16.5 An enlarged version of the tip region is shown in
Fig. 20. The tetrahedral point on the border of the Kim plot
that maximizes Q_% /Qa is indicated by a red dot.

While icosahedral symmetry has been demoted from the
prominent position it had for / = 6, it has not completely
disappeared. There is a point with icosahedral symmetry on
the boundary line of the Kim plot located at the tip of a small
asperity in the lower left-hand side of the plot (see Fig. 21).

We can now carry out the Kim construction in the case of
! = 16. The result is shown in Fig. 22.

That the initial ordering in the case / = 16 should be tetrahedral
was noted by Matthews [11].
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FIG. 20. The Kim plot in the vicinity of the tip at the top of the
plot. The open red dot corresponds to the point on the border of the
Kim plot that maximizes Q2/Q,, as indicated by the line passing
through it. The stippled region has tetrahedral symmetry.

If the coefficient ;5 of the quadratic invariant is reduced
starting in the isotropic state, then the first nonuniform state
that appears has tetrahedral symmetry. It corresponds to the
red dot in Fig. 20. The value of the cubic invariant at the
transition point (see Fig. 20) is significant, so it is a robust
first-order transition. As the temperature is lowered, the tetra-
hedral state transits to a state with threefold symmetry, then
to a state with sevenfold symmetry, then again to a state
with threefold symmetry, and then finally to a state with
icosahedral symmetry. The phase plot is shown in Fig. 23.

It is useful to complement the Kim construction for [ = 16
with direct free-energy minimization to obtain explicit density
profiles. Figure 24 shows examples that exhibit some of the
symmetries obtained by numerical minimization of the local
free energy for appropriate values of the coefficients of the
quadratic, cubic, and quartic invariants. We set here u=v =1,
where u is the cubic coefficient and v is the quartic coefficient;
see, for example, Eq. (3.8). In the earlier studies based on
numerical free-energy minimization [5,10], we missed the
| = 16 icosahedral state in the phase plot, which will play a
key role in the discussion immediately below. The utility of
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FIG. 21. The Kim plot in the vicinity of the icosahedral asperity.
The orange parabolic curve corresponds to octahedral symmetry,
which does not quite extend to the icosahedral point.
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FIG. 22. Kim plot and construction for / = 16 with local invari-
ants. Curves outlining the boundary of the Kim plot are colored
according to symmetry: fivefold (dashed light yellow curve), three-
fold (solid red curve), and twofold (dashed black curve). The dashed
constant free-energy curves of the Kim construction that graze the
surface at a certain point on the boundary of the Kim plot are colored
in correspondence to the symmetry of the point: In decreasing order
of slope value, the labeled constant free-energy curves grazing the
surface of the Kim volume at various symmetry points are (a) icosa-
hedral symmetry (nearly vertical dashed blue curve); (b) three-
fold symmetry (dashed red curve); (c) sevenfold symmetry (dashed
green curve); (d) threefold symmetry again (dashed red curve); and
(e) tetrahedral symmetry (dashed light blue curve).

the Kim plot for the numerical minimization is evident: The
symmetries that will be realized by the Kim construction are
obvious by inspection.

C. Thel = 15 + 16 sector for fixed mixing ratio

Now we turn to the Kim construction in the enlarged
| = 15 + 16 space. As noted, the number of local invariants is
significant. There are separate quadratic and quartic invariants
for [ = 15 and for [ = 16. Next there is the cubic invariant
for I = 16 as well as the mixed cubic invariant (plﬁplzs), and
finally the mixed quartic invariant (p7spi). To obtain insight,
we used two different strategies. The first, discussed here, is
to fix the relative contribution of [ = 15 and [/ = 16. Define

pis = cosnAqis(v'”), (3.2)
pi6 = sinn A qie(v'”). 3.3)
I 3@ 7 30Td
18 -2
’ t16 —45 ’ -2.5

FIG. 23. Sequence of states produced by the Kim construction
for [ =16 as a function of the coefficient #,c of the quadratic
invariant. T, tetrahedral; 32, two states with a three-fold axis; 7,
sevenfold axis; I, icosahedral; and d, disordered. The phase diagram
was calculated for coefficients u = v = 1; see Eq. (3.8).
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FIG. 24. The various symmetries that are possible for a purely
local / = 16 free energy as obtained from a numerical minimization
of a variational free energy with one quadratic invariant, one cubic
invariant, and one quartic invariant. The symmetries are (a) icosahe-
dral, (b) tetrahedral, viewed along a twofold axis, (c) sevenfold, and
(d) threefold. The last two symmetries are those of an antiprism.

where 0 < n < /2 is a “mixing angle” and where and wi(ls)
and I/Ii(m) refer to the set of 2/ internal angular variables that
determine the precise forms of the two densities. The two
quadratic invariants are

(pi's) = A%(cos ), (3.4)

(o16) = A%(sinn)?, (3.5)
where for any function f(6, ¢),

) = [ 16,0102, (3.6)

Since (tann)* = p%/ ,0125, the mixing angle is an invariant in
its own right. We will include it in the form of the relative
participation (sin7)?> = fig of the [ = 16 density to the total
density. If one fixes fi¢, then one is effectively down to three
invariants, a situation that can be managed by the methods
described earlier. Figure 25 shows the Kim region for the case
that fie¢ is fixed at 0.05. This Kim plot now has two vertical
protrusions: the left protrusion has tetrahedral symmetry and
the right protrusion has 13-fold symmetry. Surprisingly, the
icosahedral point has “slid upward” to a location close to the
tip of the protrusion. Now, the tetrahedral state has to compete
with the icosahedral state. Figure 26 shows the portion of the
plot in Fig. 25 that contains the promoted icosahedral point
(shown solid and in blue) and also the point corresponding
to the largest transition temperature in the Kim construction
(the open green point). In an ensemble in which relative
contributions from / = 15 and / = 16 are set at 0.95 and 0.05
respectively, the initial transition is to tetrahedral symmetry.
As the quadratic coefficients are reduced, icosahedral sym-
metry takes over. The salient point is that the Kim plot of
a dominant / = 15 state with a small admixture of [ = 16
is qualitatively different from that of the pure / = 15 Kim
plot. Icosahedral symmetry appears to be here intrinsically

025 030 035 040

FIG. 25. The [ =15 and 16 Kim plot when fj¢ = 0.05. The
blue dot on the upper left boundary of the plot is the point of
icosahedral symmetry. The red portion on the left of the Kim volume
on whose boundary the dot sits corresponds to tetrahedral symmetry.
The purple protrusion to its right is a region of 13-fold symmetry.
The prominent green region in the lower left-hand portion of the plot
corresponds to 10-fold symmetry.

associated with a mixed / = 15 + 16 state while it is largely
unstable for pure [ = 15 and [ = 16 order parameter states.

It again is useful to combine the Kim construction with
the outcome of direct numerical minimization producing a
representative phase diagram. We allowed 1 and fi¢ to vary
freely, while for the variational free energy we used

t t u v
F = E(,0125) + E(Plzf,) + 5((/015 + p16)’) + Z((pIS + p16)h)

2 2
t t
= S(ols) + Floie) + 5 (1o} + o100
+ 5 (o) + 403 + (ol)- (3.7)

In arriving at the last line, we used the symmetry properties
of p15(8, ¢) and p16(0, ¢) under reflection. Because of the
orthogonality of the / = 15 and / = 16 densities, the square
of the total density, (p?), is (,0125) + (,0126). Next, because of
the second cubic term, a nonzero / = 15 density necessarily
entrains an / = 16 density but the the reverse is not true. This
means that pure / = 16 states are possible but pure [ = 15

%

0.0075f

0.0055

0.209 0.211

FIG. 26. Detailed portion of Fig. 25 containing the icosahedral
point (blue dot on the upper left-hand corner) and the point corre-
sponding to the highest transition temperature (open green dot at
the top and to the right of the icosahedral point), along with the
tetrahedral region (red stippled portion).
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FIG. 27. Phase diagram obtained by numerically minimizing the
free energy (3.8) for u = v = 10. The green dashed curve sepa-
rates the region in which icosahedral order is a global free-energy
minimum (below the curve) from the region in which it is a local,
but not global, free-energy minimum. The curve corresponds to a
line of first-order phase transitions. The thin vertical dashed line
at A = —10 indicates the parameter range plotted in Fig. 28. The
brown dashed lines indicate stability limits of icosahedral symmetry,
corresponding to spinodal lines. Finally, the blue dashed line between
the green curve and the line of transitions from uniform to ordered
phases separates the two regions of nonicosahedral order: tetrahedral
(region 1) and nontetrahedral (region 2).

states are not. Note that this is not the most general local vari-
ational energy: The cubic and quartic contributions were ex-
pressed in terms of the total density (o154 p16) but the [ =15
and [ = 16 quadratic invariants have separate prefactors #;s
and #,¢ for the corresponding density.

The result of numerical free-energy minimization for
u=v =10 is shown in Fig. 27.7 The ¢ and A axes are
defined by the relations #js =¢ 4+ A and tj¢ =t — A. The
phase diagram has four principal regions. The top region is
the uniform state. It is bordered by a wedge of solid black
lines that separates it from the phases with orientational order.
In the region below the wedge to the right, the order is pure
| = 16 with tetrahedral symmetry. In the third region, labeled
“icosahedral,” a mixed state with icosahedral symmetry is
at least locally stable but it is only the global free-energy
minimum below the green dashed curve. Between the green
dashed curve and the two nearly vertical solid black lines,
other symmetries have lower free energy. The two dashed
brown lines play the role of spinodals for the icosahedral state.
The red line along the top of the icosahedral region marks
either continuous or weakly first-order transitions from the
isotropic state to a tetrahedral state that quickly transforms
to an icosahedral state as the temperature is lowered further.
Even when the parameter A = (¢j5 —t16)/2 is as low as
—50, the tiny amount of residual / = 16 density suffices to
destabilize the Cs minimum free-energy state of pure / = 15.
This is consistent with our earlier observations concerning the
fragility of the free-energy minimum of the pure [ = 15 sector.
Finally, the fourth region to the left of the icosahedral region
has complex symmetries that are neither icosahedral nor does

"This figure is an elaborated version of a phase diagram for the
same system in Ref. [5].

Jfis

0.2t

0.1f

-100 -60 -20
FIG. 28. The fractional participation of / = 16 in the total den-
sity, labeled by fis, is plotted as a function of ¢ for fixed A = —10,
along the vertical dashed line in Fig. 27 (and its extension to negative
values of 7). For the very rightmost values of 7, the density is
tetrahedral. The arrow identifies the point at which the minimum
free-energy symmetry changes from tetrahedral to icosahedral. The
curve hits the horizontal axis at the onset of ordering.

it have the Cs symmetry of pure [ = 15, again a consequence
of the near degeneracy of the [ = 15 sector.

The numerical results can be compared with the Kim
construction for fixed mixing ratio. The Kim construction pre-
dicted that the icosahedral state should be stable over a large
range of parameters but that the symmetry-breaking transition
of the uniform state should produce a tetrahedral state with a
narrow stability interval. The utility of the Kim construction
is obvious: It would be easy to miss the tetrahedral sliver
in a numerical minimization while the tetrahedral state is
obvious by inspection of the Kim plot. In summary, numerical
minimization of the variational free energy in the enlarged
| = 15 + 16 space of invariants confirms that the icosahedral
state is globally stable over a significant parmeter range. The
region of icosahedral stability is separated from the uniform
region by a narrow interval of tetrahedral dominance.

Finally, how good is the assumption that fj¢ is constant?
Figure 28 shows a plot of dependence of fi¢ on ¢ for fixed
A = —10. For large and negative ¢, fjs varies only modestly
so the assumption of fixed fjs is reasonable. However, the
assumption of fixed fj¢ definitely fails near the onset of
orientational ordering with fi¢ going linearly to zero at the

FIG. 29. Diagrammatic representation of the nonlocal quartic
term generated in the [ = 15 free energy by integrating out the / = 16
density. The dashed line represents the [ = 16 propagator with a
weight 1/t1¢ and the two red dots represent the three-point vertex
with a weight u.
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FIG. 30. The Kim plot for / = 15 with the / = 16 contribution
integrated out to lowest nontrivial order. The term Q; is the local
quartic term for / = 15 and the term Qy , is the new nonlocal quartic
term. Only states with tetrahedral symmetry are included, along with
the state with icosahedral symmetry represented by the green dot.
The black curve denotes the edge of the region with tetrahedral
symmetry, which is a self-intersecting two-dimensional surface. The
dashed blue line depicts a constant free-energy surface that grazes the
boundary of the tetrahedral symmetry region and also the boundary
of the full Kim plot. It passes close to the green icosahedral symmetry
point, but it does not impinge on it, as shown in Fig. 31.

transition point. This can be understood from the form of
the coupling term u(p16p125) between the [ = 15 and [ = 16
states. Combined with the term that is quadratic in pie, it
follows that, just below the ordering temperature, the average

(p16) is proportional to %(pls)z. Since there is no cubic

invariant in the [ = 15 sector, it follows that (,0125) goes to
zero linearly at the transition point so the participation ratio
(p16)2/({p15)* + (p16)?) also goes linearly to zero. Close to
the ordering transition, we need a different approach that will
be discussed in the next section.

From the viewpoint of Landau theory, these results are
disconcerting. While it is reasonable that [ = 15 ordering
will entrain a certain amount of [ = 16 density as a sec-
ondary order parameter—because of the mixed cubic invariant
(,016,0125)—it is anomalous that the mixing between primary
and secondary order parameters (/ =15, respectively, [ =16)
destabilizes the primary [/ = 15 order parameter (with Cs
fivefold symmetry) and that it stabilizes an icosahedral state
that is either unstable or only accessible well below the
ordering temperature in the single / subspaces. It would seem
that canonical Landau theory, based on a dominant order
parameter that transforms according to a single irreducible
representation of the high-temperature symmetry group, does
not produce the actual minimum free-energy state. In the next
section, we will see why this conclusion has to be modified.

-0.00485
-0.0049 _
Os2
-0.00495
. {-0.005
0.0528 0.0527 0.0526
Os.1

FIG. 31. The portion of the Kim plot shown in Fig. 30 containing
the icosahedral point. The icosahedral point is located in the interior
of the Kim plot and lies at the tip of a small conical protuberance
in a third dimension. As shown in Fig. 30, the constant free-energy
surface indicated by the dashed blue line grazes the surface of the
tetrahedral symmetry region.

D. Diagrammatic perturbation theory and the Kim construction

In this final subsection, we use the Kim construction to in-
vestigate the competition between icosahedral and tetrahedral
symmetry close to the ordering transition where fi¢ is very
small. This second method is based on perturbation theory.
It starts from the assumption that the contribution from / =16
contribution is sufficiently small that the / = 16 density can
be described by a quadratic Hamiltonian. Expanding the vari-
ational free energy to second order in p;($2) gives

AHg =~ / dﬂ(%ﬁpm(mz + upm(mpls(sz)z) (3.8)

with 716 positive. The next step is to integrate out p;¢(£2) to ar-
rive at a renormalized variational free energy for p;5(S2). The
mathematical steps of integrating out the [ = 16 component
are very similar to the steps that are taken if one integrates out
shape fluctuations (see the Supplemental Material [16]). Just
as in that case, the integration generates a negative, nonlocal

FIG. 32. Diagrammatic representation of a sixth-order nonlocal
contribution to the / = 15 variational energy generated by integrating
out the / = 16 contributions perturbatively to second order in 1/t6.
The red dots on the two sides represent the three-point vertex with
weight u and the green dot at the center a four-point vertex with
weight v.
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quartic contribution to the / = 15 variational free energy:

2 16
e 3 [ 4 [agos@rri@n@yos@)
16
(3.9)

Using the notation introduced in Sec. II, this term can be
represented by the graph shown in Fig. 29. Two three-point
vertices are connected by an / = 16 “propagator.” By connect-
ing two of the external lines in the graph, a fluctuation cor-
rection to the quadratic term of the / = 15 variational energy
could be generated but, in the spirit of confining ourselves
to a mean-field model, we only will include tree diagram
contributions in this section. So, even though we started from
a local variational free energy, the step of integrating out the
I = 16 component generates nonlocal invariants.®

Next, construct a two-dimensional Kim plot with the nor-
malized local invariant and the new nonlocal quartic invariant
as axes (see Figs. 30 and 31). Only states with tetrahedral
symmetry are shown plus a single point with icosahedral
symmetry. The tetrahedral area is folded on itself.” As the
31 expansion coefficients of the / = 15 spherical harmonics
are varied over the range of allowed values, the same pair
of values for the invariants Q41 and Q4 can be associated
with different sets of expansion coefficients, which leads to
fold lines. The external edges of the tetrahedral surface are
indicated by a black curve. The position of the icosahedral
point close to the outer edge suggests that a Kim construction
could be performed that would reproduce the transition from
a tetrahedral to an icosahedral state, but that is not the case.
Figure 31, an enlarged version of the plot near the icosahedral
point, shows why: The icosahedral point is definitely located
in the interior of the Kim plot, which means that in actuality
the icosahedral state should not show up.

Because the icosahedral point is very close to the boundary,
it makes sense to include higher order terms in perturbation
theory. We restart from a Hamiltonian for the / = 16 degrees
of freedom that now includes both “three-point” and “four-
point” interaction terms between / = 16 and [ = 15:

I3
AHjg >~ /dfl(;;om(ﬂf + up16(R)p15(R)*

+4vp15<9>2p16(sz>2>. (3.10)

Integrating out the [ = 16 density using perturbation theory
generates a sixth-order, positive, nonlocal invariant contri-
bution to the / = 15 variational free energy with prefactor
u?v/2t. It is represented by the diagram shown in Fig. 32.
We will denote this new invariant by Q. We now can
construct a three-dimensional Kim plot with the two earlier

8For a more extended discussion of the use of perturbation theory
to generate terms in the free energy, see the supporting information
for Lavrentovich et al. [19].

® A MATHEMATICA.cdf document allowing for rotation of this sur-
face can be accessed in Ref. [20].
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FIG. 33. The Kim plot in the three-dimensional space spanned
by the two quartic terms and the sixth-order term, along with
constant free-energy surfaces that grazes the Kim region at the point
corresponding to icosahedral symmetry (steepest blue and less steep
black surfaces) and a constant free-energy surface that grazes the plot
along the tetrahedral surface (least steep red surface).

quartic invariants plus the new sixth-order invariant as coordi-
nate axes. The icosahedral point now does lie on the boundary
of the Kim plot and, as shown, it is accessible as a free-energy
minimum.'® In Fig. 33, the coefficients of the two quartic
terms were arbitrarily set equal to each other, so the results
shown in that figure must be viewed as qualitative. For suffi-
ciently large negative coefficients #;5, the constant free-energy
surface, which is nearly perpendicular to the Qg plane, grazes
the boundary of the Kim plot along the edge of the tetrahedral
symmetry surface. For sufficiently large negative coefficient
t15 the constant free-energy surface grazes the subspace of
allowed invariants through the point of icosahedral symmetry.
However, as that coefficient grows in absolute value, the
constant free-energy surface once again grazes the Kim plot
along a point of tetrahedral symmetry. Figure 34 illustrates
the sequence of states when the free energy is of the form

115

Fs 3.11)

0> + ;(Q4,1 + 042) + %Q6

withv =w = 1.

This phase plot can be compared with that of Fig. 27 for the
case that the mixing ratio between the [ = 16 to [ = 15 states
is held fixed. In both cases, the initial symmetry-breaking
transition of the uniform state leads to a state with tetrahedral
symmetry. A stable icosahedral state appears as the reduced
temperature is lowered further. In both cases, an / = 16 com-
ponent is essential for the stability of the icosahedral state.
The key difference is that now the phase plot formally is
obtained inside the [ = 15 sector with the / = 16 components
absorbed by the introduction of nonlocal invariants mediated
by an / = 16 excitation.

10For the construction of a constant energy surface for a free energy
with quadratic, quartic, and sixth-order terms, see the Supplemental
Material [16].
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FIG. 34. Sequence of states produced by the Kim construction
for [ =15 as a function of the coefficient 75 of the quadratic
invariant including nonlocal invariants that are mediated by [ = 16.
T, tetrahedral; I, icosahedral. The phase plot was calculated for
coefficients v = w =1 in the free energy (3.11). The tetrahedral
symmetry regime continues to |f;5| well in excess of 100.

IV. CONCLUSIONS

In the introduction, we posed the question whether an
order-parameter theory can be constructed for the direct tran-
sition from an isotropic state to an icosahedral state if the
primary order parameter is an / = 15 or an / = 16 icosahedral
spherical harmonic. We have addressed this question using the
Kim construction method that allows one to obtain the general
structure of a phase diagrams without having to take recourse
to numerical minimization of a variational free energy for
certain specific values of the physical system parameters. We
found that the answer to the question is no if the variational
free energy is constructed from the local invariants of the
[ =15 or of the [ = 16 sectors. In the [ = 15 sector, the
icosahedral state with local invariants was found to be com-
pletely unstable. In the / = 16 sector, a stable icosahedral state
did appear, but only well below the orientational ordering
transition. On the other hand, in the enlarged [ = 154 16
space stable icosahedral states are present over a large range
of system parameters—not directly abutting the isotropic
state, but quite close to it—at least for fixed mixing ratio,
confirming earlier numerical results [5,10]. A slice of states
with tetrahedral symmetry interposes between the isotropic
and icosahedral states. In the Kim construction method, the
competition between the icosahedral and tetrahedral states is
very clear: The Kim plot of mixed / = 15+ 16 states has
an asperity with icosahedral symmetry that competes with a
rounded peak with tetrahedral symmetry, itself a characteristic
of the / = 16 Kim plot.

These results appear to be in glaring contradiction with the
basic tenet of Landau theory that continuous phase transitions
can be described by an order parameter that transforms ac-
cording to a single irreducible representation of the symmetry
group of the high-temperature isotropic phase. This contra-
diction disappeared when nonlocal invariants were included
in the variational free energy: There is a stable icosahedral
state in the [ = 15 sector. By combining the Kim method with
a diagrammatic perturbation expansion, we showed that the
required nonlocal invariants of the [ = 15 sector appear when
a purely local free-energy functional is confined to the [ = 15
sector by integrating out the adjacent / = 16 components.
Because the local variational free energy in the [ = 15 sector
is quasidegenerate, the minimum free-energy state is very sen-
sitive to the presence of even weak nonlocal / = 15 invariants.
The nonlocal invariants necessary for the stabilization of the
icosahedral state are mediated by [ = 16.

More generally, if one starts from a variational free-energy
expression with only local invariants of the density, and if
the coefficient #;+ of the quadratic invariant of one of the

irreducible representations is significantly lower than that of
the other irreducible representations then, at the point where
#;+ is close to zero, the other irreducible representations can be
integrated out diagrammatically, keeping such terms only to
quadratic order. This procedure generates nonlocal invariants
up to the maximum number permitted by the Molien polyno-
mial.

The great advantage of the Kim geometrical method over
brute-force numerical minimization is that it replaces a hit-
and-miss choice of specific parameters by global geometrical
analysis. The Kim construction method has already been
known for decades but it is the availability of modern vi-
sualization methods that makes it such a useful tool for the
study of ordering transitions in the present case. The Kim
method does become cumbersome—and less revealing—if
one is forced to carry out the geometrical constructions in an
invariant space with more than three dimensions. Because of
the proliferation of invariants for larger [, this would seem
to be a serious objection because, as we have just shown,
there are instances in which the nonlocal invariants really must
be included. However, if the original free-energy functional
is local—with at most two invariants—and if the coefficient
t;» of the quadratic invariant of the dominant irreducible
representation is significantly lower than that of the other [,
then only a limited number of nonlocal invariants, say with
I =1*+1, may need to be included. A Kim geometrical
analysis may remain practical for / larger than 15 and/or 16
but this will need to be verified in future work. It is interesting
to note in this context that icosahedral spherical harmonics
come in the form of neighboring odd-even pairs of the form
of [:l + 1, which suggests that this strategy may work for
icosahedral ordering for general [ as it did for the / = 15 and
16 pair.

We have found that, in the case of icosahedral ordering
for [ = 15, the basic tenets of Landau theory can be “saved”
at the cost of introducing the nonlocal invariants permitted
by the Molien polynomial and generated perturbatively by
the entrained contributions of / = 16 modes. In actuality, the
description of the broken symmetry states directly in terms of
multiple irreducible representations is the more economical.
The difficulties with “single-/” canonical Landau theory are
expected to proliferate for shell structures that require even
larger [ values. An icosahedral state in the form of, say, a
large icosahedral “buckyball” is composed of 20 rounded
equilateral triangular facets where particles have sixfold co-
ordination. The same is true for large viral capsids that are
constructed by the Caspar-Klug method [21]. These structures
are only very poorly represented by any single icosahedral
spherical harmonic. It would appear that spherical harmonics
are not the best basis set for such cases but it is not clear what
would be a better choice.

Other interesting questions await resolution. In the intro-
duction, we discussed that an (I = 16)-like icosahedral state is
generated by numerical simulations of 72-point particles that
were interacting via the LJ pair interaction [4]. The stability
range of the icosahedral state is quite small when system pa-
rameters such as temperature and interaction range are varied.
A variety of other symmetries appear as well (see Fig. 35).
The icosahedral state competes with states that have different
symmetries: Dsj,, D3, tetrahedral, and D,. The method that we
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FIG. 35. The five Lennard-Jones packings for N = 72 with the
lowest potential energy. (a) Ds, packing with energy per particle
3.0564 in units of the Lennard-Jones (LJ) binding energy, (b) Ds
packing with 3.0559, (c¢) icosahedral packing with 3.0548, (d) tetra-
hedral packing with 3.04636, and (e) baseball symmetry (D,) with

3.04630. The color indicates the coordination numbers five (blue) or
six (red); from Ref. [4].

explored has to account for these other states. We found that
in the pure [ = 16 sector, states with five-, three-, two-, and
eightfold symmetry compete with icosahedral symmetry. This
is very encouraging but the mirror planes that characterize the
Ds, D3, and D, symmetry groups are missing for reasons that
are not clear. Higher order invariants may have to be included
to explain this.

Chirality is believed to play an important role [6] for the
case of viral capsids. The high-temperature symmetry group is
SO(3) in this case. Chiral invariants have to be included as part
of the expansion. The lowest order chiral invariant is fourth
order in the density [5], and it would be interesting to see how
this invariant will affect the [ = 15 4 16 phase diagrams.

We conclude by noting that symmetry arguments play an
important role for the design of synthetic molecular shells as
exemplified by the work in the Yeates group [22]. It would be
interesting to apply the Kim construction method to analyze
the symmetry-based strategies developed for shell design.
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APPENDIX A: THE QUADRATIC INVARIANT

Given the form of p;(6, ¢) in (2.1), the most general form
of a quadratic invariant must be

1
E Bmcl,mcl,fm
m=0

in order to be unaffected with respect to rotations about
the z axis. The next question is what restriction rotational

(AL)

invariance places on the coefficients B,,. We can arrive at that
restriction by noting that the generators of rotations about the
X or y axis are combinations of angular momentum raising and
lowering operators. The raising operator a' has the following
action on the coefficients c;

a‘crm o I+ 1) — m(m + 1)cimr. (A2)
Consider the two consecutive terms in (A2):
BinCimCr,—m + Bt 1C1m+1€1,—m—1- (A3)

If we act on these two terms with the operator 1 + 8a', then
two of the O(8) terms generated are proportional to

SVIU+ 1) —m(m + DeppicmBy + Bugt). (Ad)
In order for this to vanish, we must have
By = —Buy1. (A5)

The equality above holds for all m > 0. In the case m = 0, the
same procedure yields

B, = —2B,. (A6)

Thus, the quadratic invariant must have the form

1 1
K(2 Z(—I)ZCLmC[,fm + Ci0> = K Z (—1)mC1,mCl,fm~

m=1 m=—I
(A7)

From the orthonormality of the spherical harmonics and their
symmetry properties, this expression is equivalent to

K/ @0, ) sinh dode.

It is possible to carry out the same analysis by requir-
ing that the invariant is unchanged under the action of the
lowering operator, a. However, given that this is just the
Hermitian conjugate of the raising operator, the analysis is
fundamentally identical to the one above, leading to exactly
the same conclusion.

(A8)

APPENDIX B: HIGHER ORDER INVARIANTS

The way in which one determines the number of invariants
of a particular order is to compare the number of terms that
can contribute to an invariant with the number of restrictions
on those terms arising from application of the raising oper-
ator. At a given order n and angular quantum number /, the
invariant is the sum of terms going as

(BI)

,,,,, muClmy Climy -+ CLny Oy vt

The number of such terms is the number of distinct ways of
finding n integers between —/ and [/ that sum to zero. This
can be expressed in terms of the number distinct of ways
representing the integer n(/ 4+ 1) as a sum of n positive and
nonzero integers less than or equal to 2/ 4- 1. The restrictions
are a set of requirements on terms of the form

B, (B2)

.....

m, CLm Clmy « - - CLim, Oy 4y —1

The number of such terms is the number of distinct ways of
finding n integers between —/ and [ that sum to one. This can
be expressed in terms of the number of a way of expressing
the integer n(l + 1) + 1 as a sum of n positive and nonzero
integers less than or equal to 2/ + 1. The total number of
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FIG. 36. The portion of the Kim plot in Fig. 6 that corresponds
to twofold symmetry, colored black rather than orange, as in Fig. 6.
This region is bounded from above by Qu, = 0. The points in the
region become sparse in the vicinity of the other boundaries.
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distinct nth-order invariants is just the difference between the
two numbers above.

Figure 4 shows that difference in the instance of fourth-
order invariants, for values of / ranging from 0 to 40. In the
case of third-order invariants, the difference is always zero or
one: zero for odd values of / and one for even values of /. This
is because the only third-order invariant is the integral of the
density cubed, and given the symmetry properties of spherical
harmonics, such an integral is guaranteed to vanish for odd /.
Based on Fig. 4, which also follows from the Molien series
[15], it is reasonable to conjecture that that n}4) is given by

l
' = M +1, (B3)

where the first term on the right-hand side of (B3) is the largest
integer less than or equal to //3.

APPENDIX C: TRACING OUT BOUNDARIES
IN THE KIM PLOT

Figure 36 shows the portion of the Kim plot in Fig. 6
corresponding to twofold symmetry. Although the upper
boundary of this region at Qs =0 is well defined, the
other boundaries are somewhat diffuse, especially toward
the bottom of the plot, as the points generated by random
sampling of the parameters defining the density are sparse in
the immediate vicinity of some of the plot’s edges. This can
be understood heuristically as the consequence of projecting a

J

]:min:

high-dimensional region—seven dimensional in this case—
onto two dimensions. Consider, for example projecting a col-
lection of uniformly distributed points in a seven-dimensional
sphere onto a two-dimensional flat plane. The number of
points directly above the plane in the vicinity of the circular
surface of the projected sphere will be considerably smaller
than the number directly above the center of the circular
region into which the points fall.

As an alternative to generating more points, which for large
| becomes computationally demanding as well as memory
intensive, we adapt the Kim method to trace out the boundary.
Recall that minimizing the free energy entails finding the point
at which a curve of constant free energy—in the instance of
| =7 a straight line—impinges tangentially on the Kim plot.
If we were to take all possible orientations for this constant
energy surface, we would trace out the convex hull of the Kim
plot. Given a different constant free-energy surface, one can
perform a more detailed probe of the boundary. To this end,
we devise a new surface which, for lack of a better term, we
call a “stylus.” It is of the general form

xcos¢ + ysing + K(—xsing + ycos¢p —D)> =C, (Cl)

where K, C, and D are constants. For K sufficiently large,
this is a very steep parabola. Figure 37 shows the twofold
symmetry region and two of the stylus surfaces, for ¢ = 0 and
K = +£5,000. In practice, we used K = 10 000. We locate the
two bounding surfaces by varying D, thus scanning vertically,
and determining the minimum value, effectively the quantity
C, of the left-hand stylus function and the maximum value
of the right-hand one. This process yields the two boundary
curves shown in Figs. 6 and 7, as well as the translated
versions of those Kim plots.

APPENDIX D: KIM PLOT WITH A CUBIC
INVARIANT: DETAILS

The Kim method can also be applied to cases in which
third-order invariants arise, as when [ is even. Take the in-
stance of a single / system with only one relevant quartic term,
say, the local one. The free energy is then

Flo] = %Az +EN0 ) + SAY Q). DD

The outcome of minimizing (D1) with respect to A and
discarding the possibility of A = 0 is

V303

utQ4 1+ 6W?2 — 6W + (1 — 4W)*?

= V0 24

From the equations above, we find

03 =

u? wa

w0l 1+ 6(“’Q4/u2Q%)2 — 61004 /1202 + (1 — 4th4/u2Q§)3/2
24

(D2)

21 146W2—6W + (1 —4Ww)3?
+ +( ) 7 o)

24‘F'min

21 1+6W?2—6W + (1 —4W)¥? o2

=—WQs. (D4)

O ="Twe

24 Fmin

Tt
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FIG. 37. The twofold symmetry region and two stylus curves.
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Both Q% and Q4 are positive, the latter to ensure thermody-
namic stability. Furthermore, Fp;, will be negative. Given
this, we see from (D3) and (D4) that the parameter W will
have the same sign as ¢.

The above equations allow us to plot curves of constant
free energy in the space spanned by Q4 and Q3. One important
point is that the approach can be generalized to more than one
Q4. If, for instance, there are two quartic invariants, then we
replace Q4 with aQ4.1 + Q4 . The curve defined by (D2) and
(D3) becomes a surface in which the Q4 axis is replaced by
lines of constant aQ4 | + bQ4 . This is readily extended to
the case of more quartic invariants.

In light of the last line of (D2) and the fact that Qq, Q%,
v, and u? are positive, it is clear that the signs of the quantity
W and the parameter ¢ must be the same. Given this and the
fact that the contribution of the W-dependent expressions to
the right-hand sides of (D2) and the first line of (D3) is zero
when W = 2/9, we can distinguish between two regimes in
those equations. The first is —oo < W < 0, which applies
when ¢ < 0. The second is is 0 < W < 2/9, appropriate to
t > 0. Outside of those regimes, the right-hand sides of (D2)
and (D3) either apply to the case F, > 0, which is not of
interest, or possess imaginary parts.

The relationships between Qg and Q* are illustrated in
Figs. 38 and 39, in which all terms aside from W have been
set equal to convenient values.

From these plots—and a bit of analysis—we see that for
large amplitudes of the two invariants Q% QZ/ 2. Further-
more, as is evident from the plot, the dependence is mono-
tonic with increasing positive slope. Additionally, inspection
reveals that there are three independently adjustable quantities
in the two relationships, which can be chosen to be W,
Fminv/t?, and Fpinu? /t3. This means that we can in principle
choose two of those quantities to ensure that a Q% vs Q4
curve passes through a given point in the Kim plot. The third
quantity can then be chosen so as to adjust the slope of that
curve. Given the values of those three quantities,

Q4 =X, (DS)
03 =, (D6)
doz _

T =, (D7)

FIG. 38. Plots of Q3 vs Q, for values of  that are positive (dashed
black curve) and negative (solid red curve). The free energy F,, has
been set equal to —1/4, and the parameters u, v, and |t| have been
set equal to 1.

with the additional conditions

x>0, (D8)
y >0, (D9)
s> 0, (D10)
we find
2sx(3y — 2
w = 25xQy — 2sx) D11
9y?
dQ3/dQ,
2.5} P
20} ”f”"
15; ,,,/z
1.0t
0.5}

FIG. 39. The slopes of the curves in Fig. 38, plotted against Q4.
The parameters have been set to the same values as in that figure.
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FIG. 40. Two constant free-energy curves passing through the
point Q4 = 1, Q3 = 1, one with a slope of 1.2, corresponding to a
positive value of ¢, the other with a slope of 4, corresponding to a
negative value of . The dashed lines indicate the slopes.

This result is of interest in the range s > y/x. The relation-
ships yield

9y(y — sx)
min 28 —= T 3 D12
| Fmin|u” /1 2(25x — 3y) (D12)
) s(sx —y)
min = Q=5 D13
Fanlo/1* = 5 o5 (D13)

Given these equations, it is relatively straightforward to con-
struct the desired constant free-energy curve.

One final point is that the regime y/x < s < 3y/2x cor-
responds to positive values of ¢ and the regime s > 3y/2x
corresponds to negative values of 7. Figure 40 displays the
results of such a fit, in which two constant free-energy curves
have been produced, both going through the point Q4 = 1,
Q% = 1, one with a slope of 1.2 and the other with a slope
of 4.

Finally, there is the question of the utility of the Kim
method with the new free-energy curves, as shown in Figs. 40
and 41, for determining free-energy minima. In order to do
this, we need to establish a couple of features of the constant
free-energy curves. First, it is clear that two curves for differ-
ent values of the free energy JFu,;, will be nonintersecting, as
the free energy for fixed values of the coefficients 7, v, and u is
a single-valued function of the invariants Q4 and Q%. Next, we
note that the slope of a constant free-energy curve is always
positive, as indicated in Figs. 38 and 39.

Now, we construct a curve in the parameter space in which
the coefficients ¢, u, and v and the parameter W are kept
constant while the free energy JF, varies. From Egs. (D3)
and (D4), we see that this curve is a straight line with positive
slope tv/u’W. As to the parametric dependence of the in-
variants on Jy,;,, we calculate the derivative of the right-hand
sides of Egs. (D3) and (D4) with respect to Fpi,. Given that

0.4f
0.3
0.2}

0.1}

0.0 04 06 08 10 12 4

FIG. 41. Two free constant free-energy curves, corresponding
tot = —1, u =v = 1. For curve 1, F;, = —1, while for curve 2,
Fmin = —0.5. The dashed line joins the points on those two curves
for which ¢, u, and v have the above values, with the parameter W
equal to —10 and F,;, varies. The arrow indicates the direction of
increasing Fyip.

the coefficient  and the variable W have the same sign, and
that the numerator 1 4+ 6W? — 6W + (1 — 4W)*? is positive
over range —oo < W < 2/9, which is readily established by
inspection, we see that both Q4 and Q% increase with increas-
ing Fmin. To determine whether displacements along the curve
as Fmin increases result in a new constant free-energy curve
that is closer to or further way from the origin, we compare the
slope of the line element connecting the original and displaced
points to the slope of the constant free-energy curve in which
the original points lie with the slope of the original free-energy
curve. If the slope of the displacement is less than the slope of
the constant free-energy curve at the original point, then the
displacement connects to a constant free-energy curve that is
further away from the origin. If the slope of the displacement
is greater than the slope of the free-energy curve at the original
point, then it connects to a constant free-energy curve that is
closer to the origin. If we call the slope of the original free-
energy curve s and the slope of the line element s’, we find

s, 32W2 — 2(JT—4W + 2)W + /1T —4W + 1]

s AT — AW +3)W — /1 —4W — 1]
(D14)

One can verify by direct evaluation of the right-hand side
of (D14) that the difference between the ratio s/s' and 1
is always positive, which means that increasing the free
energy Jnin takes the free-energy curve further away from the
origin. Given the structure of the Kim plots we consider, this
establishes that the Kim method with the new constant free-
energy curves does indeed serve to locate global free-energy
minima; see Fig. 41 for an illustration of the above argument.
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