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Strong eigenstate thermalization within a generalized shell in noninteracting integrable systems
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Integrable systems do not obey the strong eigenstate thermalization hypothesis (ETH), which has been
proposed as a mechanism of thermalization in isolated quantum systems. It has been suggested that an integrable
system reaches a steady state described by a generalized Gibbs ensemble (GGE) instead of thermal equilibrium.
We prove that a generalized version of the strong ETH holds for noninteracting integrable systems with
translation invariance. Our generalized ETH states that any pair of energy eigenstates with similar values of
local conserved quantities looks similar with respect to local observables, such as local correlations. This result
tells us that an integrable system relaxes to a GGE for any initial state that has subextensive fluctuations of
macroscopic local conserved quantities. Contrary to the previous derivations of the GGE, it is not necessary to
assume the cluster decomposition property for an initial state.
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I. INTRODUCTION

Out-of-equilibrium dynamics of isolated quantum systems
and their steady states have been explored recently [1–3].
Various experiments [4–7] as well as numerical calculations
[8–10] have revealed that nonintegrable systems thermal-
ize under unitary time evolution. As a possible mechanism
of thermalization, the eigenstate thermalization hypothesis
(ETH) has been studied [9,11–18]. The ETH in the strong
(weak) sense, or, namely, “the strong (weak) ETH,” states
that all (almost all) energy eigenstates have thermal properties
when we look at local observables. It has been recognized
that the strong ETH ensures thermalization, whereas the weak
ETH does not because the initial state may have an important
weight on nonthermal energy eigenstates [13]. Indeed, the
weak ETH can be proved for generic translationally invariant
systems including integrable systems [13,19,20], although it
is known that integrable systems generally do not thermalize
[13,21–24]. Meanwhile, the strong ETH has been numerically
verified in nonintegrable models [15,16].

For integrable systems, it is suggested that the steady state
is given by the so-called generalized Gibbs ensemble (GGE)
[21], which is constructed by using a set of local and quasilo-
cal conserved quantities of the system. Numerical studies on
specific integrable models support the validity of the GGE
[21,22]. By analytically calculating the time evolution of
local observables, the validity of the GGE is even proved
for noninteracting integrable systems with translation invari-
ance when the initial state satisfies some certain properties.
More precisely, proofs were given for Gaussian initial states
[25–29], followed by extensions to initial states that satisfy
the cluster decomposition property [30–32]; see also Ref. [33]
for continuous models. Although the present paper focuses
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on noninteracting integrable systems, it should be noted that
the validity of the GGE has also been investigated for inter-
acting integrable systems [34–43], which cannot be mapped
to free particles but is exactly solvable via the Bethe ansatz
method.

Here, a set of questions naturally arises. Can one construct
a generalized version of the ETH as a mechanism that explains
the relaxation to a GGE, just as the standard ETH explained
thermalization in nonintegrable systems? If so, can we remove
the assumption of the cluster decomposition property for the
initial state in deriving the relaxation to a GGE? The removal
of this assumption is important in considering a spin system
that can be mapped to a quadratic fermion Hamiltonian (e.g.,
the transverse-field Ising model) because it is not obvious
whether a physically realistic initial state, which satisfies the
cluster decomposition property with respect to spin operators,
also satisfies it with respect to fermion operators [44]; indeed,
there are cases where a nonlocal transformation reveals non-
trivial correlations [45–47].

In Ref. [22], a generalization of the ETH has been pro-
posed. Their generalized ETH has been numerically veri-
fied [22] and also proved for various local operators in the
translationally invariant transverse-field Ising model [48] but
only in the weak sense. It has not been clarified yet whether
it is valid in the strong sense. Although the concept of the
generalized ETH helps us to understand the validity of the
GGE [22,48], the weak generalized ETH does not ensure in
itself the relaxation to a GGE in an integrable system. It is,
therefore, desirable to formulate the generalized ETH that is
valid in the strong sense.

In the present paper, by constructing a generalized shell
that is specified by a set of macroscopic conserved quan-
tities, we reformulate the generalized ETH and analytically
prove that our generalized ETH proposed is valid in the
strong sense in integrable models of the quadratic form with
translation invariance. It is shown that our strong general-
ized ETH ensures the relaxation to a GGE for initial states
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TABLE I. A comparison between the strong ETH [9,13–18] and our strong generalized ETH. While the usual strong ETH is discussed
for states in the energy shell, in the formulation of our strong generalized ETH, we consider a generalized shell, which is defined as a Hilbert
subspace specified by a set of macroscopic conserved quantities. The strong ETH and our strong generalized ETH are sufficient conditions
for relaxation to the steady state described by the Gibbs ensemble and the generalized Gibbs ensemble, respectively. In the column indicated
“Validity,” we explain the current understanding on the validity of the two concepts. As for the strong ETH, in nonintegrable systems, its validity
has been numerically confirmed [15,16], although there exists some counterexamples [17,18]. In integrable systems, numerical demonstrations
and analytical calculation show that the strong ETH does not hold [9,13,14,16]. As for our strong generalized ETH, we analytically prove in
this paper its validity in translationally invariant noninteracting integrable systems.

Hilbert subspace Steady state Validity

Nonintegrable: valid but with counterexamples.
Strong ETH [9,13–18] Energy shell Gibbs ensemble

Integrable: invalid.
Strong generalized Shell defined by many Generalized Translationally invariant
ETH (present paper) macroscopic conserved quantities Gibbs ensemble noninteracting integrable: valid.

that have subextensive fluctuations of macroscopic local con-
served quantities [49]. We manage to remove the assump-
tion of the cluster decomposition property here, and thus
our result is beyond the previous rigorous results [30–32].
In Table I, we show for ease of understanding a compar-
ison between the strong ETH and our strong generalized
ETH.

II. MODEL AND SETUP

We consider a bilinear fermion system described by the
translationally invariant Hamiltonian,

H =
L∑

x,y=1

(c†
xAx−ycy + c†

xBx−yc†
y + cxB∗

y−xcy), (1)

under the periodic boundary condition; the analysis is almost
unchanged for the antiperiodic boundary condition. The co-
efficients Al satisfy Al = A∗

−l because H = H†. We assume
the locality of the Hamiltonian, i.e., Al = Bl = 0 for |l|P >

rH with a finite range rH > 0, where |l|P := min{|l|, L − |l|}
denotes the distance l under the periodic boundary conditions.
This form of Hamiltonian includes, for example, a fermionic
system with on-site potential and nearest-neighbor hopping
terms. The XY model, a hard-core boson system, and the
transverse-field Ising model can also be mapped to this form
using the Jordan-Wigner transformation.

We first consider the case of Bl = 0 for which the total
particle number is conserved. This system can be diagonalized
by the Fourier transform as

H =
∑

p

εp f †
p fp, (2)

where f †
p = (1/

√
L)

∑L
x=1 c†

xe−ipx and εp = ∑L
x=1 Axeipx. The

summation over p = 2πm/L is taken over integers m with
−(L − 1)/2 � m � (L − 1)/2 where we consider the case of
odd L throughout the paper, although this restriction is not
essential.

The occupation-number operator of each of the L eigen-
modes { f †

p fp} is a conserved quantity. Although f †
p fp are not

spatially local, we can construct macroscopic local conserved

quantities out of them as

Q(+)
n =

∑
p

cos (np) f †
p fp, n = 0, 1, . . . ,

L − 1

2
,

Q(−)
n =

∑
p

sin (np) f †
p fp, n = 1, . . . ,

L − 1

2
(3)

see Ref. [23]. We then define Q(+)
−n = Q(+)

n , Q(−)
−n = −Q(−)

n ,
and Q(−)

0 = 0. Note that Q(+)
0 coincides with the total particle

number,

Q(+)
0 =

∑
p

f †
p fp = N̂ . (4)

We denote an eigenvalue of Q(±)
n for the Fock eigenstates by

Q(±)
n .
When Bl �= 0, the Bogoliubov transformation following

the Fourier transformation diagonalizes the Hamiltonian as

H =
∑

p

ε̃pη
†
pηp + const., (5)

where ε̃p and η†
p are given by ap := ∑L

x=1 Axeipx and bp :=
2i

∑L
x=1 Bx sin(px) as

ε̃p = ap − a−p + √
(ap + a−p)2 + 4|bp|2

2
, (6)

η†
p = s(p) f †

p + t (p) f−p, (7)

with the functions s(p) and t (p) defined as

s(p) = |bp|√|bp|2 + (ε̃p − ap)2
, (8)

t (p) = |bp|
bp

ε̃p − ap√|bp|2 + (ε̃p − ap)2
. (9)

Macroscopic local conserved quantities in this case are given
by

Q(+)
n = 1

2

∑
p

cos(np)(ε̃p + ε̃−p)η†
pηp,

Q(−)
n =

∑
p

sin(np)η†
pηp, (10)
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where we use the same notations as in Eq. (4), but there will
be no confusion.

The locality of Q(+)
n in Eq. (11) is proved as follows. First,

we divide it into two parts as follows:

Q(+)
n =

∑
p

ε̃p cos(np)η†
pηp +

∑
p

ε̃p − ε̃−p

2
cos(np)η†

pηp.

(11)

It is known and explicitly confirmed that the first term
of Eq. (11) is local [36]. As for the second term, we
note that ε̃p − ε̃−p = ap − a−p is written as a finite sum∑rH

x=−rH
Ax(eipx − e−ipx ) because of the fact that Ĥ is a local

operator with the maximum range rH . Therefore, the second
term of Eq. (11) is written as a linear combination of {Q(−)

m }
with m � n + rH , which is a local operator. Thus, for any
fixed n, both the first and the second terms of Eq. (11) are
local in the thermodynamic limit.

In terms of these local conserved quantities, the GGE is
given as the density matrix,

ρGGE =
exp

[
−∑(L−1)/2

n=0

(
�(+)

n Q(+)
n + �(−)

n Q(−)
n

)]
ZGGE

, (12)

where ZGGE is the normalization constant. The parameters
�(±)

p are determined from initial state |ψ (0)〉 by the condition
that 〈ψ (0)|Q(±)

n |ψ (0)〉 = Tr[Q(±)
n ρGGE].

III. STRONG GENERALIZED ETH

In order to formulate our generalized ETH, we first define
a Hilbert subspace called an nc shell with the notation Snc . Let
us denote the set of the simultaneous eigenstates of {Q(±)

n } by
E . An nc shell is then defined as the Hilbert subspace spanned
by all the eigenstates in E with the eigenvalues located around
the center {Q̄(±)

n }nc
n=1,

Snc := Span
{|α〉 ∈ E : for all 0 � n � nc,

Q(±)
n ∈ [

Q̄(±)
n − 	(±)

n , Q̄(±)
n + 	(±)

n

]}
. (13)

Here, the half width of the shell 	(±)
n is arbitrary as long as it is

microscopically large but macroscopically small; for example,
we can choose 	n ∝ L1/2. Note that n runs up to nc � (L −
1)/2. The nc shell can be regarded as a generalization of the
usual energy shell in the microcanonical ensemble.

Now, we formulate the strong generalized ETH. It states
that all the energy eigenstates in Snc are locally indistin-
guishable from each other in the limit of nc → ∞ taken
after the thermodynamic limit L → ∞. For convenience, we
also say that a local observable ô satisfies the nc ETH when
〈α|ô|α〉 = 〈α′|ô|α′〉 for any pair of eigenstates |α〉, |α′〉 ∈ Snc

in the thermodynamic limit.
It should be noted that another generalization of ETH has

been proposed in the previous work [22], stating that energy
eigenstates with similar distributions of the mode occupation
number look similar with respect to local observables. Below,
we explain the relation between our generalized ETH based
on the nc shell and the generalized ETH based on the mode
occupation number distributions, which is a simplified version
of the one originally proposed in Ref. [22].

For simplicity, we consider the case in which the total
particle number is conserved with Bl = 0. Then, each energy
eigenstate |α〉 consists of N occupied levels {pα

1 , pα
2 , . . . , pα

N },
where pα

i = 2πnα
i /L with integers {nα

i }N
i=1 satisfying −π �

pα
1 < pα

2 < · · · < pα
N < π . In short, 〈α| f †

p fp|α〉 = 1 if and
only if p ∈ {pα

1 , pα
2 , . . . , pα

N }. Let us say that two eigenstates
|α〉 and |α′〉 have similar distributions of the mode occupation
number if and only if,

δ(α, α′) =
[

1

N

N∑
i=1

(
pα

i − pα′
i

)2

]1/2

(14)

is smaller than a threshold ε, which can be set to zero in
the thermodynamic limit. The generalized ETH formulated in
Ref. [22] essentially states that two eigenstates with similar
distributions of the mode occupation number are locally in-
distinguishable. Now, we begin the explanation of its relation
with our generalized ETH. Let us consider the difference of a
macroscopic conserved quantity in states |α〉 and |α′〉,

δq(±)
n := 1

L
|〈α|Q(±)

n |α〉 − 〈α′|Q(±)
n |α′〉|. (15)

If |δq(±)
n | � 2	(±)

n /L for all n � nc, the two eigenstates |α〉
and |α′〉 belong to the same nc shell under a suitable choice of
the center of the shell {Q̄(±)

n }nc
n=1. By using pα

i , we can rewrite
δq(+)

n as

δq(+)
n = 1

L

∣∣∣∣∣
N∑

i=1

[
cos

(
npα

i

) − cos
(
npα′

i

)]∣∣∣∣∣
� 1

L

N∑
i=1

∣∣ cos
(
npα

i

) − cos
(
npα′

i

)∣∣. (16)

By using | cos θ − cos φ| � |θ − φ|, we obtain

δq(+)
n � n

L

N∑
i=1

∣∣pα
i − pα′

i

∣∣
� nρδ(α, α′), (17)

where ρ = N/L and we have used δ(α, α′) � (1/N )
∑N

i=1

|pα
i − pα′

i |. Similarly, δq(−)
n � nρδ(α, α′) holds.

From these inequalities, we can immediately conclude that
two eigenstates |α〉 and |α′〉 belong to the same nc shell
under a suitable choice of {Q̄(±)

n }nc
n=1 as long as δ(α, α′) �

2	(±)
n /(ncN ). Since 	(±)

n is chosen so that 	(±)
n /N → 0 in the

thermodynamic limit, this result implies that two eigenstates
|α〉 and |α′〉 with similar distributions of the mode occupation
number belong to the same nc shell. This implies that, if the
generalized ETH based on the nc shell holds in the strong
sense, then the generalized ETH based on the similarity of
the distributions of the mode occupation number also holds in
the strong sense [50]. Thus the proof of the strong generalized
ETH based on the nc shell complements the numerical result
in Ref. [22] in which the generalized ETH based on the mode
occupation number distribution has been confirmed only in
the weak sense.
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IV. PROOF

We consider local observables ô which consist of fermionic
operators {c†, c} with the maximum range r. For example,

ô = 1

L

L∑
j=1

(c†
j+2c j+2c†

j c j + c†
j+1c j + c†

j c j+1) (18)

is the case of r = 2. As a shorthand notation, we write 〈ô〉 :=
〈α|ô|α〉 for a fixed eigenstate |α〉.

We first consider the case of Bl = 0 in which the total
particle number is conserved. In this case, the diagonalized
Hamiltonian is given by Eq. (2), and macroscopic conserved
quantities are given by Eq. (4). We will prove that the eigen-
state expectation value of a local observable can be written
as a smooth function of the eigenvalues {Q(±)

m /L} of the
constructed conserved quantities with m � r. In other words,
any local observable with the maximum range r satisfies the
r ETH.

By virtue of Wick’s theorem (see the note in [51]), the
eigenstate expectation value 〈ô〉 of any local observable ô
with the maximum range r can be decomposed into products
of two-point functions of the form 〈c†

xcy〉 with |x − y|P � r.
More precisely, if we denote by Xi a linear superposition of
{cx, c†

x},
〈X1X2 · · · X2n〉 =

∑
(−1)P

〈
Xi1 Xj1

〉〈
Xi2 Xj2

〉 · · · 〈Xin Xjn

〉
,

(19)

where the sum is over all partitions of 1, 2, . . . , 2n into pairs
{(i1, j1), (i2, j2), . . . , (in, jn)} with i1 < j1, i2 < j2, . . . , in <

jn and P is the parity of the permutation (1, 2, . . . , 2n) →
(i1, j1, i2, j2, . . . , in, jn) [52]. It should be noted that Eq. (19)
also holds even when Bl �= 0 because the Bogoliubov fermion
operators ηp and η†

p can be written as a linear superposition of
{cx, c†

x}.
We can express the two-point function in terms of the

conserved quantities in Eq. (4) as in

〈c†
xcy〉 = 1

L

∑
p

eip(x−y)〈 f †
p fp〉

= 1

L
(Q(+)

x−y + iQ(−)
x−y). (20)

Therefore, 〈ô〉 is generally a smooth function of {Q(±)
m /L} with

m � r.
This immediately leads to the validity of the strong gener-

alized ETH. Moreover, any local operator with the maximum
range of r � nc satisfies the nc ETH. Therefore, as far as
we consider local operators with a fixed maximum range r,
the steady state is described by the microcanonical ensemble
within the nc shell, which is in the thermodynamic limit
equivalent to the truncated GGE,

ρ
(nc )
GGE := exp

[−∑nc
n=0(�(+)

n Q(+)
n + �(−)

n Q(−)
n )

]
Z (nc )

GGE

(21)

for an arbitrary nc � r, where Z (nc )
GGE is the normalization

factor. In the limit of nc → ∞ after the thermodynamic limit,
the GGE reproduces expectation values of arbitrary local
operators in the steady state.

Next, we consider free fermion models in which the total
particle number is not conserved (Bl �= 0). The eigenstate
expectation value of a local operator is again decomposed
into the products of two-point functions. Relevant two-point
functions are 〈c†

xcy〉 and 〈c†
xc†

y〉 with |x − y|P � r, the latter
of which appears because Bx−y �= 0. By expressing these two-
point functions using the mode occupation numbers η†

pηp, we
have

〈c†
xcy〉 = 1

L

∑
p

cos[p(x − y)][s(p)2 − |t (p)|2]〈η†
pηp〉

+ i

L

∑
p

sin[p(x − y)]〈η†
pηp〉 + const., (22)

and

〈c†
xc†

y〉 = 2i

L

∑
p

sin[p(x − y)]s(p)t (p)〈η†
pηp〉 + const. (23)

By performing the Fourier series expansion, we can express
〈c†

xcy〉 and 〈c†
xc†

y〉 as

〈c†
xcy〉 = v0

L
Q(+)

x−y + 1

L

(L−1)/2∑
n=1

vn(Q(+)
x−y+n + Q(+)

x−y−n)

+ i

L
Q(−)

x−y + const., (24)

and

〈c†
xc†

y〉 = − i

L

(L−1)/2∑
n=1

wn(Q(+)
x−y+n − Q(+)

x−y−n) + const. (25)

Here, vn in Eq. (24) and wn in Eq. (25) are the Fourier
coefficients of

2

ε̃(p) + ε̃(−p)
[s(p)2 − |t (p)|2], (26)

and
4i

ε̃(p) + ε̃(−p)
s(p)t (p), (27)

respectively, where the Fourier coefficient of φ(p) is defined
by φn = (1/L)

∑
p φ(p)e−ipn. It is noted that the relations

vn = v−n and wn = −w−n, which follow from the parity of
the functions (26) and (27), are used in deriving Eqs. (24)
and (25). According to the Riemann-Lebesgue lemma, vn

and wn tend to zero in the limit of |n| → ∞ taken after the
thermodynamic limit (see the note in [53]). Therefore, we can
approximately truncate the summations over n in Eqs. (24)
and (25) at a sufficiently large n∗, e.g.,

〈c†
xcy〉 ≈ v0

L
Q(+)

x−y + 1

L

n∗∑
n=1

vn(Q(+)
x−y+n + Q(+)

x−y−n)

+ i

L
Q(−)

x−y + const. (28)

This approximation becomes exact in the limit of n∗ → ∞
taken after the thermodynamic limit.

In this way, the eigenstate expectation value of a local
operator with a maximum range r is approximately written
as a linear combination of Q(±)

n /L with n � r + n∗, and this
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approximation becomes exact in the limit of n∗ → ∞. It
implies that any local operator satisfies nc ETH in the limit
of nc → ∞ after the thermodynamic limit. Thus, the strong
generalized ETH has been proved.

V. CONCLUSION

The strong generalized ETH proved in this paper ensures
that, if the initial state is in a generalized shell constructed
by local conserved quantities, the system relaxes to a steady
state that is described by the GGE either truncated or not.
Since a physically relevant initial state, e.g., a state prepared
by a quench, has subextensive fluctuations of macroscopic
quantities, such an initial state is necessarily in a generalized
shell. Therefore, a steady state after relaxation is described by
a GGE in a translationally invariant noninteracting integrable
system. Our results can be generalized to d-dimensional sys-
tems and noninteracting bosons.

In the previous studies, the validity of the GGE has been
proved for noninteracting integrable models with translation
invariance by requiring the cluster decomposition property
for the initial state [30–32]. In contrast, our result applies
to dynamics with the initial state which can be any state in
a single generalized shell. Since the cluster decomposition
property does not hold for all of such states, our result shows
that the GGE is valid for a wider class of initial states than
expected previously. It should be noted that the removal
of the assumption of the cluster decomposition property is
particularly important when we consider a spin model that is
mapped to quadratic fermions, e.g., the transverse-field Ising
chain and the XY chain. In these models, a physically realistic

initial state should obey the cluster decomposition property
with respect to the spin operators, but it is not obvious whether
the same initial state obeys the cluster decomposition property
with respect to the fermion operators [44].

In this paper, we have assumed the translation invariance
and the locality of the quadratic Hamiltonian. It is a future
problem to clarify whether these assumptions are essential for
the relaxation towards a GGE. Considering the case of non-
local Hamiltonians is important in validating the relaxation to
the Floquet GGE [54,55] in the low-frequency regime of time-
periodic systems where the effective Hamiltonian generally
becomes nonlocal [56].

It is also open to extend the strong generalized ETH to in-
teracting integrable systems, which cannot be mapped to free
particles but are exactly solvable via the method of the Bethe
ansatz. Although the idea of the generalized ETH has been
applied to interacting integrable systems [57,58], it has not
been proven in the strong sense. A recent finding of quasilocal
charges in the XXZ chain has advanced our understanding on
the validity of the GGE in interacting integrable systems [43].
The quasilocal charges should be taken into account properly;
otherwise, the generalized ETH cannot be true [37,38], and
the GGE fails [39–42].
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