
PHYSICAL REVIEW E 100, 012137 (2019)

Intermediate deviation regime for the full eigenvalue statistics in the complex Ginibre ensemble
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We study the Ginibre ensemble of N × N complex random matrices and compute exactly, for any finite N , the
full distribution as well as all the cumulants of the number Nr of eigenvalues within a disk of radius r centered at
the origin. In the limit of large N , when the average density of eigenvalues becomes uniform over the unit disk, we
show that for 0 < r < 1 the fluctuations of Nr around its mean value 〈Nr〉 ≈ Nr2 display three different regimes:
(i) a typical Gaussian regime where the fluctuations are of order O(N1/4), (ii) an intermediate regime where
Nr − 〈Nr〉 = O(

√
N ), and (iii) a large deviation regime where Nr − 〈Nr〉 = O(N ). This intermediate behavior

(ii) had been overlooked in previous studies and we show here that it ensures a smooth matching between the
typical and the large deviation regimes. In addition, we demonstrate that this intermediate regime controls all
the (centered) cumulants of Nr , which are all of order O(

√
N ). We show that the intermediate deviation function

that describes these intermediate fluctuations can be computed explicitly and we demonstrate that it is universal,
i.e., it holds for a large class of complex random matrices. Our analytical results are corroborated by precise
“importance sampling” Monte Carlo simulations.
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I. INTRODUCTION

Since the seminal works of Wishart [1], in statistics,
and Wigner [2], in nuclear physics, there has been an ever
growing number of topics where random matrix theory has
found useful applications [3–5]. This encompasses quantum
chaos [6], mesoscopic transport [7], stochastic growth models
[8,9], trapped fermions [10–12] or disordered systems [13]
in physics, as well as combinatorics or number theory [14]
in mathematics, to name just a few. Of crucial importance
are the various statistical properties of these random matrices
[3,4], which for many of these applications, correspond to
deriving the full counting statistics (FCS), i.e., the statistics of
the number ND of eigenvalues of a random matrix contained in
a given domain D. For random matrices with real eigenvalues,
this domain D is just an interval on the real line. In contrast,
for random matrices with complex eigenvalues, the domain
D would represent a two-dimensional region of the complex
plane. Questions related to FCS in random matrix ensembles
and also to Coulomb gas models have actually attracted a lot
of attention both in physics (see, e.g., [15–18]) and mathemat-
ics (see, e.g., [19,20]) during the last few years. In particular,
it was realized that these random systems exhibit some “rigid-
ity” or “hyperuniformity” (for reviews, see [21,22]): in these
cases, indeed, the variance of ND usually grows slower than
the volume of the domain D.

The most studied case concerns N × N random matrices
belonging to the Gaussian unitary ensemble (GUE). In this
case, the average density of eigenvalues ρN (λ) approaches
the celebrated Wigner’s semicircle law ρN (λ) ≈ √

2 − λ2/π

[2], which has a compact support [−√
2,+√

2]. For a domain

located deep inside the bulk of the spectrum, i.e., for a seg-
ment D = [−L, L] around the origin and of size comparable
to the interparticle distance, it is well known from Dyson’s
and Mehta’s works [23–26] that the variance of ND scales log-
arithmically with the size of D. Later on, it was shown that the
typical fluctuations of ND, in the bulk, are Gaussian [27–29],
while the large deviations in the bulk regime were studied in
[30]. It is only recently [10,31] that the fluctuations of ND for
an interval of size larger than the bulk, i.e., for L = O(1), were
investigated, motivated to a large extent by the connection be-
tween the GUE and the problem of N noninteracting fermions
in a harmonic trap at zero temperature. Interestingly, it was
shown that the variance exhibits a nonmonotonic behavior:
after a logarithmic growth ∝ln(N L) in the “extended bulk,”
i.e., for 0 < L <

√
2, it decreases abruptly as L approaches

the edge L ≈ √
2, finally decaying exponentially fast (with

N) for L >
√

2. Furthermore, the full probability distribution
of ND, PD(K, N ) = Prob(ND = K ), was computed for large
N using Coulomb gas techniques [10,31], and it was found
that, in the extended bulk regime, it follows a large deviation
principle of the form

PD(K, N ) ≈ e−N2ψL (K/N ), (1)

where the function ψL(x) was obtained explicitly. In standard
large deviation forms, the rate function ψL(x) usually has
a quadratic behavior around its minimum xmin, indicating
that the typical fluctuations are described by a Gaussian
distribution. In this case, however, it was first shown for the
distribution of the index number of the GUE [16,17], that
this quadratic form is modulated by a logarithmic singularity,
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i.e., ψL(xmin + δ) ∝ δ2/| ln δ| as δ → 0. A similar behavior
was later found for the index distribution of Cauchy random
matrices [32]. These results indicate that there are actually
two scales associated to the fluctuations of ND: (i) a short
scale ND − 〈ND〉 = O(

√
ln (NL)), which describes the typical

fluctuations that are Gaussian and (ii) a larger scale ND −
〈ND〉 = O(N ) associated to atypical fluctuations, which are no
longer Gaussian but instead described by the large deviation
principle given by Eq. (1). The matching between these two
regimes is ensured by the logarithmic singularity of the rate
function ψL(x) near its minimum. A similar scenario was
later shown to hold for all the classical rotationally invariant
ensembles of random matrix theory (RMT), including the
β-Gaussian, the β-Wishart, and the β-Cauchy ensembles [31],
all of which have real eigenvalues.

What about the case of random matrices with complex
eigenvalues? To answer this question, we focus on the com-
plex Ginibre ensemble [3,4,33], which corresponds to the set
of N × N random matrices M with independent and identi-
cally distributed (i.i.d.) complex normal random entries with
real and imaginary parts of variance 1/(2N ). The N eigen-
values are complex and their joint probability distribution
function (PDF) is given by

Pjoint(z1, . . . , zN ) = 1

ZN

∏
i< j

|zi − z j |2
N∏

k=1

e−NV (zk ), (2)

with V (z) = |z|2, and ZN being a normalization factor.
This ensemble appears in a variety of contexts, ranging
from chaotic dissipative quantum systems [34], the two-
dimensional one-component plasma [35,36], the study of
normal random matrices (i.e., matrices M that satisfy the
commutation relation [M, M†] = 0 [37–40]). More recently,
a physical realization of this complex Ginibre ensemble in
Eq. (2) was found in Ref. [41]. There, it was shown that the
eigenvalues zi of a complex Ginibre matrix are in one-to-one
correspondence with the positions of noninteracting fermions
in the ground state of a two-dimensional rotating harmonic
potential [41].

In fact, this correspondence with the noninteracting two
dimensional (2D) trapped trapped fermions raises a very in-
teresting and natural question. For trapped fermions, a natural
quantity that one can measure is the statistics of the number
of fermions in a given domain. This is sometimes referred
to as the FCS. Using this mapping to the Ginibre ensemble,
the distribution of the number of trapped fermions in domain
D is exactly the same as the distribution of the number of
eigenvalues in D for the Ginibre ensemble. In Ref. [41]
only the variance of the number of trapped fermions in a
circular domain was computed exactly. In this paper, we show
that actually the full distribution of the number of fermions
can be computed exactly, giving access to all the moments,
thus going beyond the variance. We note that, in general,
calculating the FCS of noninteracting trapped fermions is very
hard for finite N . For example, even for one-dimensional (1D)
noninteracting trapped fermions, the FCS can be computed
only in the large N limit [10,31]. However, for the trapped
fermions in 2D, using the circular symmetry of the domain
D, and the properties of the Ginibre matrices, we are able to
compute exactly the distribution of the number of fermions

FIG. 1. Snapshot of the position of eigenvalues of the Ginibre
ensemble generated by Monte Carlo simulations for N = 1000.

for any finite N . The connection to the trapped fermions
motivated us to study the large deviation properties of the
FCS of the number of eigenvalues in a circular domain D
of the generalized Ginibre ensemble in Eq. (2), where the
matrix potential V (z) is isotropic, i.e., V (z) = v(|z|). One of
the main results of this paper is to demonstrate the existence
of a new intermediate large deviation regime in the FCS of this
generalized Ginibre ensemble, which turns out to be universal,
i.e., independent of the details of V (z) = v(|z|) as long as it is
sufficiently confining.

For the Ginibre ensemble given by Eq. (2) with V (z) =
|z|2, in the limit of large N , the limiting density is uniform on
the unit disk, i.e., ρN (z) ≈ (1/π )�(1 − |z|), where �(x) is the
Heaviside step function. Clearly, the typical distance between
two neighboring eigenvalues is O(1/

√
N ). In the following,

we focus on the FCS inside a disk of radius r centered at
the origin, i.e., D = {z ∈ C, |z| � r} with 0 < r < 1. It turns
out that the circular symmetry of the domain D simplifies
considerably the calculations, using our technique, which
however is not easily generalizable to noncircular geometry
of D. We denote the number of eigenvalues inside this disk by
Nr (see Fig. 1). Our main goal is to compute the probability
Pr (K, N ) = Prob(Nr = K ). Since we naturally expect that
Nr ∝ N , we find convenient to work with the rescaled variable
κ = Nr/N and introduce its corresponding probability distri-
bution

Pr (K, N ) = 1

N
Pr

(
κ = K

N
, N

)
. (3)

In Ref. [42], the function Pr (κ, N ) was studied in the limit
of large N with 0 < r < 1 and it was shown to take a scaling
form similar to the one given by Eq. (1), that is,

Pr (κ, N ) ≈ e−N2
r (κ ), (4)

where the rate function 
r (κ ) was computed explicitly using
Coulomb gas techniques [42], yielding


r (κ ) = 1

4

∣∣∣(r2 − κ )(r2 − 3κ ) − 2κ2 ln
( κ

r2

)∣∣∣, (5)

with 0 � κ � 1. Note that a very similar large deviation form
(4), with the same rate function (up to trivial rescalings) was
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also obtained in the bulk, i.e., for r = O(1/
√

N ) in Ref. [43].
Since the density is uniform, one immediately has that 〈Nr〉 =
N r2. This can also be checked from Eq. (5) since 
r (κ ) has
a minimum at κmin = r2. However, contrary to the GUE case,
the rate function has a cubic behavior near the minimum, i.e.,


r (κ ) ≈ |κ − r2|3
6r2

, κ → r2. (6)

This cubic behavior is rather surprising as one would naively
expect the typical fluctuations of Nr to be Gaussian, as it was
rigorously shown in the bulk when r = O(1/

√
N ) [43,44].

Oddly enough, the latter would imply a quadratic behavior of
the rate function, instead of the cubic one given by Eq. (6).
Besides, this cubic behavior would further suggest that the
typical fluctuations of Nr are of order O(N1/3) [42], which
contradicts a recent computation [41] where it was shown that
the typical fluctuations of Nr are instead of order O(N1/4).
In short, the behavior encapsulated in Eq. (6) is thus quite
puzzling.

In this paper, we solve this puzzle and show that, at
variance with the GUE case, there exist in the present case
three different scales associated to the fluctuations of Nr −
〈Nr〉: (i) a shorter scale O(N1/4) corresponding to the typical
fluctuations which are indeed Gaussian (as in the bulk [43]),
(ii) an intermediate scale of O(

√
N ) associated to “moderate”

deviations which are non-Gaussian (see below), and finally
(iii) a larger scale O(N ) corresponding to large atypical
fluctuations, which are described by the large deviation form
given by Eqs. (4) and (5). Our findings can be summarized as
follows:

Pr (κ, N ) ≈

⎧⎪⎪⎨
⎪⎪⎩

e−N
3
2

√
π

2r (κ−r2 )2
, |κ − r2| ∼ N− 3

4

e
−√

2Nr
I

[√
N

2r2 (κ−r2 )
]
, |κ − r2| ∼ N− 1

2

e−N2
r (κ ), |κ − r2| ∼ N0

(7)

where we remind that κ = Nr/N . Note that the fluctuations
of Nr is N times larger than the fluctuations of κ . Our main
result is thus the existence of an intermediate regime of fluc-
tuations [the second line in (7)], which had been overlooked in
previous studies [42,43]. This regime is characterized by the
rate function 
I (x) given in Eqs. (29) and (32) below. In the
asymptotic regimes of the argument, this rate function behaves
as


I (x) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
π

2
x2, x → 0

1

3
|x|3, x → ±∞.

(8)

Hence, the quadratic form in the first line of (8) matches
smoothly with the central Gaussian behavior while the cubic
expression in the second line of Eq. (8) matches with the cubic
behavior of the large deviation function (6) near its minimum
(see Appendix B for details). Moreover, this intermediate
deviation regime turns out to be extremely important since,
as we later show, it controls all the cumulants of Nr beyond
the first one (at the leading order for large N). These read as

〈N p
r 〉c ≈ −

√
2N r

∫ ∞

−∞
dx Li1−p

(
− erfc(x)

erfc(−x)

)
, (9)

with p > 1 and where Lin(x) = ∑
k�1 xk/kn is the polylog-

arithm function of index n. Using the identity Li−n(x) =
(−1)n+1Li−n(1/x), for n a positive integer, it is easy to see that
the odd order cumulants in Eq. (9) vanish at the leading order
O(

√
N ). In fact, we argue [see Eqs. (33) and (34)] that, for

the Coulomb gas model in Eq. (2) with arbitrary spherically
symmetric potential V (z) = v(|z|) [such that v(r) � ln r2 for
r � 1], the cumulants of Nr also behave, for large N , as those
given by Eq. (9), up to a v-dependent prefactor [see Eq. (34)
below]. Finally, we point out that the very same rate function

I (x) shows up in a completely different problem, that of the
large deviation function of the particle current through the
origin in a model of one-dimensional diffusing particles [45].

This paper is organized as follows: In Sec. II we introduce
the complex Ginibre ensemble and derive an exact expression
for the cumulant generating function of Nr , valid for any finite
N . In Sec. III we analyze this exact result in the asymptotic
limit of large N and describe in detail the three different
regimes of typical, intermediate, and atypical fluctuations.
In Sec. IV we discuss the occurrence of the intermediate
deviation function 
I (x) in diffusive systems, and, in Sec. V
we compare our analytical results to (reweighted) Monte
Carlo (MC) simulations, before summarizing our findings and
pointing out some remarks in Sec. VI. Some details of the
derivations have been relegated to the Appendices.

II. EXACT RESULTS FOR FINITE N

We start with the joint PDF in Eq. (2) with a generic
spherically symmetric potential V (z) = v(|z|). Let ri = |zi| be
the modulus of the eigenvalue zi. The joint distribution of the
ri’s can be computed explicitly from Eq. (2) by integrating
over the phases θi = arg zi of the eigenvalues. This yields
[46,47] (see also Appendix A)

Prad(r1, . . . , rN ) =
∫ 2π

0
· · ·

∫ 2π

0

N∏
i=1

ri dθi Pjoint(z1, . . . , zN )

= 1

N!

∑
σ∈SN

N∏
k=1

r2σ (k)−1
k

hσ (k)
e−Nv(rk ), (10)

where SN denotes the permutation group of N elements while
the coefficients hk’s are given by

hk =
∫ ∞

0
r2k−1e−Nv(r)dr. (11)

The expression of Prad(r1, . . . , rN ) is manifestly invariant un-
der any permutation of the ri’s (note that it can also be written
as a permanent).

We are interested to compute the number of eigenvalues
inside a disk of radius r and centered at the origin, i.e., the
number of eigenvalues Nr inside this disk

Nr =
N∑

i=1

�(r − ri) . (12)

Starting from the expression (10), one can easily compute the
moments of Nr . For instance, using the invariance property of
the joint distribution in Eq. (10) under permutation of ri’s, one
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can easily show that the mean is given by

〈Nr〉 =
N∑

k=1

Lk (r) , Lk (r) = 1

hk

∫ r

0
du u2k−1e−Nv(u), (13)

where the notation 〈(. . . )〉 corresponds to averaging with re-
spect to the joint PDF given by Eq. (10). To derive both the full
distribution of Nr and a compact expression for higher order
cumulants, it is more convenient to introduce the (centered)
cumulant generating function (CGF) χr (μ, N ) as

χr (μ, N ) = ln〈e−μ(Nr−〈Nr〉)〉. (14)

Since Nr , as defined in Eq. (12), is a symmetric function of the
moduli ri’s, one can easily obtain the following expression for
the CGF:

χr (μ, N ) =
N∑

k=1

{ln[Mk (r) + e−μLk (r)] + μLk (r)}, (15)

where Mk (r) = 1 − Lk (r). Furthermore, from χr (μ, N ), one
can formally derive an explicit expression for the probability
Pr (K, N ) = Prob(Nr = K ) of having exactly K eigenvalues
inside the disk of radius r centered at the origin, with 0 �
K � N . Indeed, noting that 〈e−μNr 〉 can also be written as the
generating function of the variable z = e−μ of the probabili-
ties Pr (K, N ) with respect to K , one has that

〈e−μNr 〉 =
N∑

K=0

e−μK Pr (K, N ). (16)

From Eq. (15), we see that 〈e−μNr 〉 is a simple polynomial
of degree N in the variable z = e−μ, that is, 〈e−μNr 〉 =∏N

k=1 [Mk (r) + e−μLk (r)]. Therefore, we obtain the explicit
expression

Pr (K, N ) =
[

N∏
k=1

Mk

]
eK

(
L1

M1
,

L2

M2
, . . . ,

LN

MN

)
, (17)

where we used the shorthand notations Lk ≡ Lk (r), Mk ≡
Mk (r), and where

eK (x1, . . . , xN ) =
∑

1�λ1<···<λK�N

K∏
k=1

xλk (18)

is the elementary symmetric polynomial of N variables and
degree K . In addition, by expanding Eq. (15) in powers of
μ, it is possible to compute all the cumulants 〈N p

r 〉c of order
p > 1, yielding [41]

〈N p
r 〉c = −

N∑
k=1

Li1−p

(
− Lk (r)

Mk (r)

)
, (19)

where Lin(x) is the polylogarithm function.
The formulas (17) and (19) are exact for any N and for any

spherically symmetric potential v(r), the dependence on the
latter being contained in the expressions Lk (r) and Mk (r) =
1 − Lk (r) given by Eq. (13). In particular, for the complex
Ginibre ensemble, which corresponds to v(r) = r2, we have
that

Mk (r) = �(k, Nr2)

�(k)
, Lk (r) = 1 − �(k, Nr2)

�(k)
, (20)

where �(k, z) = ∫ ∞
z t k−1e−t dt is the upper incomplete

gamma function. Note that for K = N and K = 0, the formula
(17) becomes fairly simple. In fact, it is easy to see that
Pr (N, N ) = Prob[rmax � r] and Pr (0, N ) = Prob[rmin � r],
with rmax = max1�i�N ri and rmin = min1�i�N ri, that is, they
correspond to the cumulative distributions of rmax and rmin,
respectively. Therefore, from Eq. (17), one has that

Pr (N, N ) = Prob[rmax � r] =
N∏

k=1

Lk (r), (21)

Pr (0, N ) = Prob[rmin � r] =
N∏

k=1

Mk (r). (22)

For other values of K , the expression of Pr (K, N ) is a bit
more cumbersome but it can be evaluated numerically rather
easily. We note that in the limit N → ∞ with r = O(1/

√
N ),

our formulas (17) and (18) yield back the result obtained in
Ref. [48].

To analyze the large N behavior of Pr (K, N ), it turns out
that this expression (17) is actually of little use. Instead, it is
much more convenient to study the large N behavior of the
CGF χr (μ, N ) in Eq. (15). This is the purpose of the next
section.

III. LIMIT OF LARGE N

From now on, unless stated otherwise, we focus on the case
of Ginibre matrices, corresponding to v(r) = r2 in Eq. (10).
The starting point of our analysis is the exact expression
for the CGF given by Eq. (15) where Lk (r) and Mk (r) are
given in Eq. (20). We consider separately the three regimes
corresponding to (i) typical, (ii) intermediate, and (iii) large
fluctuations of Nr away from its mean value 〈Nr〉.

A. Regime of typical fluctuations

In the limit of large N , the density of eigenvalue for
the complex Ginibre ensemble is uniform over the unit disk
ρ(r) ≈ 1

π
and, therefore,

〈Nr〉 ≈ N r2, (23)

which can also be obtained from the exact result given in
Eq. (13). To compute the variance, one can extract the coef-
ficient of μ2 in the small μ expansion of the CGF χμ(r) and
one obtains the exact formula

Var(Nr ) = 〈N2
r 〉 − 〈Nr〉2 =

N∑
k=1

Lk (r)[1 − Lk (r)]. (24)

In the large N limit, one can show [41] that it behaves as

Var(Nr ) ≈
√

N

π
r. (25)

The fact that the variance grows like ∝r, i.e., much slower
than the area of the disk (∝r2) demonstrates the hyperuni-
formity of the fluctuations in this system [21,22]. Besides,
a more detailed analysis of the CGF allows to show that all
the cumulants, other than the first one, grow at most like√

N [41]. This indicates that for large N the rescaled vari-
able (Nr − 〈Nr〉)/

√
Var(Nr ) converges to a centered Gaussian
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random variable with unit variance (since its cumulants of
order greater than 2 vanish when N → ∞). Therefore, using
Eqs. (23) and (25), we obtain the result given in the first line
of Eq. (7). Below, in Sec. V, we compare analytical expres-
sions of the mean (13) and variance (24) with Monte Carlo
simulations. Even though we derived this limiting normal
distribution only for the Ginibre case, i.e., for the potential
v(r) = r2, we show later that this Gaussian form is actually
universal, i.e., holds for all v(r) such that v(r) � ln r2 for
r � 1.

B. Regime of intermediate fluctuations

The intermediate regime corresponds to taking the limit of
large N but keeping μ fixed in the expression for the CGF
χr (μ, N ) given in (15). In this limit, the discrete sum over k is
dominated by the region k ∼ N r2 and of width |k − N r2| =
O(

√
N ). In this region, Lk (r) can be approximated by the form

[40]

Lk (r) ≈ 1

2
erfc

(
k − Nr2

√
2N r2

)
. (26)

By substituting the asymptotic form (26) into Eq. (15) and
replacing the discrete sum over k by an integral over x =
(k − Nr2)/

√
2Nr2, one obtains, for N → ∞ while keeping

μ fixed, that

χr (μ, N ) ≈
√

2Nr χ (μ), (27)

where the scaling function χ (μ) is given by

χ (μ) =
∫ ∞

−∞
dx

{
ln

[
1 + e−μ − 1

2
erfc(x)

]
+ μ

2
erfc(x)

}
.

(28)

It can be easily verified that the integral over x is well defined.
Furthermore, by writing the integral over x as

∫ ∞
−∞ dx =∫ 0

−∞ dx + ∫ ∞
0 dx, performing the change of variable x →

−x in the first integral and using the identity erfc(x) +
erfc(−x) = 2, the scaling function χ (μ) can be conveniently
written as

χ (μ) =
∫ ∞

0
ds ln

[
1 + sinh2

(μ

2

)
erfc(s)erfc(−s)

]
. (29)

Under this form (29), we see that χ (μ) is an even function
of μ, which implies that the odd cumulants vanish at leading
order in this limit. By expanding χ (μ) in Eq. (29) in powers
of μ, one can show rather straightforwardly [41] that the
cumulants of even order are given by the formula (9). For
later use, it is also useful to extract the asymptotic behaviors
of χ (μ). These read as (see Appendix B)

χ (μ) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ2

2
√

2π
, μ → 0

2

3
|μ|3/2, μ → ±∞.

(30)

To obtain the PDF of Nr , we need to compute the inverse
Laplace transform

Pr (κ, N ) ≈
∫
C

dμ

2iπ
eNμ(κ−r2 )e

√
2Nrχ (μ), (31)

where C is the Bromwich contour in the μ-complex plane.
In the regime (κ − r2) = O(N−1/2), which corresponds pre-
cisely to the intermediate regime, the argument of both ex-
ponentials in (31) are of the same order O(

√
N ) and the

Bromwich integral can be evaluated using a saddle-point
approximation. This yields the scaling form in the second
line of Eq. (7) where the rate function 
I (x) characterizing
the fluctuations in the intermediate regime is given by the
Legendre transform


I (x) = − min
μ∈R

{xμ + χ (μ)} , x =
√

N

2r2
(κ − r2). (32)

Since the expression (29) of χ (μ) is rather involved, it seems
fairly cumbersome to obtain a more explicit expression of the
rate function 
I (x). Luckily, 
I (x) can easily be evaluated
numerically from the expression (32) (see Sec. V below). In
addition, using the asymptotic behaviors of χ (μ) in Eq. (30),
one can show that the intermediate deviation rate function
behaves asymptotically as in Eq. (8).

While the previous analysis concerns the Ginibre ensemble
with V (z) = |z|2, one can, in fact, show that a similar result
can be obtained for a spherically symmetric potential V (z) =
v(|z|) so that v(r) � ln r2 as r → ∞. Indeed, for such a
potential, the large N behavior of Lk (r) can be obtained by
a saddle-point method [40]

Lk (r) ≈ 1
2 erfc[

√
2πNρ(r)(uk − r)], (33)

where uk is the solution of ukv
′(uk ) = 2k/N and ρ(r) =

1
4πr ∂r (rv′(r)) is the average density of the Coulomb gas.
For the quadratic potential v(r) = r2 one has uk = √

k/N
together with ρ(r) = 1/π and, for r close to uk = √

k/N the
formula (33) yields back the one given by (26). Inserting the
asymptotic form (33) in Eq. (15) and performing the same
manipulations as done for the Ginibre case, one finds that the
CGF reads as, for large N ,

χr (μ, N ) = ln
〈
e−μ(Nr−〈Nr〉)〉 ≈

√
2πNρ(r) r χ (μ), (34)

with χ (μ) being the same function χ (μ) as in Eq. (29). This
shows that, in the intermediate regime, the CGF is, for large
N , universal up to a multiplicative prefactor ∝√

ρ(r) which
contains the whole v dependence. An immediate consequence
of this result (34) is that the cumulants of Nr are also universal
(up to the same multiplicative prefactor), i.e., they are given
by Eq. (9) after substituting

√
2N by

√
2πNρ(r).

From this universal behavior in the intermediate fluctuation
regime, one can also access the typical fluctuation regime by
setting the argument x of the intermediate deviation function

I (x) small. It follows from the first line of Eq. (8) that, for
small x, 
I (x) ∼ √

π/2 x2 to leading order, indicating that
the typical fluctuations are described by a universal normal
distribution, irrespective of the details of the potential v(r),
as long as v(r) � ln r2 for r � 1. This then demonstrates the
validity of the universal central limit theorem in the typical
fluctuation regime.

C. Regime of atypical fluctuations

The regime of atypical fluctuations of Nr , for Nr − 〈Nr〉 =
O(N ), was studied in Ref. [42] using a Coulomb gas method,
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leading to the result in Eqs. (4) and (5). Here, we show that
this large deviation regime can also be obtained directly from
the exact expression for the CGF in Eq. (15) in the limit of
large N with μ = O(N ). To do so, we first set μ = λN , with
λ = O(1) for large N . Moreover, one can show that, in this
limit, the sum over k in Eq. (15) is dominated by k = O(N )
so that expressions for Lk (r) and Mk (r) have the following
uniform asymptotic expansions [49]:

MxN (r) = e−N (r2−x−x ln r2

x )+o(N ), x � r2 (35)

MxN (r) = 1 − e−N (r2−x−x ln r2

x )+o(N ) , x � r2. (36)

To simplify the notations, we set

η(r, x) = r2 − x − x ln
r2

x
, (37)

which is a positive function. Inserting these asymptotic forms
into Eq. (15) and replacing the discrete sum over k by an
integral over x = k/N we obtain the scaling form

χr (μ, N ) ≈ N2�
(μ

N
, r

)
, (38)

where the function �(λ, r) reads as

�(λ, r) =
∫ r2

0
dx

[
1

N
ln

(
e−Nη(r,x) + e−Nλ

) + λr2

]

+
∫ 1

r2
dx

[
1

N
ln

(
1 + e−N[λ+η(r,x)])]. (39)

Since η(r, x) > 0, the second integral vanishes in the large
N limit for λ > 0. The contribution of the first integral can
be expressed in terms of the solution g(λ, r) in x and in the
interval 0 � x � r2 of the equation

η(r, x) = r2 − x − x ln
r2

x
= |λ|. (40)

In the first integral of Eq. (39), the term in η(r, x) will remain
exponentially smaller than the term in λ for 0 < x < g(λ, r)
while it is exponentially larger for g(λ, r) < x < r2. This
yields

�(λ, r) =
∫ r2

g(λ,r)
dx[λ − η(r, x)], λ � 0. (41)

The PDF can be obtained from this scaling form of the
cumulant generating function by Laplace inversion

Pr (κ, N ) ≈
∫
C

dλ

2iπ
eN2[λ(κ−r2 )+�(λ,r)], (42)

where C is the Bromwich contour. Evaluating this integral by
a saddle-point approximation finally yields the scaling form
in the third line of Eq. (7), where the rate function 
r (κ )
is obtained for atypical fluctuations to the left of the typical
regime 0 � κ � r2 as


r (κ ) = − min
λ

{λ(κ − r2) + �(λ, r)}. (43)

In particular, the saddle point λ∗ for 0 � κ � r2 is such that
g(λ∗, r) = κ . Inserting this result in Eq. (43), we obtain


r (κ ) =
∫ r2

κ

dx

(
r2 − x − x ln

r2

x

)

= 1

4

[
r4 − 4r2κ + 3κ2 + 2κ2 ln

(
r2

κ

)]
.

(44)

To obtain the behavior of 
r (κ ) for r2 � κ � 1, one needs to
evaluate the saddle point for λ∗ � 0 and it therefore requires
to obtain �(λ, r) for λ � 0. Following a similar analysis to
the case λ � 0, we obtain that

�(λ, r) = −
∫ h(r,λ)

r2
dx[λ + η(r, x)], λ � 0 (45)

where h(r, λ) is the solution in x and for r2 � x � 1 of
Eq. (40). The saddle point λ∗ in this case is such that
h(r, λ∗) = κ which leads to the expression


r (κ ) = 1

4

[
−r4 + 4r2κ − 3κ2 − 2κ2 ln

(
r2

κ

)]
, (46)

valid for r2 � κ � 1. Finally, for all values of 0 � κ � 1,
the rate function 
r (κ ) can be expressed as in Eq. (5), thus
recovering the result of [42]. Note that in the limit κ = 1, the
rate function 
r (κ = 1) is the large deviation function of rmax

already obtained in [36] with a similar technique, viz.,


r (κ = 1) = − 1

N2
ln Prob[rmax � r] (47)

= −1

4
(r4 − 4r2 + 3) − ln (r). (48)

On the other hand, for κ = 0 we obtain the large deviation
function of rmin:


r (κ = 0) = − 1

N2
ln Prob[rmin � r] = r4

4
. (49)

IV. CONNECTION WITH CURRENT FLUCTUATIONS
IN A DIFFUSIVE SYSTEM

Interestingly, it turns out that the scaling function describing
the cumulant generating function in Eq. (29) also appears in a
seemingly unrelated problem of diffusing particles on a line,
studied in [45], that we briefly describe here. Consider a set
of independent Brownian motions on a line, starting at t = 0
from initial positions x0 which are drawn from the following
steplike density:

ρBM(x0) = ρa�(−x0) + ρb�(x0). (50)

The system then evolves diffusively for later times t > 0, with
a diffusion constant D which we set to one, for simplicity. The
probability to find a Brownian particle at a position x at time
t , having started at position x0 at time t = 0, is given by the
standard propagator

Pt (x|x0) = e− (x−x0 )2

4t√
4πt

. (51)

Notice that this problem has two sources of randomness: one
due to the natural stochastic nature of the Brownian paths,
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FIG. 2. Plot comparing the exact expressions for the first cumulants 〈Nr〉 (left panel) and Var(Nr ) (right panel) of Nr as a function of r
(solid blue lines) with Monte Carlo simulations. The latter were performed for N = 100 and averaging over 105 samples.

and a second one due to the initial conditions. Let us then
focus on the current Qt through the origin at x = 0, which
corresponds to the number of particles that have crossed the
origin, up to time t . If we consider the initial conditions as
quenched disorder, as in the theory of disordered systems,
then the natural definition of the cumulant generating function
of the current ought to be [in the same spirit as Eq. (34)] [45]

χq(μ, t ) = ln〈e−μQt 〉th, (52)

where the superscript “q” refers to a quenched average, and
〈. . . 〉th and (. . . ) correspond to the average over the different
Brownian trajectories for fixed initial conditions, and the av-
erage over initial conditions, respectively. It turns out that the
quenched disorder is dominated by typical initial conditions,
and the authors in Ref. [45] were able to derive an exact
expression for χq(μ, t ) for arbitrary ρa and ρb [see Eq. (50)]:

χq(μ, t )

2
√

t
= ρa

∫ 0

−∞
ln

[
1

2
erfc(s) + e−μ

2
erfc(−s)

]
ds

+ ρb

∫ ∞

0
ln

[
1

2
erfc(−s) + eμ

2
erfc(s)

]
ds. (53)

Setting ρa = ρb = ρ, changing variable s → −s in the first in-
tegral, and gathering all the terms in the logarithm we see that
ln 〈e−μQt 〉th = 2

√
tρ χ (μ). Thus, in this mapping, the time t

plays the role of N , while ρ = r [50]. Since the fluctuations
of the integrated current in single file systems are closely
related to the distribution of the displacement of a tagged
particle [51], the CGF χ (μ) also appears in the computation
of the distribution of the displacement Xt made of a tagged
particle after time t [52,53]. This formal similarity between
the cumulant generating function of diffusive current in the
one-dimensional model and that for the number of particles
in a circular disk in the two-dimensional Ginibre ensemble is
rather intriguing. It would be interesting to explore if there
is a deeper one-to-one correspondence between these two
problems.

V. COMPARISON WITH MONTE CARLO SIMULATIONS

We first compare our theoretical predictions, exact for
any N , for the mean value and variance of Nr , given by
Eqs. (13) and (24), respectively, with Monte Carlo simula-
tions. These observables are dominated by typical fluctuations
of Nr and they can be precisely computed by using a standard

Metropolis algorithm to simulate the joint PDF of the Ginibre
ensemble (2) with V (z) = |z|2. The comparison is shown
in Fig. 2, for a system of size N = 100, and, as it can be
appreciated, the agreement is very good.

To go beyond the first two moments and access the inter-
mediate and large deviation regimes, we need to use “impor-
tance sampling” techniques. Here, we follow the procedure
introduced in [54].

To generate atypical values of Nr , the idea is to use a
“reweighting” scheme such that “atypical” turns “typical.”
This is achieved by introducing the following auxiliary joint
PDF for the Ginibre ensemble

P(β )
joint(z1, . . . , zN ) = e−β

∑N
i=1 �(r−ri )

Zβ

×
∏
i< j

|zi − z j |2
N∏

k=1

e−NV (zk ), (54)

where the parameter β plays a role similar to the inverse
temperature, but in this case it can take both positive and
negative values. In Eq. (54), Zβ is a normalization constant,
i.e., the partition function of the biased Coulomb gas (which,
as we will see, does not need to be computed numerically).
With respect to this auxiliary joint PDF one can also derive the
corresponding PDF of Nr , which we denote here P (β )

r (κ, N ).
Clearly, the original distribution Pr (κ, N ) and the new one are
related by the formula

Pr (κ, N ) = eβNκZβP (β )
r (κ, N ). (55)

The role of β is thus to force κ to fluctuate around
a typical value with respect to the auxiliary distri-
bution P(β )

joint(z1, . . . , zN ), now atypical with respect to
Pjoint(z1, . . . , zN ). We then proceed as follows: one performs a
Monte Carlo simulation with respect to P(β )

joint(z1, . . . , zN ) and

constructs the histogram of P (β )
r (κ, N ). Using this distribution

for some β �= 0 in Eq. (55), one gets the distribution (up to an
unknown normalization constant Zβ) in the unbiased problem
(i.e., for β = 0) at a region of κ which is atypical in the orig-
inal problem. Thus, by changing β, one can access different
atypical regions of κ values and gluing the histograms (after
proper reweighting [54]) together, one obtains the distribution
of Pr (κ, N ). When varying β it is important that the sequence
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FIG. 3. Plot of − lnPr (κ, N )/N against κ corresponding MC
simulations (circular color markers) and the exact analytical expres-
sion of the typical regime (solid black curve), intermediate regime
(solid blue curve), and atypical regime (solid olive green curve). For
the MC simulations we have used N = 500 and values of β ranging
from −333 up to 117 in steps of 4.5. For each temperature, Metropo-
lis algorithm is used for 5 × 104 MC steps to achieve equilibration,
after which we generate samples of Nr for another 5 × 104 MC steps.
The inset figure shows a more detailed plot corresponding to the
intermediate regime.

of histograms do overlap, so that they can be glued together,
making the whole distribution of κ properly normalized.

We have applied this reweighting Monte Carlo method
to estimate Pr (κ, N ) for a system of N = 500 eigenvalues
and for r = 1

2 . The results are plotted in Fig. 3, where we
show the theoretical result of − lnPr (κ, N )/N of the three
different regimes (solid black line for the typical regime, solid
blue curve for the intermediate regime, and solid olive green
curve for the atypical regime) together with the Monte Carlo
estimates (solid circles in gradient colors representing the
varying values of the inverse temperature β). Moreover, the
inset of Fig. 3 shows a zoom on the intermediate regime. As
it can be appreciated, there is an excellent agreement between
theory and Monte Carlo simulations.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have derived exact expressions, valid for
any N , of the distribution and all the cumulants of the number
Nr of eigenvalues of a N × N complex Ginibre matrices inside
a disk of radius r. In the limit of large N , and for 0 < r < 1,
we showed that there are actually three different regimes of
fluctuations: in addition to the typical (Gaussian) and the
large deviation regimes, we have unveiled the existence of
an intermediate (non-Gaussian) regime that smoothly inter-
polates between the two. Our main results are thus twofold.
First of all, we solved a puzzling problem of matching raised
by previous results obtained in Refs. [42,43]. Second, our
findings are at variance with the behavior observed in invariant
models, as for instance the β-Gaussian, β-Wishart, or β-
Cauchy ensembles, in which there is no intermediate regime
and, instead, the typical (Gaussian) and the large deviation
regimes match smoothly [10,31]. We hope that our exact
results for the FCS in the complex Ginibre ensemble will be
interesting for the rather wide community working on the FCS

in matrix models and related Coulomb gas systems, and more
generally on random or disordered hyperuniform systems
[21,22]. Besides, the results found in this work could be
experimentally relevant, as it has recently been shown that the
positions of the eigenvalues of the complex Ginibre ensemble
(2) are in one-to-one correspondence with the positions of
fermions in a 2D-rotating harmonic trap [41], a system which,
in principle, can be realized experimentally (see, e.g., [55]).

The intermediate regime we have uncovered in our anal-
ysis is reminiscent of the one observed for the eigenvalue
with largest modulus rmax in the complex Ginibre ensemble
[36,40], where the existence of an intermediate regime was
also found. In fact, a similar intermediate regime for rmax was
also found for 2D-trapped fermions, which constitutes another
instance of 2D-determinantal point process with spherical
symmetry [56,57]. This is in contrast with matrices with real
eigenvalues, such as the classical Gaussian ensembles, where
the large deviations of the top eigenvalue typically match
smoothly with its typical behavior [58].

One may wonder whether such an intermediate regime for
the number of eigenvalues (or particles) in a given domain
also exists for other matrix models or Coulomb gases. In
particular, a problem of matching between the typical and the
large deviation regimes was recently found in [59] for the
positions of the bulk particles in the 1D Coulomb gas in an
external convex potential. As it was pointed out in [59], this
mismatch naturally indicates the presence of an intermediate
regime, but the authors in this work were unable to mathe-
matically describe such regime. Oddly enough, it seems that
in this particular model, there is no intermediate phase for
the fluctuations of the position rmax of the rightmost particle
[60]. Thus, it would be worth to revisit this problem and try
to characterize its intermediate regime completely for bulk
particles. Finally, it is natural to ask whether an intermediate
regime for Nr may also be found in the real or symplectic
Ginibre ensembles. In particular, for the symplectic Ginibre
ensemble, the techniques used in this paper can be extended in
a straightforward manner using an identity similar to Eq. (A2)
(see, e.g., [3,61]).
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APPENDIX A: FINITE N RESULTS FOR THE CUMULANT
GENERATING FUNCTION

We first provide a short derivation of the formula given in
Eq. (10). For this purpose, we use the Vandermonde identity
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to obtain∏
i< j

|zi − z j |2 = det
1�i, j�N

z j−1
i det

1�k,l�N
z̄l

k−1

=
∑

σ1,σ2∈SN

sign(σ1) sign(σ2)
N∏

l=1

zσ1(l )−1
l z̄l

σ2(l )−1,

(A1)

where we used the Leibniz formula det1�i, j�N ai j =∑
σ∈SN

sign(σ )
∏N

l=1 al,σ (l ). Injecting this formula (A1) in
Eq. (2) and integrating over the phases θi = arg zi, we obtain

Prad(r1, . . . , rN ) =
∫ 2π

0
· · ·

∫ 2π

0

N∏
i=1

ri dθi Pjoint(z1, . . . , zN )

= 1

N!

∑
σ∈SN

N∏
k=1

r2σ (k)−1
k

hσ (k)
e−Nv(rk ), (A2)

where we used the identity
∫ 2π

0 ei(m−n)θ dθ = 2πδm,n and
where hk is given in Eq. (11). This yields Eq. (10) given in
the text.

We now compute the moment generating function which
reads as, by definition,

〈e−μNr 〉 =
∫ ∞

0
· · ·

∫ ∞

0

N∏
i=1

driPrad(r1, . . . , rN )e−μ
∑N

i=1 θ (r−ri ).

(A3)

Inserting the expression for the joint PDF of the radii given in
Eq. (A2) we obtain

〈
e−μNr

〉 = 1

N!

∑
σ∈SN

N∏
k=1

∫ ∞

0
du

u2σ (k)−1

hσ (k)
e−Nv(u)−μθ (r−u)

=
N∏

k=1

[
e−μLk (r) + Mk (r)

]
, (A4)

where Lk (r) is given in Eq. (13) and Mk (r) = 1 − Lk (r).
Taking the logarithm, and using the expression for 〈Nr〉 in
(13), we obtain the result given in Eq. (15).

APPENDIX B: MATCHING BETWEEN THE THREE
DIFFERENT REGIMES

Let us finally check that, as stated in the text, the rate
function characterizing the intermediate phase interpolates
between the typical and the atypical regimes. One naturally
expects to recover the typical regime for small values of μ,
while the large argument regime is determined by the large
|μ| behavior of the function χ (μ). Now, in the first case,
expanding χ (μ) for small μ we obtain

χ (μ) = μ2

4

√
2

π
+ O(μ4) = μ2

2
√

2π
+ O(μ4), (B1)

where we have used that

∫ ∞

0
du erfc(u)erfc(−u) =

√
2

π
. (B2)

This implies that the rate function 
I (x) controlling the inter-
mediate phase becomes


I (x) = − min
μ

{μx + χ (μ)} ≈ − min
μ

{
μx + μ2

2
√

2π

}

≈
√

π

2
x2 , as x → 0 (B3)

where we have used that the minimum is achieved at μ∗ =
−x

√
2π . Thus, we have that Pr (κ, N ) ≈ e−√

2Nr
√

π
2 x2

and
recalling that x =

√
N/(2r2)(κ − r2) we finally obtain

Pr (κ, N ) ≈ e−N
3
2

√
π

2r (κ−r2 )2
, (B4)

which corresponds to the typical regime of fluctuations, as
given in the first line of Eq. (7).

On the other hand, for large values of |μ|, we first realize
that the integrand appearing in χ (μ) in Eq. (29) behaves
differently whenever s <

√|μ| or s >
√|μ|. It turns out that

only the first region s <
√|μ| contributes, at leading order for

large |μ|, yielding

χ (μ) ≈
∫ √|μ|

0
ds ln

[
1 + 2√

πs
e|μ|−s2

]

≈
∫ √|μ|

0
du ln

[
2√
πu

e|μ|−u2

]
≈ 2

3
|μ|3/2.

(B5)

Thus, the expression for 
I (x) is obtained by solving the
following minimization problem:


I (x) = − min
μ

{μx + χ (μ)} ≈ − min
μ

{
μx + 2

3
|μ|3/2

}

≈ |x|3
3

, as x → ±∞ (B6)

where in the last step we have used that the value of μ which
minimizes the above expression is μ∗ = −sign(x)x2 (which is
positive for negative x and negative for positive x). Finally, in
terms of the original variables x =

√
N/(2r2)(κ − r2), the tail

of the intermediate regime reads as

Pr (κ, N ) ≈ exp
(
−√

2Nr |x|3
3

)
≈ exp

(
−N2 |κ−r2|3

6r2

)
, (B7)

which exactly coincides with the small argument behavior of
the large deviation regime [i.e., the third line in (7)] since
the large deviation function exhibits exactly the same cubic
behavior (6). We thus conclude that the intermediate regime
matches perfectly the typical and atypical regimes.
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