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Uncertainty relations for time-delayed Langevin systems
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The thermodynamic uncertainty relation, which establishes a universal trade-off between nonequilibrium
current fluctuations and dissipation, has been found for various Markovian systems. However, this relation
has not been revealed for non-Markovian systems; therefore, we investigate the thermodynamic uncertainty
relation for time-delayed Langevin systems. We prove that the fluctuation of arbitrary dynamical observables is
constrained by the Kullback-Leibler divergence between the distributions of the forward path and its reversed
counterpart. Specifically, for observables that are antisymmetric under time reversal, the fluctuation is bounded
from below by a function of a quantity that can be identified as a generalization of the total entropy production in
Markovian systems. We also provide a lower bound for arbitrary observables that are odd under position reversal.
The term in this bound reflects the extent to which the position symmetry has been broken in the system and can
be positive even in equilibrium. Our results hold for finite observation times and a large class of time-delayed
systems because detailed underlying dynamics are not required for the derivation. We numerically verify the
derived uncertainty relations using two single time-delay systems and one distributed time-delay system.
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I. INTRODUCTION

In the last two decades, substantial progress has been
made in stochastic thermodynamics relevant to describ-
ing small systems that fluctuate and are far from thermal
equilibrium [1–8]. The first and second laws of thermodynam-
ics have been generalized for individual trajectory levels, and
fluctuation theorems [4,9,10] that express universal properties
of the probability distributions of thermodynamic quantities
such as work, heat, and entropy production have been derived.
This framework has been used to investigate various systems
such as optical and colloidal particle systems and biochemical
reaction networks [4].

In recent years, the thermodynamic uncertainty relation
(TUR), which states that smaller current fluctuation cannot
be attained without higher thermodynamic cost, has been
found in various Markovian dynamical processes [11–16].
The TUR was first proved for a large-time limit using the large
deviation theory [12]; later, it was found to be valid even for
finite observation times [15]. The general form of the TUR is
represented by the following inequality:

Var[j ]

〈j 〉2
� 2kB

�
, (1)

where kB is Boltzmann’s constant, 〈j 〉 and Var[j ] are the
mean and variance of the current, respectively, and � is the
average of the total entropy production. Analogous precision-
cost trade-off relations have been reported in the literature
[17,18]. Various forms of the TUR have been proposed and
studied intensively in many other contexts [19–34]. Hereafter,
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the term “bound” refers the lower bound on the relative
fluctuation of currents.

To date, the TUR has been investigated only in Markovian
systems. However, the time delay that causes non-Markovian
dynamical behavior inevitably exists in many real-world
stochastic processes such as gene regulation [35,36], bio-
chemical reaction networks [37], and control systems in-
volving a feedback protocol [38–40]. It is well known that
time delay can completely alter system dynamics, e.g., delay-
induced oscillations [35]. Recently Ref. [41] has shown that
even a small delay time leads to finite heat flow in the
system. Despite the importance of delay in many classical and
quantum systems, thermodynamic analysis of such systems
remains challenging [42,43].

In this paper, we study the TUR for general dynamical
observables that are antisymmetric under conjugate opera-
tions such as time or position reversal. First, we define a
trajectory-dependent quantity σ [cf. Eq. (6)], whose average
is the Kullback-Leibler (KL) divergence between the distri-
butions of the forward path and its conjugate counterpart.
In the absence of time delay and under time reversal, σ is
identified as the trajectory-dependent total entropy production
in Markovian systems. Starting from the point that the joint
probability distribution of σ and the observable obeys the
strong detailed fluctuation theorem, we prove that the relative
fluctuation of the observable is lower bounded by 2/(e〈σ 〉−1).
This implies that the time irreversibility in the system con-
strains the fluctuation of observables that are odd under
time reversal. For observables that are antisymmetric under
position reversal, the bound reflects the degree of position-
symmetry breaking in the system. The derived bound holds
for arbitrary observation times and for a large class of time-
delayed systems such as continuous- or discrete-time systems
with multiple or distributed delays. We numerically verify the
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validity of the derived inequality in three systems wherein 〈σ 〉
can be analytically obtained.

II. MODEL

To clearly illustrate the results, we consider here a sin-
gle time-delayed system with dynamical variables x(t ) =
[x1(t ), . . . , xN (t )]�, as described by the following set of cou-
pled Langevin equations:

ẋ = F(x, xτ ) + ξ, (2)

where xτ ≡ x(t − τ ), F(x, xτ ) ∈ RN is a drift force, ξ(t ) =
[ξ1(t ), . . . , ξN (t )]� is zero-mean white Gaussian noise with
covariance 〈ξi(t )ξ j (t ′)〉 = 2Diδi jδ(t − t ′), and τ � 0 denotes
the delay time in the system. Here Di denotes the noise inten-
sity. Equation (2) is interpreted as Ito stochastic integration.
Throughout this paper, Boltzmann’s constant is set to kB = 1.
Let P(x, t ) be the probability distribution function for the
system to be in state x at time t . Then the corresponding
Fokker-Planck equation (FPE) is expressed as [44,45]

∂t P(x, t ) = −
N∑

i=1

∂xi Ji(x, t ), (3)

where

Ji(x, t ) =
∫

dy Fi(x, y)P(y, t − τ ; x, t ) − D∂xi P(x, t )

= F i(x)P(x, t ) − Di∂xi P(x, t ) (4)

is the probability current. Here

F i(x) =
∫

dy Fi(x, y)P(y, t − τ |x, t ) (5)

is an effective force obtained by taking the delay-averaged
integration of the variable y and P(y, t − τ ; x, t ) is a joint
probability density for a system that takes value x at time t
and y at time t − τ . Generally, solving P(y, t − τ ; x, t ) results
in an infinite hierarchy of equations, where the n-time proba-
bility distribution depends on the (n + 1)-time one. Therefore,
it is difficult to analytically obtain the effective force F i(x),
except in linear systems.

We define X[s,e] ≡ {x(t )}t=e
t=s as a trajectory that begins

at t = s and ends at t = e. Let P (X[s,e] ) be the probability
of observing the trajectory X[s,e]. For each trajectory X[s,e],
we consider a conjugate trajectory X†

[s,e] defined by X†
[s,e] ≡

{x†(t )}t=e
t=s . Assuming that we observe the system during a time

interval [0, T ], we then define a trajectory-dependent quantity
σ (X[0,T ] ), which is the ratio of the probabilities of observing
the forward path and its conjugate counterpart, as follows:

σ ≡ ln
P (X[0,T ] )

P (X†
[0,T ] )

. (6)

For the sake of simplicity, we use the notation X, omitting
the time interval, to indicate X[0,T ]. If the conjugate operation
satisfies the property (X†)† = X, then σ is odd under it, i.e.,
σ (X†) = −σ (X). Hereafter, we consider conjugate operations
that satisfy this property. Introducing the probability distri-
bution P(σ ) = ∫

DX δ[σ − σ (X)]P (X), we show that P(σ )

satisfies the fluctuation theorem:

P(σ )

P(−σ )
= eσ . (7)

Equation (7) can be derived as follows:

P(σ ) =
∫

DX δ[σ − σ (X)]P (X)

=
∫

DX δ[σ − σ (X)]eσ (X)P (X†)

= eσ

∫
DX δ[σ − σ (X)]P (X†)

= eσ

∫
DX† δ[σ + σ (X†)]P (X†)

= eσ P(−σ ). (8)

Equation (7) implies that σ satisfies the integral fluctuation
theorem, i.e., 〈e−σ 〉 = 1. By applying Jensen’s inequality
〈e−σ 〉 � e−〈σ 〉, we have 〈σ 〉 � 0. The average value of σ

can also be interpreted as the KL divergence between the
distributions P and P†:

〈σ 〉 = DKL[P||P†] =
∫

DXP (X) ln
P (X)

P†(X)
, (9)

where P†(X) ≡ P (X†). From Eq. (9), 〈σ 〉 becomes zero only
when P (X) = P (X†) for all trajectories X.

Let us discuss the conjugate operations that will be used
here. The most conventional one is time reversal, i.e., x†(t ) =
εx(T − t ). Here εi = ±1 for even and odd variables xi, re-
spectively. For systems where both even and odd variables
exist, a reversed trajectory X† can be generated under forward
dynamics. Therefore, σ is mathematically well defined. In this
case, 〈σ 〉 is a measure of the time-reversal symmetry breaking
in the system. For steady-state systems involving only even
variables, σ can be decomposed as

σ = − ln
Pss[x(T )]

Pss[x(0)]
+ ln

P[X|x(0)]

P[X†|x†(0)]
, (10)

where Pss(·) is the steady-state distribution and P (·|·) is
the conditional path probability. When the time delay van-
ishes, σ is identified as the total entropy production along
a trajectory in Markovian systems [4]; the first and second
terms in the right-hand side of Eq. (10) correspond to the
system and medium entropy production, respectively. Under
time reversal, 〈σ 〉 can be considered a generalization of total
entropy production for time-delayed systems [46,47]. It is
worth noting that this generalization of entropy production is
mathematical and that it is generally difficult to assess its rela-
tion to the thermodynamic notion of entropy production [48],
except in Markovian processes where an explicit connection
was established [3,49]. Another possible conjugate operation
is position reversal, i.e., x†(t ) = κ − x(t ). Here κ ∈ RN is a
constant that can basically take an arbitrary value, except in
systems involving nth-time-derivative variables, where n ∈
N>0. For these systems, κ must be carefully chosen to ensure
that a reversed trajectory can be generated by forward dynam-
ics. In particular, κ must be set to κi = 0 for all such variables
xi. For example, if the system variables are the position and
velocity of a particle, i.e., x(t ) = [r(t ), ṙ(t )]�, where r(t ) is
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FIG. 1. Illustration of the conjugate operations. For simplicity,
we assume here that the system involves only even variables. For the
trajectory X ≡ {x(t )}t=T

t=0 , its reversed counterpart is X† ≡ {x†(t )}t=T
t=0 ,

where x†(t ) is equal to x(T − t ) [or −x(t )] under time reversal
(or position reversal). Here T denotes the observation time.

the particle’s position, then the reversed trajectory {x†(t )} =
{κ1 − r(t ), κ2 − ṙ(t )} can be generated by the forward dy-
namics only if κ2 = 0. Under this conjugate operation, 〈σ 〉
reflects the degree of position-symmetry breaking with respect
to the position κ/2 in the system. In the remaining part of
the paper, we consider the κ = 0 case. To distinguish when
each operation is employed, we use subscripts t and p to
refer time reversal and position reversal, respectively. The
conjugate operations are illustrated in Fig. 1.

Because 〈σ 〉 is the KL divergence between forward and
reversed trajectories and trajectory-based quantities were pre-
viously measured [50–54], 〈σ 〉 is in principle experimentally
measurable. As will be shown in the examples, 〈σ 〉 can be
analytically calculated for several classes of systems. In what
follows, we investigate a more detailed form of σ with respect
to conjugate operations for the system defined in Eq. (2). For
T > τ , the path probability can be rewritten

P (X[0,T ] ) = P (X[τ,T ]|X[0,τ ] )P (X[0,τ ] ),
(11)

P (X†
[0,T ] ) = P (X†

[τ,T ]|X†
[0,τ ] )P (X†

[0,τ ] ),

where P (X[τ,T ]|X[0,τ ] ) is the probability of observing X[τ,T ],
conditioned on X[0,τ ]. We note that under time reversal,
X†

[0,τ ] = {εx(T − t )}t=τ
t=0. The conditional probability can be

calculated via the path integral as

P (X[τ,T ]|X[0,τ ] ) = N exp

[
−

N∑
i=1

Si(X[0,T ] )

]
, (12)

where Si(X[0,T ] ) is the stochastic action given by

Si(X[0,T ] ) =
∫ T

τ

dt

{
[ẋi − Fi(x, xτ )2]

4Di
+ ∂xi Fi(x, xτ )

2

}
, (13)

and N is a positive term independent of the trajectory.
Equation (12) can be obtained by discretizing the Langevin
equation [cf. Eq. (2)] and evaluating the path probability via
the occurrence probability of the noise trajectory [55]. The
cross term

∫
dt Fi(x, xτ )ẋi in Eq. (13) should be interpreted as∫

dt Fi(x, xτ ) ◦ ẋi, where ◦ denotes the Stratonovich product.
Using Eq. (11), the average of σ can be decomposed as

〈σ 〉 =
〈

ln
P (X[τ,T ]|X[0,τ ] )

P (X†
[τ,T ]|X†

[0,τ ] )

〉
+
〈

ln
P (X[0,τ ] )

P (X†
[0,τ ] )

〉
. (14)

In the long-time limit, i.e., T → ∞, the first term in the right-
hand side of Eq. (14) becomes dominant as the second term

is only a boundary value. Neglecting the contribution of this
boundary term and plugging Eq. (12) into Eq. (14), 〈σt 〉 and
〈σp〉 can be approximated as

〈σt 〉 ≈ 1

2

N∑
i=1

〈∫ T −τ

0
dt

{
[ẋi + Fi(x, x−τ )]2

2Di
+ ∂xi Fi(x, x−τ )

}

−
∫ T

τ

dt

{
[ẋi − Fi(x, xτ )]2

2Di
+ ∂xi Fi(x, xτ )

}〉
,

〈σp〉 ≈ 1

2

N∑
i=1

〈∫ T

τ

dt

{[
ẋi

Di
− Fi(x, xτ ) − Fi(−x,−xτ )

2Di
− ∂xi

]

◦ [Fi(x, xτ ) + Fi(−x,−xτ )]

}〉
. (15)

For general systems, it is difficult to obtain more detailed
forms of 〈σt 〉 and 〈σp〉 than those in Eq. (15), except in linear
systems. 〈σt 〉 becomes zero when the system is in equilibrium
because 〈σt 〉 characterizes the time reversibility of the system.
Contrastingly, 〈σp〉 can be positive even in the equilibrium
system so long as the symmetry with respect to position
reversal is broken.

III. DERIVATION OF UNCERTAINTY RELATION

In this section, we derive the TUR for an arbitrary dy-
namical observable j (X), which is antisymmetric under the
conjugate operation, i.e., j (X†) = −j (X). This antisymmet-
ric property can be satisfied, e.g., for generalized currents of
the form j (X) = ∫ T

0 dt �(x)� ◦ ẋ under time reversal, or for

observables j (X) = ∫ T
0 dt 
o(x) or j (X) = ∫ T

0 dt �e(x)� ◦ ẋ
under position reversal. Here 
o(x) and �e(x) are arbitrary
odd and even functions, respectively.

In Ref. [56], we derived a modified variant of the TUR
using the fluctuation theorem for Markovian processes. Re-
gardless of the underlying dynamics, the bound holds for as
long as the fluctuation theorem is valid. Here we apply the
same technique and derive the TUR for time-delayed systems.
First, we show that the joint probability distribution of σ and
j , P(σ, j ), obeys the fluctuation theorem; this can be proved
analogously as follows:

P(σ, j ) =
∫

DX δ[σ − σ (X)]δ[j − j (X)]P (X)

=
∫

DX δ[σ − σ (X)]δ[j − j (X)]eσ (X)P (X†)

= eσ

∫
DX δ[σ − σ (X)]δ[j − j (X)]P (X†)

= eσ

∫
DX† δ[σ + σ (X†)]δ[j + j (X†)]P (X†)

= eσ P(−σ,−j ). (16)

Inspired by Ref. [57], where the statistical properties of
entropy production were obtained from the strong detailed
fluctuation theorem, we derive the TUR solely from Eq. (16).
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Based on the relation

1 =
∫ ∞

−∞
dσ

∫ ∞

−∞
dj P(σ, j )

=
∫ ∞

0
dσ

∫ ∞

−∞
dj (1 + e−σ )P(σ, j ), (17)

we introduce a probability distribution Q(σ, j ) ≡ (1 +
e−σ )P(σ, j ), defined over [0,∞) × (−∞,∞). Using the dis-
tribution Q(σ, j ), the moments of σ and j can be expressed
in an alternative way as follows:

〈σ 2k〉 = 〈σ 2k〉Q, 〈j 2k〉 = 〈j 2k〉Q,

〈σ 2k+1〉 =
〈
σ 2k+1 tanh

[σ
2

]〉
Q
, (18)

〈j 2k+1〉 =
〈
j 2k+1 tanh

[σ
2

]〉
Q
,

where 〈··〉Q denotes the expectation with respect to Q(σ, j ).
Applying the Cauchy-Schwartz inequality to 〈j 〉, we obtain

〈j 〉2 =
〈
j tanh

[σ
2

]〉2
Q
� 〈j 2〉Q

〈
tanh

[σ
2

]2
〉

Q

. (19)

The last term in the right-hand side of Eq. (19) can be further
upper bounded. We find that〈

tanh
[σ

2

]2
〉

Q

� tanh

[ 〈σ 〉
2

]
. (20)

Equation (20) is obtained by first noticing that tanh[ σ
2 ]2 �

tanh{ σ
2 tanh[ σ

2 ]} for all σ � 0. Thereafter, by applying
Jensen’s inequality to the concave function tanh(x), we obtain〈

tanh
{σ

2
tanh

[σ
2

]}〉
Q
� tanh

[〈σ
2

tanh
[σ

2

]〉
Q

]
= tanh

[ 〈σ 〉
2

]
. (21)

From Eqs. (19) and (20), we have

〈j 〉2 � 〈j 2〉 tanh

[ 〈σ 〉
2

]
. (22)

By transforming Eq. (22), we obtain the following TUR for
the observable j :

Var[j ]

〈 j〉2
= 〈j 2〉 − 〈j 〉2

〈j 〉2
� 2

e〈σ 〉 − 1
. (23)

The inequality in Eq. (23) is the main result of the paper. For
observables that are antisymmetric under time (or position)
reversal, the term 〈σ 〉 in the bound should be replaced by 〈σt 〉
(or 〈σp〉).

In the limit τ → 0, the system [cf. Eq. (2)] becomes a
continuous-time Markovian process, with the conventional
TUR providing a lower bound on the current fluctuations as
in Eq. (1). Since e〈σ 〉 − 1 � 〈σ 〉, the derived bound is looser
than the conventional bound. Regarding this difference, there
are two possible explanations. First, it is because there is no
requirement on the details of the underlying dynamics of the
system considered in the derivation. It was proven that the
conventional bound does not hold for discrete-time Markovian
processes [26,58]. Contrastingly, the derived bound holds for

both continuous- and discrete-time systems. The lower bound
in Eq. (23) is the same as that in Ref. [26] in which the
TUR was derived in the long-time limit for discrete-time
Markovian processes. Second, the derived bound also holds
for noncurrent observables and differs from the conventional
bound that holds only for current-type observables defined by
j (X) = ∫ T

0 dt �(x)� ◦ ẋ.

IV. EXAMPLES

In this section, we study the derived bound with the
help of three systems. The first two steady-state systems
are embedded in a Markovian heat reservoir, whereas the
third is in contact with a non-Markovian environment, i.e., a
heat reservoir with memory effects. Unlike the conventional
TUR, which was derived for steady-state systems, our bound
holds even for non-steady-state systems. Therefore, in the
last system, we focus on a non-steady state. For steady-state
systems, Pss(x) and Jss(x) denote the probability distribution
and the probability current, respectively.

A. One-dimensional system

We study a one-dimensional linear system whose drift term
is given by

F (x, xτ ) = −ax − bxτ + f , (24)

where a, b, and f are the given constants satisfying the
conditions a > b > 0, f > 0. It is easy to see that 〈x〉 = f ,
where f = f /(a + b). The system has a Gaussian steady-state
distribution that exists for arbitrary delay time τ because the
force is linear,. We introduce a new stochastic variable z,
defined as z = x − f . The FPE corresponding to z reads as

∂t P(z, t ) = −∂z[G(z)P(z, t )] + D∂2
z P(z, t ), (25)

where G(z) = ∫
dy[−az − by]P(y, t − τ |z, t ). At the

steady state, the probability current vanishes, i.e.,
Jss(z) = G(z)Pss(z) − D∂zPss(z) = 0. Here Pss(z) denotes
the steady-state distribution. Let φ(t ) = 〈z(0)z(t )〉 be
the time-correlation function of z; it was shown that
φ(t ) = A+e−c|t | + A−ec|t | for all |t | � τ [44,59], where
c = √

a2 − b2, A± = 1/2{φ(0) ± D/c}, and

φ(0) = 〈z2〉 = D

c

c + b sinh(cτ )

a + b cosh(cτ )
. (26)

First, we consider the TUR for observables that are anti-
symmetric under time reversal. According to Eq. (23), the
following inequality should be satisfied:

〈j 〉2

Var[j ]
� e〈σt 〉 − 1

2
. (27)

Since evaluating 〈σt 〉 for T > τ necessitates complicated
calculations, we consider only the case of T � τ in which
the path probability P (X[0,T ] ) can be calculated analytically
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as [42]

P (X[0,T ] ) ∝ exp

{
− 1

4D

∫ T

0
dt[ẋ + cx − c f ]2

}
exp

[
− c

2D

{A+e−cT [x(0) − f ] − A−[x(T ) − f ]}2

A2+e−2cT − A2−

]
. (28)

It can be confirmed that P (X) = P (X†); thus, 〈σt 〉 = 0. Con-
sequently, Eq. (27) implies that an arbitrary observable that is
antisymmetric under time reversal vanishes on average, i.e.,
〈j 〉 = 0. For the current-type observable defined by j (X) =∫ T

0 dt �(x) ◦ ẋ(t ), where �(x) is an arbitrary projection
function, one can easily check that 〈j 〉 = T

∫∞
−∞ dz �(z +

f )Jss(z) = 0. Generally, this can be proven as

〈j 〉 =
∫

DX j (X)P (X)

= 1

2

[∫
DX j (X)P (X) −

∫
DX† j (X†)P (X†)

]
= 0.

(29)

Next, let us consider the TUR for noncurrent observables
that are antisymmetric under position reversal. Specifically,
we validate the TUR for the observable j (X) = ∫ T

0 dt x,
representing the area under the trajectory. The average of the
observable is 〈j 〉 = T 〈x〉 = T f . For T � τ , using the path
integral, σp can be calculated as

σp = ln
P (X[0,T ] )

P (X†
[0,T ] )

= c f

D

∫ T

0
dt [ẋ + cx]

+ 2c f

D

A+e−cT x(0) − A−x(T )

A+e−cT + A−
. (30)

Because the system is in the steady state, we obtain

〈σp〉 =
[

cT + 2
A+e−cT − A−
A+e−cT + A−

]
c f

2

D
. (31)

The variance of the observable can also be obtained analyti-
cally as follows:

Var[j ] =
〈∫ T

0
dt
∫ T

0
ds [x(t ) − f ][x(s) − f ]

〉
=
∫ T

0
dt
∫ T

0
ds φ(t − s)

=
∫ T

0
dt
∫ T

0
ds [A+e−c|t−s| + A−ec|t−s|]

= 2

c2
{A+[e−cT + cT − 1] + A−[ecT − cT − 1]}. (32)

We define

Ep ≡ 2〈j 〉2

Var[j ][e〈σp〉 − 1]
, (33)

which should satisfy Ep � 1. Using Eq. (31) and Eq. (32), one
can numerically evaluate Ep and verify the TUR for T � τ .
For the T > τ case, one can calculate 〈σp〉 via Eq. (15) and

obtain

〈σp〉 = T f 2

D
+
[

cτ + 2
A+e−cτ − A−
A+e−cτ + A−

]
c f

2

D
. (34)

From Eq. (34), it can be concluded that decreasing the force f
or increasing the noise intensity D both result in higher current
fluctuation, which is consistent with our intuition. In the long-
time limit T → ∞, we have limT →∞ T −1Var[j ] = χ ′′

j (0),
where χj (k) is the scaled cumulant-generating function de-
fined by χj (k) = limT →∞ T −1 ln〈ekj 〉. Using discrete Fourier
series, one can obtain χj (k) = k f + Dk2/(a + b)2 (see Ap-
pendix A). Therefore, the derived bound can be confirmed for
T → ∞ as

Var[j ]

〈j 〉2
= 2D

T f 2
� 2

〈σp〉 � 2

e〈σp〉 − 1
. (35)

Finally, we run numerical simulations to calculate Var[j ]
(for T > τ ) and verify the bound. We randomly select param-
eters (a, b, f , D, τ, T ) and repeat the simulations 2 × 106

times for each selected parameter setting using time step
�t = 10−4. We plot Ep as a function of 〈σp〉 as the triangular
points in Fig. 2. The ranges of the parameters are given in
the corresponding caption. As seen, all triangular points are
located below the dashed line, which corresponds to the satu-
rated case of the bound; thus, the derived TUR is empirically
validated in this system.

Due to the presence of external force f , the position sym-
metry with respect to 0 is broken in the system. The degree
of broken symmetry is reflected via the quantity 〈σp〉, which
is always positive and is a monotonically increasing function

FIG. 2. Numerical verification of the TUR in one- and two-
dimensional systems. The dashed line represents the saturated TUR.
In the one-dimensional system, Ep is plotted as a function of 〈σp〉
with triangular points. The parameter ranges are a, f , D, τ, T ∈
[0.01, 2], and b ∈ (0, a). In the two-dimensional system, Et and Ẽt are
plotted as functions of 〈σt 〉 with circular and square points, respec-
tively. The parameter ranges are the same as in the one-dimensional
system, except T ∈ [0.01, τ ]. Ep � 1, Et � 1, and Ẽt � 1 imply that
the derived TUR is satisfied.
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of f . Therefore, the derived bound implies that increasing f
results in a lower fluctuation. From a different point of view,
since j = T f + ∫ T

0 dt z, increasing f enlarges the mean 〈j 〉
but keeps the variance Var[j ] unchanged. Consequently, the
fluctuation of the observable decreases when f → ∞, which
is consistent with the conclusion obtained from the TUR.

B. Two-dimensional system

Here, we consider a simple two-dimensional system with
drift force

F(x, xτ ) =
[−ax1 + bx2,τ

−ax2 − bx1,τ

]
, (36)

where a > b > 0 are the given constants and xi,τ ≡ xi(t − τ ).
The noise intensities are set to D1 = D2 = D. This system
is manipulated under a parabolic potential with linear delay
feedback. The steady-state distribution Pss(x) of the system
is Gaussian, i.e., Pss(x) ∝ exp[−1/2x��−1x], because the
force is linear. Here � is the covariance matrix with elements
�i j = φi j (0), and φi j (z) = 〈xi(t )x j (t + z)〉 denotes the time-
correlation function. The analytical form of this function can
be obtained for |z| � τ (see Appendix B 1). When T � τ , 〈σt 〉
can be calculated using a path integral (see Appendix B 2),

〈σt 〉 = 4A2
12[1 − e−2cT ]{

(A+
11)2 + A2

12

}
e−2cT − {

(A−
11)2 + A2

12

} , (37)

where c = √
a2 − b2 and

A±
11 = D

2c
× (c ± a)e±cτ

a cosh(cτ ) + c sinh(cτ )
,

A12 = D

2c
× b

a cosh(cτ ) + c sinh(cτ )
. (38)

As seen, due to the time delay, 〈σt 〉 is positive; this implies
that the time-reversal symmetry in the system is broken.

Now, we validate the TUR for the following current-type
observable:

j (X) =
∫ T

0
dt {(−ax1 + bx2) ◦ ẋ1 + (−ax2 − bx1) ◦ ẋ2}.

(39)

We consider only the T � τ case, where 〈σt 〉 can be analyti-
cally obtained. The effective forces are also linear and can be
calculated explicitly (see Appendix B3):

F 1(x) = −ax1 + bx2, F 2(x) = −ax2 − bx1, (40)

where

a = c[a cosh(cτ ) + c sinh(cτ )]

a sinh(cτ ) + c cosh(cτ )
,

b = bc

a sinh(cτ ) + c cosh(cτ )
. (41)

The average of the observable is then obtained as

〈j 〉 = T
∫

dx
{
(−ax1 + bx2)Jss

1 (x) + (−ax2 − bx1)Jss
2 (x)

}
= 2DT b2

a cosh(cτ ) + c sinh(cτ )
, (42)

FIG. 3. The quantity 〈σt 〉 and the average dissipated heat 〈�Q〉 in
the two-dimensional system. Parameter a is varied from 1 to 5, while
other parameters are fixed as b = 1, D = 1, T = 0.5, and τ = 1.

which is always positive for an arbitrary delay time.
Equation (42) reveals that increasing b, D, or T leads to
a higher average current. We also consider a noncurrent
observable j̃ (X) = sign[j (X)], which represents the sign of
the observable j ; this observable is obviously antisymmetric
under time reversal. We define Et ≡ 2〈j 〉2/{Var[j ][e〈σt 〉 − 1]}
and Ẽt ≡ 2〈̃j 〉2/{Var[̃j ][e〈σt 〉 − 1]}, which should satisfy Et �
1 and Ẽt � 1. We run numerical simulations with the same
settings as in the one-dimensional system and plot Et and Ẽt as
functions of 〈σt 〉 with circular and square points, respectively,
in Fig. 2. As seen, all circular and square points lie below
the dashed line, thus empirically verifying the derived bound.
During the simulation, we have not seen any violation of
the inequality Var[j ]/〈 j〉2 � 2/〈σt 〉. We conjecture that for
continuous-time systems, the fluctuation of arbitrary currents
is lower bounded by 2/〈σt 〉.

Now we examine the relationship between the term 〈σt 〉
and the heat dissipated from the system to the environment.
The heat can be identified as the work done by the system on
the environment [42,60] and quantified as

�Q =
∫ T

0
dt{F1(x, xτ ) ◦ ẋ1 + F2(x, xτ ) ◦ ẋ2}. (43)

Its average can be calculated analytically as

〈�Q〉 = T 〈(−ax1 + bx2,τ )2 + (ax2 + bx1,τ )2 − 2aD〉
= T {2(a2 + b2)φ11(0) + 4abφ12(τ ) − 2aD}
= 2DT b2 × cosh(cτ )

a cosh(cτ ) + c sinh(cτ )
. (44)

Equation (44) shows that the average dissipated heat is always
nonnegative, i.e., 〈�Q〉 � 0. We plot 〈σt 〉 and 〈�Q〉/D in
Fig. 3 to illustrate how these quantities are related. We vary
the value of a, while keeping other parameters unchanged.
As seen, 〈σt 〉 and 〈�Q〉 show a strong correlation. When
a is increased, both 〈σt 〉 and 〈�Q〉 decrease. In particular,
〈�Q〉 decreases with order O(a−1), while 〈σt 〉 declines ex-
ponentially. Indeed, we can prove that 〈σt 〉 � 〈�Q〉/D (see
Appendix B 4). Consequently, it can be concluded that

Var[j ]

〈j 〉2
� 2

e〈�Q〉/D − 1
, (45)
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which is a direct consequence of the derived bound. In the re-
gion a � 3, 〈σt 〉 is almost zero; this indicates that the system is
near equilibrium. Nonetheless, 〈�Q〉 slowly converges to zero
due to the time delay. Therefore, the term 〈σt 〉 characterizes
the irreversibility in the system better than 〈�Q〉 does.

C. Dragged particle in a non-Markovian heat reservoir

We study a harmonic oscillator of a unit-mass colloidal
particle immersed in a heat reservoir at inverse temperature
β with memory effects [61–64]. The center of the harmonic
potential U (x, λ(t )) = k/2(x − λ(t ))2 is dragged by an exter-
nal protocol λ(t ). The dynamics of the system are governed
by the following generalized Langevin equation:

ẍ(t ) = −
∫ t

0
ds γ (t − s)ẋ(s) − ∂xU (x, λ(t )) + η(t ), (46)

where γ (t ) = (γ0/τc)e−|t |/τc is the friction memory kernel and
η(t ) is the zero-mean Gaussian colored noise with variance
〈η(t )η(t ′)〉 = β−1γ (t − t ′). Here τc denotes the memory time
of the heat reservoir and γ0 is a positive constant. It is obvious
that the system has distributed time delays.

Hereafter, we consider a time-symmetric protocol given by

λ(t ) =
{
αt, if 0 � t < T/2,

α(T − t ), if T/2 � t � T,
(47)

where α > 0 is a constant. This protocol satisfies the condition
λ(t ) = λ(T − t ). Suppose that the system is initially in equi-
librium, i.e., the initial distribution is of a Maxwell-Boltzmann
type, P(x, v, 0) = C exp[−β{v2/2 + U (x, λ(0)}]. Here v ≡ ẋ
is the velocity and C is the normalization constant. Subse-
quently, the system is coupled with a non-Markovian heat
reservoir and driven out of equilibrium by the protocol λ(t )
during the time interval [0, T ]. The heat exchanged between
the system and the heat reservoir is defined as

�Q =
∫ T

0
dt

{∫ t

0
ds γ (t − s)ẋ(s) − η(t )

}
◦ ẋ(t )

= −
∫ T

0
dt {ẍ(t ) + k[x(t ) − λ(t )]} ◦ ẋ(t ). (48)

Because the trajectory X[0,T ] is uniquely specified if the noise
trajectory η ≡ {η(t )}t=T

t=0 and the initial condition ψ (0) ≡
[x(0), v(0)] are given, the path probability P[X[0,T ]|ψ (0)]
can be expressed by the occurrence probability of the noise
trajectory η as follows:

P[X|ψ (0)]DX = P (η)Dη. (49)

Since the noise is Gaussian, the probability of observing
trajectory η is calculated as

P (η) ∝ exp

[
−1

2

∫ T

0
dt
∫ T

0
dt ′ η(t )G(t, t ′)η(t ′)

]
, (50)

where G(t, t ′) is the inverse of the time-correlation function
of the noise and defined as follows:∫ T

0
dt ′ G(t, t ′)β−1γ (t ′ − t ′′) = δ(t − t ′′). (51)

Plugging Eq. (50) into Eq. (49), the path probability can be
readily obtained as

P[X[0,T ]|ψ (0)]

= N exp

[
−1

2

∫ T

0
dt
∫ T

0
dt ′ G(t, t ′)

×
{

ẍ(t ) +
∫ t

0
ds γ (t − s)ẋ(s) + k[x(t ) − λ(t )]

}

×
{

ẍ(t ′) +
∫ t ′

0
ds′ γ (t ′−s′)ẋ(s′) + k[x(t ′) − λ(t ′)]

}]
,

(52)

where N is a Jacobian term that is independent of the trajec-
tories. The quantity σt can be expressed as

σt = ln
P(x(0), v(0), 0)

P(x(T ),−v(T ), 0)
+ ln

P[X[0,T ]|ψ (0)]

P[X†
[0,T ]|ψ†(0)]

. (53)

Here ψ†(0) ≡ [x(T ),−v(T )]. Using the formula of the path
probability in Eq. (52), we can prove that the second term in
the right-hand side of Eq. (53) is equal to the dissipated heat
[65]:

ln
P[X[0,T ]|ψ (0)]

P[X†
[0,T ]|ψ†(0)]

= β�Q. (54)

We now verify the derived TUR with the current j (X) =∫ T
0 dt ẋ(t ) = x(T ) − x(0), which expresses the displacement

of the particle. Since this current is odd under time reversal,
the inequality Var[j ]/〈j 〉2 � 2/(e〈σt 〉 − 1) should be satisfied.
The fluctuation of this current and the derived bound can be
calculated analytically. First, we have that 〈x(0)〉 = 〈v(0)〉 =
0, 〈x(0)2〉 = (kβ )−1, and 〈v(0)2〉 = β−1. The average current
is 〈j 〉 = 〈x(T )〉 − 〈x(0)〉 = 〈x(T )〉. The variance of the cur-
rent becomes

Var[j ] = 〈x(T )2〉 − 〈x(T )〉2 + 〈x(0)2〉 − 2〈x(0)x(T )〉. (55)

From Eq. (48), the average dissipated heat can be calculated
as

〈�Q〉 = 1

2
〈v(0)2 − v(T )2〉 + k

2
〈x(0)2 − x(T )2〉

+ kα

〈∫ T

T/2
dt x(t ) −

∫ T/2

0
dt x(t )

〉
. (56)

The average of the boundary term in Eq. (53) is〈
ln

P(x(0), v(0), 0)

P(x(T ),−v(T ), 0)

〉
= β

2
〈v(T )2 − v(0)2 + k[x(T )2 − x(0)2]〉. (57)

Combining Eqs. (56) and (57), we readily obtain

〈σt 〉 = kαβ

〈∫ T

T/2
dt x(t ) −

∫ T/2

0
dt x(t )

〉
. (58)

Using the Laplace transform, analytical forms of 〈j 〉, Var[j ],
and 〈σt 〉 can be obtained (see Appendix C for detailed calcu-
lations). We randomly sample parameters (α, β, γ0, τc, k, T )
and evaluate 〈j 〉, Var[j ], and 〈σt 〉 using Eq. (C18). The
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FIG. 4. Numerical verification of the TUR in the system of a
dragged colloidal particle. The parameter ranges are α, β, γ0, τc, k ∈
[0.1, 2], and T ∈ [1, 10]. Var[j ]/〈j〉2 is plotted as a function of 〈σt 〉
with violet circles. The dashed line represents the derived bound
2/(e〈σt 〉 − 1). All circular points lie above the line; thus, the derived
bound is empirically verified.

parameter ranges are given in the caption of Fig. 4. As seen
in this figure, the derived bound is satisfied for all parameter
settings. In the region 〈σt 〉 < 1, some circular points touch
the line, which implies that the derived bound is attainable
when the system is near equilibrium. As in the example of the
two-dimensional system, we find that Var[j ]/〈j 〉2 � 2/〈σt 〉 is
satisfied for all selected parameters. This evidence strengthens
the conjecture made in the preceding example.

We next consider a physical interpretation of the term 〈σt 〉
in this system. From Eqs. (53) and (54), we have

〈σt 〉 =
〈
ln

P(ψ (0), 0)
P(ψ†(0), 0)

〉
+ β〈�Q〉. (59)

As seen, there are two contributions in 〈σt 〉, the boundary term
〈ln P(ψ (0), 0)/P(ψ†(0), 0)〉 and the dissipated heat β〈�Q〉.
Neglecting this boundary value, one can approximate 〈σt 〉 ≈
β〈�Q〉. This implies that 〈σt 〉 can be interpreted as the av-
erage dissipated heat in the system. We note that for general
cases, i.e., the protocol is time asymmetric, this is not the case.

V. CONCLUSION

In summary, we derived the TUR for the time-delayed sys-
tems. We provided two bounds on the relative fluctuations of
general dynamical observables that are antisymmetric under
conjugate operations. For observables that are antisymmetric
under time reversal, the fluctuation is lower bounded by
2/(e〈σt 〉 − 1), where 〈σt 〉 can be considered a generalization
of the total entropy production. On the other hand, the fluctu-
ation of observables that are odd under position reversal is
constrained by 〈σp〉, which reflects the degree of position-
symmetry breaking in the system. These results hold for an
arbitrary observation time. Because it is not necessary to
know the underlying dynamics of the systems, the derived
TUR holds for a large class of continuous- and discrete-time
systems. The bound can be used as a tool to estimate a hidden
thermodynamic quantity in real-world systems that involve
time delays from finite-time experimental data.

From the results in the numerical experiment, we conjec-
tured that the fluctuation of arbitrary time-integrated currents
in continuous-time systems is bounded from below by the
reciprocal of 〈σt 〉. Proving this inequality would substantially
improve the bound and requires further investigation.
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APPENDIX A: SCALED CUMULANT-GENERATING
FUNCTION OF OBSERVABLES

Here we calculate the scaled cumulant-generating function
(SCGF) of the observable j (X) = ∫ T

0 dt x in the long-time

limit T → ∞. Note that j = T f + ∫ T
0 dt z. By imposing

periodic boundary conditions on the trajectories, z(t ) can be
expanded in a discrete Fourier series [66] as

z(t ) =
∞∑

n=−∞
zne−iωnt , (A1)

where the coefficient zn can be calculated via inverse trans-
forms

zn = 1

T

∫ T

0
dt z(t )eiωnt , (A2)

where ωn = 2πn/T . By substituting Eq. (A1) into the
Langevin equation, we obtain

(a + beiωnτ − iωn)zn = ξn, (A3)

with 〈ξnξm〉 = 2D/T δn,−m. The current j can then be ex-
pressed as j = T f + T z0 = T f + T ξ0/(a + b). Substituting
j into the definition of the SCGF, we obtain

χj (k) = lim
T →∞

T −1 ln〈exp{kT [ f + ξ0/(a + b)]}〉

= k f + lim
T →∞

T −1 ln

[∫ ∞

−∞
dξ0 P(ξ0)

× exp{kT ξ0/(a + b)}
]
, (A4)

where P(ξ0) = √
T/(4πD) exp{−T ξ 2

0 /(4D)}. Taking the in-
tegration in Eq. (A4), we get χj (k) = k f + Dk2/(a + b)2.

APPENDIX B: DETAILED DERIVATIONS IN THE
TWO-DIMENSIONAL SYSTEM

1. Time-correlation function

Here we calculate the stationary time-correlation func-
tion φi j (z) = 〈xi(t )x j (t + z)〉. Using the same method as in
Ref. [44] for arbitrary z � 0, we have

d

dz
φ11(z) = −aφ11(z) + bφ21(τ − z) + 〈x1(t )ξ1(t + z)〉,

d

dz
φ12(z) = −aφ12(z) − bφ11(τ − z) + 〈x1(t )ξ2(t + z)〉,
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d

dz
φ21(z) = −aφ21(z) + bφ22(τ − z) + 〈x2(t )ξ1(t + z)〉,

d

dz
φ22(z) = −aφ22(z) − bφ12(τ − z) + 〈x2(t )ξ2(t + z)〉.

(B1)

From the Fokker-Planck equation, we have

0 = d

dt

〈
x2

1

〉 = −2aφ11(0) + 2bφ21(τ ) + 2D. (B2)

On the other hand, from the Langevin equation, we also obtain

0 = d

dt

〈
x2

1

〉 = −2aφ11(0) + 2bφ21(τ ) + 2〈x1(t )ξ1(t )〉. (B3)

Comparing Eq. (B2) and Eq. (B3), we obtain the rela-
tion 〈x1(t )ξ1(t )〉 = D. Similarly, we also get 〈x2(t )ξ2(t )〉 =
D, 〈x1(t )ξ2(t )〉 + 〈x2(t )ξ1(t )〉 = 0. Because the noise is ir-
relevant to the past states of the system, we have
〈xi(t )ξ j (t + z)〉 = 0, ∀z > 0. Using the Fourier transform
g(ω) = ∫∞

−∞ dt eiωt g(t ) for an arbitrary function g(t ), we ob-
tain the relation that x(ω) = H (ω)ξ(ω). Here H (ω) is a
response function matrix in the frequency domain, given by

H (ω) = 1

(a − iω)2 + b2ei2ωτ
×
(

a − iω beiωτ

−beiωτ a − iω

)
. (B4)

The time-correlation function can be calculated via an inverse
Fourier transform of the spectral density S(ω) given by

S(ω) = 2H (ω)DH∗(ω), (B5)

where D = diag(D, D) ∈ R2×2 and H∗ is the complex con-
jugate transpose of H . Since S11(ω) = S22(ω), S12(ω) +

S21(ω) = 0, we readily obtain

φ11(z) = φ22(z), φ12(z) + φ21(z) = 0. (B6)

Using the relations in Eq. (B6), we obtain that for 0 � z � τ

d2

dz2
φ11(z) = (a2 − b2)φ11(z). (B7)

The solution of time-correlation function φ11(z) in Eq. (B7)
has the following form:

φ11(z) = α cosh(cz) + β sinh(cz), (B8)

where c = √
a2 − b2 and α, β are constants determined via

the conditions

d

dz
φ11(z)

∣∣∣∣
z→0

= −D, φ12(z)|z→0 = 0. (B9)

Finally, we obtain that for 0 � z � τ

φ11(z) = φ22(z) = A+
11e−cz + A−

11ecz, (B10)

φ12(z) = −φ21(z) = A12[e−cz − ecz], (B11)

where

A±
11 = D

2c
× (c ± a)e±cτ

a cosh(cτ ) + c sinh(cτ )
, (B12)

A12 = D

2c
× b

a cosh(cτ ) + c sinh(cτ )
. (B13)

Because φ11(z) is an even function and φ12(z) is an odd
function, we readily obtain that for |z| � τ ,

φ11(z) = φ22(z) = A+
11e−c|z| + A−

11ec|z|,

φ12(z) = −φ21(z) = A12[e−cz − ecz]. (B14)

2. Path integral

Because the process is Gaussian, the path probability is given by

P (X) ∝ exp

[
−1

2

∫ T

0
dt
∫ T

0
dt ′ [x1(t ) x2(t )]

[

11(t, t ′) 
12(t, t ′)

21(t, t ′) 
22(t, t ′)

][
x1(t ′)
x2(t ′)

]]
, (B15)

where 
i j (t, t ′) is the inverse of the stationary time-correlation function φi j (z) defined via the following relation:∫ T

0
ds

[
φ11(t − s) φ12(t − s)

φ21(t − s) φ22(t − s)

][

11(s, t ′) 
12(s, t ′)

21(s, t ′) 
22(s, t ′)

]
=
[
δ(t − t ′) 0

0 δ(t − t ′)

]
. (B16)

Now we discretize the problem and take the continuum limit at the end. We divide the time interval [0, T ] into N equipartitioned
intervals with a time step ε = T/N , where tk = kε (k = 0, . . . , N ) and xk

1 = x1(tk ), xk
2 = x2(tk ) (superscripts denote points in a

temporal sequence). Equation (B15) then reads

P (x0
1, x0

2, t0; . . . ; xN
1 , xN

2 , tN ) ∝ exp

⎡⎣−1

2

∑
i, j

{
xi

1

i j
11x j

1 + xi
1


i j
12x j

2 + xi
2


i j
21x j

1 + xi
2


i j
22x j

2

}⎤⎦, (B17)

and Eq. (B16) corresponds to the following equation:

2∑
p=1

N∑
j=0

φi j
mp


jk
pn = δmnδik, (B18)

012134-9



TAN VAN VU AND YOSHIHIKO HASEGAWA PHYSICAL REVIEW E 100, 012134 (2019)

where φ
i j
mp ≡ φmp(t j − ti ). The matrices 
mn (1 � m, n � 2) can be analytically calculated and have the following form:


11 = 
22, 
12 = −
21,


0N
11 = 
N0

11 = e−Ncε
(
A+

11A−
11 + A2

12

)
(A+

11 − A−
11)
{
(A−

11)2 + A2
12 − [

(A+
11)2 + A2

12

]
e−2Ncε

} ,



i j
11 = 0, ∀ 1 < |i − j| < N,



i j
11 = −e−cε

(A+
11 − A−

11)(1 − e−2cε )
, ∀ |i − j| = 1,


ii
11 = 1 + e−2cε

(A+
11 − A−

11)(1 − e−2cε )
, ∀ 0 < i < N,


00
11 = 
NN

11 = e−2cε
{
(A−

11)2 + A2
12 − [

(A+
11)2 + A2

12

]
e−2(N−1)cε

}
(A+

11 − A−
11)[1 − e−2cε]

{
(A−

11)2 + A2
12 − [(A+

11)2 + A2
12]e−2Ncε

} ,

0N

12 = −
N0
12 = −A12e−Ncε

(A−
11)2 + A2

12 − [
(A+

11)2 + A2
12

]
e−2Ncε

,



i j
12 = 0, ∀ |i − j| �= N. (B19)

Using the result in Eq. (B19), the quadratic form in Eq. (B17) can be obtained explicitly as∑
i, j

{
xi

1

i j
11x j

1 + xi
1


i j
12x j

2 + xi
2


i j
21x j

1 + xi
2


i j
22x j

2

}

= 1

A+
11 − A−

11

[
2∑

i=1

N∑
k=1

(
xk

i − e−cεxk−1
i

)2

1 − e−2cε
− 1

�T

2∑
i=1

{
A2

12

[
e−Ncεx0

i − xN
i

]2 + [
A+

11e−Ncεx0
i − A−

11xN
i

]2}]

− 2A12e−Ncε

�T

[
x0

1xN
2 − xN

1 x0
2

]
, (B20)

where �T = (A−
11)2 + A2

12 − [(A+
11)2 + A2

12]e−2cT . Taking the continuum limit ε → 0, N → ∞, with Nε = T gives [42]

lim
ε→0

N∑
k=1

(
xk

i − e−cεxk−1
i

)2

1 − e−2cε
= 1

2c

∫ T

0
dt [ẋi(t ) + cxi(t )]2. (B21)

Finally, we obtain the expression of the path probability for T � τ :

P (X) ∝ exp

[
−

2∑
i=1

∫ T

0
dt

{ẋi(t ) + cxi(t )}2

4D

]
exp

[
c

2D�T

2∑
i=1

{
A2

12[e−cT xi(0) − xi(T )]2 + [A+
11e−cT xi(0) − A−

11xi(T )]2
}]

× exp

[
A12e−cT

�T
{x1(0)x2(T ) − x1(T )x2(0)}

]
. (B22)

3. Analytical form of the effective forces

We calculate the analytical form of the effective force F i(x) from its definition. We note that F i(x) cannot be completely
determined from the steady-state FPE:

∑2
i=1 ∂xi [F i(x)P(x, t ) − D∂xi P(x, t )] = 0. Specifically, if the effective force takes the

form F i(x) = ∑2
j=1 γi jx j , then one obtains γ11 = γ22 = −D/φ11(0), γ12 + γ21 = 0. Here we use the path integral to calculate

F i(x). From the definition, we have

F i(v) =
∫

du Fi(v, u)P(u, t − τ |v, t ) =
∫

du Fi(v, u)P(v, t ; u, t − τ )/P(v, t ) =
∫

du
Fi(v, u)

P(v, t )

∫ v

u
DXP (X), (B23)

where the integration is taken over all trajectories X that start from u at time t − τ and end at v at time t . The first term in the path
probability can be simplified further using the well-known expression of the transition probability for Smoluchowski processes
[42,67]: ∫ x(τ )

x(0)
DX exp

[
−
∫ τ

0
dt

{ẋ(t ) + cx(t )}2

4D

]
∝ exp

[
− c

2D

{x(τ ) − x(0)e−cτ }2

1 − e−2cτ

]
. (B24)
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Consequently, we obtain

F i(v) =
∫

du
Fi(v, u)

P(v, t )
G(v, u), (B25)

where

G(v, u) ∝ exp

[
− c

2D

‖v − ue−cτ‖2

1 − e−2cτ
+ c

2D�τ

[
A2

12‖e−cτ u − v‖2 + ‖A+
11e−cτ u − A−

11v‖2]+ A12e−cτ

�τ

{u1v2 − u2v1}
]
. (B26)

Taking the integration in Eq. (B25), we obtain

F 1(x) = −c[a cosh(cτ ) + c sinh(cτ )]

a sinh(cτ ) + c cosh(cτ )
x1 + bc

a sinh(cτ ) + c cosh(cτ )
x2,

F 2(x) = −c[a cosh(cτ ) + c sinh(cτ )]

a sinh(cτ ) + c cosh(cτ )
x2 − bc

a sinh(cτ ) + c cosh(cτ )
x1. (B27)

4. Proof of inequality 〈σt〉 � 〈
Q〉/D

Here we provide a proof of 〈σt 〉 � 〈�Q〉/D for T � τ . By simple calculations, we can show that

〈σt 〉 = 4b2(1 − e−2cT )

{b2 + (c + a)2e2cτ }e−2cT − {b2 + (c − a)2e−2cτ } . (B28)

For convenience, we define U ≡ b2 + (c + a)2e2cτ and V ≡ b2 + (c − a)2e−2cτ . Then 〈σt 〉 can be rewritten as

〈σt 〉 = 4b2(1 − e−2cT )

Ue−2cT − V
. (B29)

From Eq. (44), we also have

〈�Q〉
D

= 2T b2 × cosh(cτ )

a cosh(cτ ) + c sinh(cτ )
. (B30)

Therefore, 〈σt 〉 � 〈Q〉/D is equivalent to

2(1 − e−2cT )

Ue−2cT − V
� T × cosh(cτ )

a cosh(cτ ) + c sinh(cτ )
. (B31)

To prove inequality (B31), we will show that

f (T ) � cosh(cτ )

a cosh(cτ ) + c sinh(cτ )
, (B32)

where

f (T ) = 2(1 − e−2cT )

T (Ue−2cT − V )
. (B33)

First, taking the derivative of f (T ), we have

df (T )

dT
= e2cT [Ue−2cT + Ve2cT − {U + V + 2cT (V − U )}]

T 2[U − Ve2cT ]2
. (B34)

Since ez � 1 + z, ∀z ∈ R, we have Ue−2cT + Ve2cT − {U + V + 2cT (V − U )} � 0; thus, df (T )/dT � 0. Consequently, we
obtain f (T ) � f (τ ) for all T � τ . Therefore, to prove Eq. (B32), we need to prove only that

f (τ ) � cosh(cτ )

a cosh(cτ ) + c sinh(cτ )
. (B35)

Inequality (B35) is equivalent to

ecτ − e−cτ � cτ [ecτ + e−cτ ], (B36)

which is always satisfied because for all z � 0,

d

dz
{z(ez + e−z ) − (ez − e−z )} = z(ez − e−z ) � 0, {z(ez + e−z ) − (ez − e−z )}|z=0 = 0. (B37)

This implies that 〈σt 〉 � 〈�Q〉/D for T � τ .
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APPENDIX C: ANALYTICAL CALCULATIONS IN THE DRAGGED COLLOIDAL PARTICLE MODEL

Applying the Laplace transform to Eq. (46), we obtain

s2x̃(s) − sx(0) − v(0) + γ̃ (s)[sx̃(s) − x(0)] + kx̃(s) = kλ̃(s) + η̃(s). (C1)

Here f̃ (s) = ∫∞
0 dt f (t )e−st is the Laplace transform of an arbitrary function f (t ). The solution to Eq. (46) is

x(t ) = H (t )x(0) + G(t )v(0) +
∫ t

0
dt ′ G(t − t ′){kλ(t ′) + η(t ′)}, (C2)

where H (t ) and G(t ) are given by

H (t ) = L−1

{
γ̃ (s) + s

s2 + sγ̃ (s) + k

}
, (C3)

G(t ) = L−1

{
1

s2 + sγ̃ (s) + k

}
. (C4)

Here L−1{·} denotes the inverse Laplace transform. We note that H (t ) and G(t ) satisfy the following differential equations:

Ḣ (t ) = −kG(t ), (C5)

Ġ(t ) = H (t ) −
∫ t

0
dt ′ γ (t − t ′)G(t ′), (C6)

with initial conditions H (0) = Ġ(0) = 1 and G(0) = Ḣ (0) = 0. Now we calculate G(t ). Since γ̃ (s) = γ0/(sτc + 1), we have

G(t ) = L−1

{
s + a

s3 + as2 + bs + c

}
, (C7)

where a = 1/τc, b = k + γ0/τc, and c = k/τc. The roots of the polynomial s3 + as2 + bs + c are characterized by the following
quantity:

Q = −a2b2

108
+ b3

27
+ a3c

27
− abc

6
+ c2

4
. (C8)

In particular, the polynomial has three real roots when Q < 0, one real root and two complex roots when Q > 0, and a multiple
root when Q = 0. Here we consider only the case Q > 0 (i.e., the underdamped case). The denominator can be decomposed as

s3 + as2 + bs + c = (s + p)(s + q + iω)(s + q − iω), (C9)

where

p = a

3
− A − B, q = a

3
+ A + B

2
, ω =

√
3

2
(A − B). (C10)

Here constants A and B are given by

A = 3

√
− a3

27
+ ab

6
− c

2
+
√

Q,

B = 3

√
− a3

27
+ ab

6
− c

2
−
√

Q. (C11)

Then G(t ) and H (t ) can be obtained as

G(t ) = c1e−pt + c2e−qt sin(ωt + φ), H (t ) = 1 − k
∫ t

0
dt ′ G(t ′), (C12)

where

c1 = a − p

(p − q)2 + ω2
, c2 = 1

ω

√
(a − q)2 + ω2

(p − q)2 + ω2
, (C13)

sin φ = ω(p − a)√
[(a − q)2 + ω2][(p − q)2 + ω2]

, (C14)

cos φ = (a − q)(p − q) + ω2√
[(a − q)2 + ω2][(p − q)2 + ω2]

. (C15)
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Once the functions G(t ) and H (t ) are obtained, the fluctuation of the current and the derived bound can be calculated
immediately. From Eq. (C2), we have

〈x(t )〉 = k
∫ t

0
dt ′ G(t − t ′)λ(t ′), (C16)

〈x(0)x(t )〉 = H (t )〈x(0)2〉. (C17)

Consequently, we obtain the following results:

H (t ) = 1 − kc1(1 − e−pt )

p
− kc2[ω cos φ + q sin φ − e−qt {ω cos(ωt + φ) + q sin(ωt + φ)}]

q2 + ω2
,

〈x(T )〉 = kα

{∫ T/2

0
dt G(T − t )t +

∫ T

T/2
dt G(T − t )(T − t )

}
= kαc1(e−pT/2 − 1)2

p2
+ kαc2

(q2 + ω2)2
{2qω[cos φ − 2e−qT/2 cos(ωT/2 + φ) + e−qT cos(ωT + φ)]

+ (q2 − ω2)[sin φ − 2e−qT/2 sin(ωT/2 + φ) + e−qT sin(ωT + φ)]},

〈x(T )2〉 = (kβ )−1H (T )2 + β−1G(T )2 + k2

[∫ T

0
dt G(T − t )λ(t )

]2

+ β−1 γ0

τc

∫ T

0
dt
∫ T

0
dt ′ G(T − t )G(T − t ′)e− |t−t ′ |

τc ,

〈σt 〉 = k2αβ

{∫ T

T/2
dt
∫ t

0
dt ′ G(t − t ′)λ(t ′) −

∫ T/2

0
dt
∫ t

0
dt ′ G(t − t ′)λ(t ′)

}
. (C18)
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