PHYSICAL REVIEW E 100, 012132 (2019)

Approximate dynamical eigenmodes of the Ising model with local spin-exchange moves
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We establish that the Fourier modes of the magnetization serve as the dynamical eigenmodes for the two-
dimensional Ising model at the critical temperature with local spin-exchange moves, i.e., Kawasaki dynamics.
We obtain the dynamical scaling properties for these modes and use them to calculate the time evolution of
two dynamical quantities for the system, namely, the autocorrelation function and the mean-square deviation of
the line magnetizations. At intermediate times 1 < ¢ < L%, where z. = 4 — n = 15/4 is the dynamical critical
exponent of the model, we find that the line magnetization undergoes anomalous diffusion. Following our
recent work on anomalous diffusion in spin models, we demonstrate that the generalized Langevin equation
with a memory kernel consistently describes the anomalous diffusion, verifying the corresponding fluctuation-
dissipation theorem with the calculation of the force autocorrelation function.
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I. INTRODUCTION

For physical systems in statistical physics, the eigenvalues
and eigenvectors (of the Hamiltonians) play a central role. The
eigenvectors form a complete orthogonal basis in the space of
variables used to express the Hamiltonian. The eigenvalues
and eigenfunctions identify the ground and the excited states,
as well as their energies, which then form the groundwork
for obtaining the partition function, the principal quantity
of interest for calculating all equilibrium ensemble-averaged
observables.

For classical systems, the Hamiltonian also dictates the
dynamics of systems through the equations of motion. Here
too, theoretically, the same concept holds, viz., with the equa-
tion of motion of a degree of freedom ¢ used to describe a
Hamiltonian A being given by

{qg=——, (D

with ¢ being the friction coefficient in the overdamped limit,
it really is an asset to know the dynamical eigenvalues and
eigenvectors. Together, the dynamical eigenvalues and eigen-
vectors ensure that the full time dependence of any dynamical
quantity can be calculated exactly.

In contrast to eigenvalues and eigenvectors of the Hamil-
tonian itself, the scope for dynamical eigenvalues and eigen-
vectors is far more restricted, for the following reason. The
eigenvectors {r,} are linear combinations of all the degrees of
freedom {g;}, reducing Eq. (1) to the form

é-ai‘a = —AaTa, (2)

with X, being the corresponding dynamical eigenvalue, ob-

tained from the diagonalization of the Hessian matrix dfﬂ%
Y

The dynamical eigenmodes {r,}, if they exist, are often simply

called the modes of the system. For the form (2) to hold,
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the Hessian must be independent of {r,}, which restricts the
class of such Hamiltonians only to harmonic ones (i.e., H
is quadratic in {g;}). Classic examples of such systems are
the bead-spring models of linear polymeric systems [1,2],
their extensions to star and tadpole polymers [3], polymeric
membranes [4,5], 2D cytoskeleton of cells [6-8], and graphite
oxide sheets [8—11].

Not all is lost, however, if the Hamiltonian is not harmonic
(which is in fact almost always the case). Note here that
any complete orthogonal basis in the space of the degrees of
freedom can be used to describe the dynamics of the system.
The main disadvantage of choosing an arbitrary one is that
the corresponding amplitudes remain dynamically (nonlin-
early) coupled at all times, preventing one from taking large
time steps in computer simulations. Despite this shortcom-
ing, sometimes one can be lucky to realize that there are
approximate modes that can allow one to take somewhat large
time steps within a preordained error margin. Examples are
the Rouse modes for self-avoiding polymers [12], a reptating
polymer chain [13], and polymer chains in a melt [14—16].

The focus of the present paper is the (approximate dy-
namical) modes of the two-dimensional (2D) square-lattice
Ising model (system size L x L) with local spin exchange
moves—commonly known as Kawasaki moves [17]—at crit-
ical temperature and at zero order parameter, introduced
in Sec. IIA. We focus on the line magnetization for this
model and find, surprisingly, that the Fourier modes provide
a very good approximation of the true dynamical eigen-
modes. We numerically investigate the properties of these
modes in Sec. Il B-II D, numerically revealing that the equi-
librium amplitude of the pth mode behaves as (L/p)"/" (By +
Bip~7/V), and that its decay time scales ~(L/p)*, where
y=T7/4,v=1,and n =2 — y/v = 1/4 are the three equi-
librium critical exponents of the Ising model, and z. =4 —
n = 15/4 is the critical dynamical exponent for the model
with local spin exchange moves [18-20]. In Sec. III we use
these results to analytically calculate two observables: the
autocorrelation function and the mean-square deviation
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(MSD) of the line magnetization. We find that line magne-
tization exhibits anomalous diffusion. Our results for anoma-
lous diffusion is consistent with a pattern that the dynamics
of magnetization at the critical temperature in spin models
is anomalous [21-23]. Importantly, the anomalous diffusion
is described by the generalized Langevin equation (GLE)
[22,23] (and bears strong resemblance to anomalous diffusion
in polymeric and membrane systems under a variety of cir-
cumstances [3,5,12,24-37]), which we verify in Sec. IV. We
conclude the paper in Sec. V.

II. THE MODEL AND THE FOURIER MODES AS THE
APPROXIMATE DYNAMICAL MODES

A. Ising model with local spin-exchange (Kawasaki) dynamics

We consider the 2D Ising model on an L x L square lattice
with periodic boundary conditions in both x and y directions.
The Hamiltonian for the model is given by

H=—1 > SikSmn 3)
((j.k)(m,n))

where s;; = &1 is the spin value at x location j and y
location k, and J is the coupling constant for interactions
among the spins, and we set J = 1 during our simulations.
The summation runs over all the nearest-neighbor spins, and
0 < (j, k, m,n) < L. All properties we report here have been
obtained by simulating the model at the critical temperature
T. = 2/1In(1 + +/2) and by setting the value of the Boltzmann
constant kp to unity.

The model is simulated with Kawasaki dynamics at T..
All simulations reported in this paper have been performed
at zero (conserved) order parameter. In other words, we fix
the total magnetization of the system at zero, and at each
Monte Carlo move, two neighboring spins are randomly se-
lected to exchange their values. The resulting energy change
AE is measured, and the move is accepted with the normal
Metropolis probability min[1, exp(—AE /T )]. For each unit
of time, on average, all the spins are supposed to be selected
once.

B. Fourier modes for line magnetization

In this model we define the line magnetization as
M ( j,t):Zé;é sjk(t); correspondingly, the pth Fourier
mode amplitude of the line magnetization is given by

L-1

1
Ap() =7 ;Ml(j, 1)exp(—2mipj/L) = X,(t) — i¥, (1),
4)
where
1 L—1
X0 =+ ;Mz (j, 1) cos(2m pj/L),
(5)
1 L—1
Y= ;Ml(j’ t)sin2r pj/L),

respectively, are the real and the imaginary parts of the Fourier
transform, with p =0, 1,...,(L — 1). The inverse Fourier
transform is then given by

L-1

Mi(j.t) =Y A,(t)exp(2mipj/L) or
p=0
L-1

Mi(j.t) = Y [X,(t) cos2r pj/L) + Y,(t) sin27 pj/L)].
p=0

(6)

C. Equilibrium properties of the Fourier mode amplitudes

We express the equilibrium correlations of the Fourier
modes as

qu(t) = (Xp(t)Xq(O)) and qu(t) = <Yp(t)Yq(0))’ @)

where the angular brackets ((-)) define an average over equili-
brated ensembles.

The cross-correlation terms, (X, ()Y, (0)) and (Y,,(t)X,(0)),
respectively, can be argued to be equal to zero, as fol-
lows. Let us consider (X,(¢)Y,(0)) to illustrate the calcula-
tion. First, having expressed it as Z?;nlzo (M;(j, 0)M;(m, 1))
cos(2mpj/L)sin(2mgm/L), then making the simultaneous
substitutions j — (L — j) and m — (L — m), and finally us-
ing M;(0,t) = M;(L, t) due to periodic boundary conditions,
we find that the term also equals — Zi;::o (M;(L—j,0)
M;(L—m,t))cos(2Qmpj/L)sin(2mrgm/L). Next, we use the
fact that (M;(j, 0)M;(m, t)) is only a function of | j — m| mod-
ulo L/2 (due to periodic boundary conditions) as well as only
of |¢| (due to time reversibility invariance at equilibrium). This
implies that (M;(j, 0)M;(m, t))=(M;(L—j, 0)M;(L—m, 1)),
leading to the condition (X,(#)Y,(0)) = —(X,()Y,(0)) = 0.
For this reason we leave both (X,(#)Y,(0)) and (Y, (#)X,(0))
out of further considerations.

Next, we argue that X,,(0) =Y,,(0) at least up to
O(L7?). In order to do so, we first express Y,,(0) as

Ym0 (Mi (. OMy(m, 0)) sinmpj/L) sin(2xpm/L) =
e (My(j.0)My(m,0)), cosQrpj'/L) cos(2m pm' /L),
where (j',m') = (j + 4L—p, m+ %). We then again observe,
just like above, that (M;(j, 0)M;(m, t)) is only a function of
|j — m| modulo L/2. This implies that if %} is an integer, then
upon relabeling the line indices the sum trivially reduces to
> o (Mi(j', )M, (m', 0)) cos(2r pj' /L) cos(2m pm' /L) =

Xpp(0). If, however, ﬁ is not an integer, then we can still

relabel the indices as Z?,:,;/,:O (M;(j”, 0)M;(m", 0)) cos
Qrp(j" 4+ Ax)/L) cos(2rrp(fn” + Ax)/L), with Ax <1, 1
being the lattice unit. Beyond this point, we can do a Taylor
expansion of the cosine terms, implying that the equality
Y,,(0) = X,,,(0) must hold up to O(L™?). This, together with
the scaling of (|A%|) ~ (L/p)’"" in the limit p — oo for the
2D Ising model as derived in Appendix A, we attempt to
fit X,,(0) = Y,,(0) to the asymptotic scaling ~(L/p)""" in
Fig. 1.
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FIG. 1. X,,,(0) and Y,,(0) as a function of p for different system
sizes, with p = 1 to 40, and L = 120, 160, 200. Fitting to the data
leads to X,,(0) =Y,,(0) ~ (L/p)""" (Bo + Bip~"""), where By =
0.0185 and B; = 0.1. Inset: X,,,(0) data for L = 200 are fitted in a
log-log plot; the straight line has slope —1.75(= y /v).

From this fit, we find that X,,(0)~Y,,(0)~
(L/p)""" (By + B1p~"/"), where By = 0.0185 and B; = 0.1
are two numerically obtained constants. Note also that

Xp(qu)(t) = qu(t) and Yp(qu) (t) = qu(t)’ (8)

an obvious result obtained from the symmetry of the mode
amplitudes under p <+ L — p.

The results of Fig. 1 are supplemented with the
data for x,;(0) = X,4(0)//X,,(0)X44(0) and 7,,(0) =
Y5, (0)//Ypp(0)Yy,(0) for L =40 and p,q < L/2 (specifi-
cally, p, g = 1 to 10) in Fig. 2. The values of the off-diagonal
elements of x,,(0) and Y, (0) are not zero (we do not expect
them to be zero even after caring for numerical accuracy);
however, they are at least two orders of magnitude smaller
than the diagonal ones.

Together these results indicate that to a very good approxi-
mation the modes remain statistically independent during the
system’s evolution by means of Kawasaki dynamics.

(a) 1

= N W H OO N OO O

1 2 3 4 5 6 7 8 9 10
q

D. Fourier modes as approximate dynamical eigenmodes
of the model

In Fig. 3(a) we obtain a data collapse plot for the mean-
square deviation (MSD) of the complex mode amplitude
(|AA§(t)|), as a function of (p/L)*t for p=1,2,...,10
for three different system sizes L = 120, 160, 200 (from our
earlier works on spin systems [21-23] we expect that the data
collapse would require scaling time with a prefactor (p/L)*).
The solid line in the figure then represents

(AA2(1)) = V2(AX2 (1)) = V2(AY (1))
L y/v
~ 3.2527 <;> (p/L)*t for (p/Ly<t < 1.
9

Since the MSDs of the mode amplitudes can be expressed
in terms of their autocorrelation functions as

X, (t)
(AX; (1) = ([X,(1) — X,(0))) = 2X,;p(0>[1 - X:(O)}
Y,
(AY2(0) = (Y1) — Y, (O)) = 2Ypp<0)[1 - L(’)] (10)
Y,p(0)

with the approximation X,,(0) =Y,,(0) ~ (L/p)’" (By +
Bip~7/V), for (p/L)*t < 1 in a large range shown in Fig. 3,
Egs. (9) and (10) can be recast in the form

Xpp() _ YppD)
Xpp(0)  Ypp(0)

1.15(p/L)=t 1

[ 0.0185 +O.1p—V/"]' an

To conclude, in this section we have demonstrated that
to a very good approximation the Fourier modes for the
2D Ising model with Kawasaki dynamics remain statistically
uncorrelated at all times, and their autocorrelations decay
exponentially in time, from which we conclude that they
are approximate dynamical eigenmodes. This means that the
properties of the modes’ amplitude can be used to calculate all
dynamical quantities to a very good approximation [1-3,12].
In the following section, we will showcase this to calculate the
autocorrelation function and the MSD of line magnetizations.

(b) 1

= N W H OO N OO O
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q

FIG. 2. The matrix (a) x,4(0) = X,4(0)//X;,p(0)X4,(0) and (b) Yp,(0) = Y,,(0)//Y;,,(0)Y,,(0) in logarithmic grayscale for p,q =
1,2,...,10 and L = 40. The values of the off-diagonal elements of x,,(0) and Y,,(0) are not zero. However, most of them are typically
two or more orders of magnitude smaller than the diagonal ones, which means the modes are statistically uncorrelated.
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FIG.3. The MSD of the complex modes amplitude FIG. 4. Comparison between the simulation results (points) and
(IAA2(D)]) = V2 (AY2(1)) = V2 (AX2(1)), where (AX2(1)) = expectation values from Eq. (13) (solid lines, same colors as the
([X,,(?) _ Xp(O)]Z) an)d (AY2(1)) = (P[Yp(t) _ Y,,(O)]z) Forp every points) for the autocorrelation function C(¢) of the line magnetiza-

)4 ° . . .
system size L = 120 (red), 160 (blue), 200 (green), the MSD of 10 tion, for different system sizes.
different mode amplitudes are measured. In the range ¢ < (p/L)*,

the modes shows normal diffusion, and the solid line represents . _ _
(|AAf,(t)|) (p/L)" ~ 32527 (pJLy"1. Using Eq. (6) and (X,(#)Y,(0)) = (¥,(1)X,(0)) =0, we

have
III. DYNAMICS OF TWO PHYSICAL OBSERVABLES L—1L—1
USING THE FOURIER MODES AS APPROXIMATE (AM} (1)) = Z Z (IX,(t) — X,(0)][X, (1) — X,(0)]
DYNAMICAL EIGENMODES p=0 ¢=0
In this section we focus on the dynamics observables of the x cos(2m px/L) cos(2mgx/L)
system. Using the properties of the Fourier modes obtained
in the last section, we analytically derive the autocorrelation +[Y, (1) = Y, (0)][¥, (1) — Y, (0)]

function and the MSD of the line magnetization. « sin(27 px/L) sin(27 gx/L). (15)

A. Autocorrelation function of the line magnetization L . o
Then Eq. (15) can be simplified with the approximation

The first dynamical observable we are dealing with is the Xy (t) = Yoo (1) = Xp1—o)(t) = Ypi—)(¢), and Xo(r) as the
pg\l) = Fpg\l) = Ap(L—q = Tp—o\l),

autocorrelation function of the line magnetization, defined as conserved order parameter (chosen to be zero) of the dynam-
C(t) = (M;(x, 1)M;(x, 0)). (12)  ics, leading us to
This autocorrelation function can be expressed in terms of L L
the modes by combining Egs. (6), (8), and (12), yieldin

p=1 q=1

Ct)y =4 Xpp(t)
st L/2 L2 X, (1)
L2 =8 ZZXM(O)[ X, (0)]

—4 Z ( )y/v exp [— LD (p/L)Zcf } e
0.0185+ 0.1 p 7/ L
=8 ) X,(0) |- Xn® (16)
x (0.0185 4 0.1p77/") (13) w X,pp(0) |
As shown in Fig. 4, the prediction (13) fits the simulation =l
results quite well. Using the properties of X,,,(¢) and X,,(0) as obtained in

Secs. IIC and IID, the behavior of the MSD of the line

B. Anomalous diffusion of the line magnetization magnetization can be divided into two time domains.

Let us now consider the MSD of the line magnetization At long times ¢ > L, pr(((f); — 0, meaning that (AM?(1))
2 2 ~ pp
(AM (1)) = (IMi(x. 1) — Mi(x, 0)T) (14) " approaches a constant ~L"/". At intermediate times 1 < 1 <
as another dynamical observable. L%,

J

L/2 L2 y/v )

X L 1.15(p/L)*

)= 30 =5 =8 2 (5) o g vt oo+
p=1 pp p=1 . .

As shown in Fig. 5(a), the prediction (17) fits the simulation results quite well.
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FIG. 5. (a) Comparison between the simulation results (points) and the results obtained from Eq. (17) (solid lines, same color as the points)
for the MSD of the line magnetization (AM?(¢)) for different system sizes. (b) Confirmation of the sum (19) to power law ¢/ =D/% ~ 192 for

L — oc.

For an analytical expression for the MSD, with x = p/L, the sum (17) can be reduced to the following integral:

1.15 ¢x%

12 dx
2 _ _ _ y/v
(AM; (t))_SL/I/L o7 (1 exp{ [0_0185+0'1/(XL)V/U]})[O.0185+O.l/(xL) 1, (18)

but beyond that it is difficult process it further without making
approximations. In particular, in the limit L — oo and finite
values of x, the second term within the curly brackets can be
dropped. At the lower limit of x, the two terms within the
curly brackets are, however, comparable. Nevertheless, if we
do drop this second term altogether, then the integral can be
easily performed to show that in the leading order of L

(AMZ(t)> 1 L (y/v—1)/z
! L

£\ /v
= (AM} (1)) ~ LV/“(E)

~ (L) (19)
=) -

This behavior of the sum (19) is shown in Fig. 5(b).

IV. GENERALIZED LANGEVIN EQUATION
FORMULATION FOR THE ANOMALOUS DIFFUSION
IN THE ISING MODEL WITH KAWASAKI DYNAMICS

In Sec. III we have demonstrated that at the intermediate
time regime, the line magnetization in the Ising model with
Kawasaki dynamics exhibits anomalous diffusion. In our re-
cent studies on the Ising and ¢* model with Glauber dynamics
[22,23], we have argued that the anomalous diffusion of
the magnetization belongs to the GLE class, for which the
restoring force plays an important role.

Imagine that we choose a tagged line, and since the thermal
spin flips, at + = O its magnetization M; changes by a little
amount M;. The surrounding spins will react to this change
due to the interactions dictated by the Hamiltonian, and it
takes time to spread this reaction. During this time, the
value of M; will also readjust to the persisting values of the

(

surrounding spins, undoing at least a part of &/;. It is the latter
that we interpret as the result of “inertia” of the surrounding
spins that resists changes in M;, and the resistance itself acts as
the restoring force to the changes in the tagged magnetization,
and finally, leads to anomalous diffusion.

A. Generalized Langevin equation for the line magnetization

From how the restoring force works introduced before,
it not only indicates that there is a memory effect which is
significant during the “restoring” process, but also leads us to
the GLE formulation to describe the anomalous diffusion.

In line with our previous works on the Ising and ¢* model
with Glauber dynamics [22,23] and in polymeric systems
[3,24-26], the relation of the restoring force f(¢#) and the
“velocity” of magnetization M;(r) can be expressed as

EMi(1) = f(t) +q1(1) (20a)

f@) = —/ dt'ut —tYM(t') + q2(t). (20b)
0

Here f(¢) is the internal force, ¢ is the ‘“viscous
drag” on M;, u(t —t’) is the memory kernel, g;(¢) and
q»(t) are two noise terms satisfying (q;(¢)) = (q2(¢)) = 0,
and the fluctuation-dissipation theorems (FDTs) are given
by (q1(1)qi(t) <8t —1') and (g2(t) g2(t")) o< pult —1')
respectively.

Equation (20b) can be inverted to write as

M(t) = —/ dt' ait — ") f(t") + (). 21
0

The noise term w(t) similarly satisfies (w(¢)) = 0, and the
FDT (w(t)w(t")) = a(|t —t’|). Then a(t) and wu(¢) are related
to each other in the Laplace space as a(s)fi(s) = 1.
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To combine Egs. (20a) and (20b), we obtain

§M1(t)=—/ dt'u(t —tYM(t') + q1(t) + (1) (22)
0

or
My (1) = —/ dr'ot — 1) g (1) + (1)), (23)
0

where in the Laplace space 9(s)[§ + i(s)] = 1. Withr > ¢/,
without any loss of generality, using Eq. (23) the result of the
velocity autocorrelation is

(M (OM(0)) ~ 6(t — 1), (24)

where 6(¢) can be calculated by Laplace inverting the relation
O)E + n(s)l = 1.
If the memory term is a power law in time,

u() ~t1°. (25)
Using the results from Ref. [25], we have
(M (M (0)) | po ~ —(t — ') 2. (26)

By integrating Eq. (26) twice in time, we obtain that
(AMP(@)) ~ 1. 27)

In summary, there is a power-law memory function u(t) ~
t~¢ which plays a vital part in the GLE formulation. From this
we can deduce that the anomalous diffusion found in Eq. (17)
is non-Markovian and the anomalous exponent is c.

B. Verification of the power-law behavior of w(¢)

Based on the FDT mentioned under Eq. (20b), we now
numerically verify the behavior of w ().

During simulations, at t = 0, we thermalize the system
to its equilibrium state. For # > 0 we select a line and fix
its value of the magnetization M; by performing nonlocal
spin-exchange dynamics, i.e., we choose two lattice sites
(j,k) and (m,n), and if s§;zsm, = —1 then we exchange
their values, otherwise we keep their values as they are. The
energy change AFE is measured, and we accept the move
with the Metropolis probability min[1, exp(—AE/T)]. For
the rest of the system, we let them evolve with the Kawasaki
dynamics.

We then keep taking snapshots of the system at regular in-
tervals. For every snapshot we take, we consider an attempt to
flip each spin in turn and find the expected change in M; which
would have occurred if this move had been implemented,
totaled over all the spins on the selected line, and the possible
change of the line magnetization is defined as f(¢) = M@).
The quantity (f(¢)f(0)) is plotted in Fig. 6. The figure is in
good agreement with our expectation that g (z) ~ t~/v=D/z;
this result has also been observed for the the 2D Ising model
with Glauber dynamics [22].

V. CONCLUSION

In this paper, we have studied the Fourier modes of the 2D
Ising model with Kawasaki dynamics at critical temperature
and at zero (conserved) order parameter. We have established
that the Fourier modes are the dynamical eigenmodes of the

10' b E
_ i
) I
= 10° 3 E
e F
g
o I
= 10 3 o
E L =200 " sz
| L=100" < |
2 LLE=S40 e
10° 10® 107 10® 10° 10* 10° 102 107
t/L

FIG. 6. The autocorrelation function (f(t)f(0)) as a function of
time; the solid line corresponds to {f(¢)f(0)) ~ t=@/"=D/z x 1702,

system to a very good approximation. Using these modes, we
can reconstruct the dynamics of any dynamical variable; we
have done so for the autocorrelation function and the mean-
square deviation (MSD) of line magnetization.

At the intermediate times, we have found that for 1 <7 <
L%, the line magnetization undergoes anomalous diffusion.
We have argued that like other spin models and polymeric
systems this anomalous behavior can be described by the
GLE formulation with a memory kernel. The corresponding
fluctuation-dissipation theorem has been verified by the cal-
culation of the force autocorrelation.

With these results, we have showcased that for Kawasaki
dynamics, the Fourier modes, as the approximate dynami-
cal eigenmodes, are a useful tool to analytically derive the
dynamical quantities in the Ising system. We note, however,
that if the model is evolved using Glauber dynamics, then we
find that X),,(¢) decays as a stretched exponential in time (not
shown in this paper), which clearly shows that the Fourier
modes are not the (approximate) dynamical eigenmodes. We

S

2,3

—

SJ‘l’i p

xr —

FIG. 7. Schematic diagram for the calculation of the line-line
autocorrelation function.
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FIG. 8. (a) Numerical integration of the integral in Eq. (A6). (b) I(p) &~ B, p*>~" in the limit p — oo, where B, ~ 0.0516, although
convergence to the asymptotic behavior is rather slow. The solid lines are fits to the data.

do not understand this at present. It could be explored in the
future.
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APPENDIX: SCALING OF (|4,|)* WITH p FOR THE 2D
ISING MODEL

In this Appendix we obtain the scaling behavior of (|A p|2)
for the 2D Ising model (note that the calculations presented
here do not correspond to the total magnetization of the sam-
ple kept fixed at zero, as is the case for Kawasaki dynamics in
this paper).

First, we calculate the autocorrelation function of the line
magnetization. We use the classic result that at the critical
temperature the spin-spin autocorrelation function decays as
r~", where r is the Euclidean distance between the two spins
and n =2 — y /v = 0.25 for the 2D Ising model. With that
knowledge, upon summing over i and j in the y direction (see
Fig. 7), we obtain

~
|

~
|

(M;(j1, 0OM;(jo,0)) = (85, Sjo, )

I

~
Il
o

l

with

We next set a = (ji — jo)/L, u=(i—j)/L and v = j/L to
write
1 L2
M;(j1, OM;(j2, 0)) ~ | du ————.
(M;(j1, 0)M;(jz, 0)) ./_1 u [ + 42|

The calculation of (|A,,|2) follows from Eq. (A2) in a
similar manner:

(A2)

L L
1 . .
(4,17) = = > > (Mi(jir. 0)M;(jo. 0))
Jj1=0 j=0
x cos[2m p(ji — j2)/L]. (A3)
This time setting a — a/2, Eq. (A3) reduces to
5 ) 1 1 1
(JAp|7y ~ L=7" '/_] da/;] du R rann cos(m pa)
) 1 1 1
= 4L n/(; da/(‘) du mcos(npa).
(A4)

For p=0, Eq. (A4) leads to |A,(0)]> ~ L*", which is
the classic result for the equilibrium scaling (M?) ~ L*" =
L>*7/V for the total sample magnetization M for the 2D Ising
model.

For p # 0 we perform the integration over u in Eq. (A4) to
obtain

L—1L-1 1
. . . . _ 2 ~ 2-n
3 .70[(1 PG — P (lAp1°) ~ L /Odaf(a)cos(npa), (AS)
T 1(p)
(A1)
J
_ (14a)'""*(5+a’—n) (144*)*™"/* Hypergeometric,Fi[1, (3—1)/2, —1/2, —1/d*] (A6)

fa) @—n@2—n)

a*(4=n)(2—n)

We then perform numerical integration separately for even and odd p values for Eq. (A6). The results, shown in Fig. 8§,

demonstrate that in the limit p — o0

L 2-n L y/v
(14,1 ~ <—) = <—) ,
p p

although convergence to the asymptotic behavior is rather slow.

(AT)
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