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DNA replication fidelity is a critical issue in molecular biology. Biochemical experiments have provided key
insights on the mechanism of fidelity control by DNA polymerases in the past decades, whereas systematic
theoretical studies on this issue began only recently. Because of the underlying difficulties of mathematical
treatment, comprehensive surveys on the template-specific replication kinetics are still rare. Here we propose
a first-passage approach to address this problem, in particular the positional fidelity, for complicated processes
with high-order neighbor effects. Under biologically relevant conditions, we derived approximate analytical
expressions of the positional fidelity which show intuitively how some key kinetic pathways are coordinated to
guarantee the high fidelity, as well as the high velocity, of the replication processes. It is also shown that the
fidelity at any template position is dominantly determined by the nearest-neighbor template sequences, which is
consistent with the idea that replication mutations are randomly distributed in the genome.
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I. INTRODUCTION

Since the Watson-Crick (WC) base-pairing rules of double-
strand DNA were first discovered [1], template-directed DNA
replication has became a critical research subject to under-
stand genetic variations and evolution. It’s now widely ac-
knowledged that WC pairings [A-T and G-C, denoted as Right
(R) pairs] play a dominant role in the replication process to
maintain the genome stability, while the non-WC pairings
[denoted as Wrong (W ) pairs] occur with very low probability
(about 10−4 to 10−10, dependent on species). This is not due
to the difference between the free energy of R and W pairs in
the double-helical DNA: in fact, this free energy difference is
only about 2–4kBT , which cannot account for such low error
rates if estimated by the Boltzmann factor. As pointed out by
Hopfield [2] and Ninio [3], the low error rates originate from
the huge difference between the replication kinetics of R and
that of W , which is realized by high-fidelity DNA polymerases
(DNAPs) [4,5].

DNAP often consists of a polymerase domain and a proof-
reading domain. The former catalyzes the template-dependent
synthesis of the nascent chain. The latter excises the terminal
unit of the growing chain, with a higher excision probability
for W than for R. While experiments have revealed for a
long time that the replication fidelity is determined by both
the polymerization kinetics and the proofreading kinetics,
related problems were not solved, e.g., how to estimate the
positional fidelity (reciprocal of the error rate at each template
position), if all the template-specific kinetic parameters are
experimentally measured. Because of the mathematical dif-
ficulties of handling the kinetic equations of such complex
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copolymerization processes, systematic theoretical studies on
these issues appeared quite recently. So far there are two
categories of models.

One assumes that the kinetic parameters of all R (or W )
pairs are of the same order of magnitude and thus describe the
replication approximately as a R/W binary copolymerization
process(i.e., the specific template sequence is not consid-
ered explicitly). This simplification has long been used in
biochemistry for theoretical modeling (e.g., see the histori-
cal literature [2,3] or more recent publications like [6–9]).
However, thorough studies on such processes appeared only
recently, especially for cases in which the rates of monomer
addition or deletion at the end of the growing chain depend on
the preceding one or more units. Such higher-order neighbor
effects may be significant if the terminus of the growing chain
contains one or a few W s which can destabilize the terminus
and hence affect the monomer addition or deletion. These
effects have been treated recently by theories under steady-
state assumptions, and the overall replication fidelity and
growth velocity were calculated numerically or analytically
[10–12]. In these theories, the copolymerization process was
described as a homogenous Markov chain. This is, however,
not appropriate for real cases in which the template DNA
sequence is highly inhomogeneous and the kinetic parameters
of R/W are highly sequence-dependent.

These template-sequence specificities have not received
much attention until very recently. In a series of works,
Gaspard has considered all 16 types of base pairs in the kinetic
models and handled the high-order neighbor effects success-
fully [13–17]. By assuming that the probability of any possi-
ble sequence of the growing chain can be approximated as a
backward (i.e., opposite to the growing direction) inhomoge-
neous Markov chain in the long-time limit, he succeeded in
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proposing an iteration algorithm to numerically compute the
positional fidelity or velocity for any given template sequence
(i.e., the fidelity or velocity profile). However, there are still
many questions to be further addressed. For instance, long-
range correlations in real genomic DNA sequences have been
reported [18], which seems to imply that the template-specific
replication fidelity at different positions in a large range may
be correlated. This is doubtful, for it’s hard to conceive that
replication mutations at different positions have long-range
correlations rather than be randomly distributed as widely
believed. To what a range do the positional quantities depend
on the surrounding template sequence? Do the correlations
in the template sequence (if any) have any influence on the
fidelity or velocity profile?

In this paper, we propose a different approach to address
these template-specific problems. Our method is based on
a first-passage description of the replication process. This
leads to exact expressions of the probability of the nascent
chain sequence as forward inhomogeneous Markov chains.
In contrast to the backward Markov chain assumed in the
iteration algorithm [17], the forward form is more convenient
for approximate numerical or analytical calculations, which
offers intuitive insights on how DNAP achieves high fidelity
by proofreading while maintaining high velocity. Below we
introduce this method, starting from simple binary copoly-
merization processes with first-order nearest-neighbor effects.
We will also show how to generalize this method to more
complicated systems.

II. THE BASIC THEORY: THE FIRST-ORDER
REPLICATION PROCESSES

For brevity and not losing generality, we suppose that the
template sequence consists of two types of units A and B, and
correspondingly two types of monomers a and b are added
to the active end of the growing chain (i.e., the 3′-end of the
nascent DNA chain) and paired with A or B to form a double-
strand structure. If a pairs with A much more probably than
with B, we denote (A

a ) as R and (A
b ) as W . Similarly, we denote

(B
b ) as R and (B

a ) as W .
Given any template sequence of length L (e.g., a region of

interests in a real genome), since DNA replication proceeds
unidirectionally from the 3′ end to the 5′ end of the template,
we assume that the nascent chain initiates from a preexisting
seed (either a or b) paired with the 3′ end unit of the template,
then grows and terminates at the 5′ end of the template. In the
growing stage, the monomer a or b can be added to the end
by the polymerase domain of DNAP or deleted from the end
by the proofreading domain. In contrast, the initial seed and
the last added monomer cannot be deleted. In other words,
this is a first-passage process from a reflecting boundary at the
first position to an absorbing boundary at the last position. It’s
worth noting that the initiation and termination here are purely
imaginary to simplify the mathematical treatments and do
not correspond to the real initiation and termination events in
biological DNA replication processes. We will show later that
different choices of the boundary conditions do not change
our major results and conclusions.

For the first-order processes, we assume that the rates of
addition or deletion of any monomer a or b depend on the

preceding neighbor, denoted as kXY
αβ and rXY

αβ , respectively.
(X
α ) presents the preceding base pair, and Y is the template

unit to which the monomer β is paired, X,Y = A, B and
α, β = a, b. The termination step occurs with the addition rate
of kXY

αβ . It should be noted that all the kinetic parameters here
are effective rates. For instance, kXY

αβ is in fact the effective
polymerization rate, which is contributed by several reaction
substeps and dependent on the monomer concentrations. rXY

αβ

is also the effective excision rate contributed by two substeps:
the terminus of the growing chain being transferred from the
polymerase to the exonuclease and then excised by the exonu-
clease. It can also be taken as the effective depolymerization
rate contributed by several reaction substeps (particularly the
PPi attacking the phosphodiester bond of the DNA backbone)
in the polymerase, if the exonuclease activity of DNAP is not
considered (e.g., the exonuclease activity is inhibited). There
have been several methods to obtain such effective rates,
e.g., methods based on steady-state approximation [11,12]
and quasi-equilibrium approximation [14,15]. The fidelity of
DNAP can then be computed in the framework of the minimal
reaction schemes with such effective rate parameters. For
brevity to illustrate the basic logic of our method, we will not
go into such details in this paper.

The probability of the growing chain sequence
α1α2 · · · αi (1 � i � L) at time t is denoted as pX1X2···Xi···XL

α1α2···αi
(t ).

Now we have the following master equations:

ṗX1···XL
α1

= rX1X2
α1a pX1X2···XL

α1a + rX1X2
α1b pX1X2···XL

α1b

− (
kX1X2

α1a + kX1X2
α1b

)
pX1···XL

α1
,

ṗX1···Xi···XL
α1···αi

= kXi−1Xi
αi−1αi

pX1···Xi−1···XL
α1···αi−1

+ rXiXi+1
αia pX1···XiXi+1···XL

α1···αia

+ rXiXi+1

αib
pX1···XiXi+1···XL

α1···αib

− (
rXi−1Xi

αi−1αi
+ kXiXi+1

αia + kXiXi+1

αib

)
× pX1···Xi···XL

α1···αi
, 2 � i � L − 2,

ṗX1···XL−1XL
α1···αL−1

= kXL−2XL−1
αL−2αL−1

pX1···XL−2···XL
α1···αL−2

− (
rXL−2XL−1

αL−2αL−1
+ kXL−1XL

αL−1a + kXL−1XL

αL−1b

)
× pX1···XL−1XL

α1···αL−1
,

ṗX1···XL
α1···αL

= kXL−1XL
αL−1αL

pX1···XL−1XL
α1···αL−1

. (1)

One of our major concerns is the final sequence distribu-
tion of the nascent chain, i.e., the long-time limit PX1···XL

α1···αL
=

pX1···XL
α1···αL

(t → ∞). To calculate it, we assume the initial con-
ditions pX1···XL

α1
(t = 0) = qX1

α1
, qX1

a + qX1
b = 1 (qX1

α1
can be ar-

bitrarily chosen; it has negligible impacts on the fidelity
profile except a few positions near the reflecting bound-
ary), pX1···Xi···XL

α1···αi
(t = 0) = 0 (i � 2), and the long-time limits

pX1···Xi···XL
α1···αi

(t → ∞) = 0 (1 � i < L). We integrate [denoting
�X1···Xi···XL

α1···αi
≡ ∫ ∞

0 pX1···Xi···XL
α1···αi

(t ) dt] and solve the above equa-
tions to obtain the following iteration relations:

PX1X2···XL
α1α2···αL

= (
qX1

α1
/gX1···XL

α1

)
�X1X2···XL

α1α2

×�X2X3···XL
α2α3

· · ·�XL−2XL−1XL
αL−2αL−1

kXL−1XL
αL−1αL

,
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�XiXi+1···XL
αiαi+1

= kXiXi+1
αiαi+1

/(
rXiXi+1

αiαi+1
+ gXi+1···XL

αi+1

)
,

gXi+1···XL
αi+1

= �Xi+1Xi+2···XL
αi+1a gXi+2···XL

a

+�
Xi+1Xi+2···XL

αi+1b gXi+2···XL

b ,

gXL−1XL
αL−1

≡ kXL−1XL
αL−1a + kXL−1XL

αL−1b . (2)

Equation (2) can be transformed into a more intuitive form,
a forward inhomogeneous Markov chain:

PX1X2···XL
α1α2···αL

= qX1
α1

MX1X2···XL
α1α2

MX2X3···XL
α2α3

· · · MXL−2XL−1XL
αL−2αL−2

MXL−1XL
αL−1αL

,

MXiXi+1···XL
αiαi+1

= �XiXi+1···XL
αiαi+1

gXi+1···XL
αi+1

/
gXi ···XL

αi
,

MXL−1XL
αL−1αL

≡ kXL−1XL
αL−1αL

/
gXL−1XL

αL−1
. (3)

Here M is the stochastic transfer matrix with each row
sum equal to 1, i.e., MXiXi+1···XL

αia + MXiXi+1···XL

αib
= 1. By Eq. (3)

one can calculate any positional quantities of interest, e.g.,
the positional probability, PXm

αm
= ∑

{αi,i �=m} PX1···XL
α1···αL

, or equiv-

alently (PXm
a , PXm

b ) = (qX1
a , qX1

b ) · MX1···XL · · · MXm−1Xm···XL . This
forward form of the Markov chain is more convenient for
approximate analytical calculations (see Sec. IV) than the
backward Markov chain assumed in the iteration algorithm
[17]. For instance, in the extreme case when all deletion rates
are neglected, the forward transfer matrix M can be intu-
itively and precisely written as MXL−1XL

αL−1αL = kXL−1XL
αL−1αL /(kXL−1XL

αL−1a +
kXL−1XL

αL−1b ), whereas the backward transfer matrix in the iteration
algorithm can only be numerically computed.

Similarly, we also have

�X1X2···Xm···XL
α1α2···αm

= qX1
α1

MX1X2···XL
α1α2

· · · MXm−1Xm···XL
αm−1αm

/
gXm···XL

αm
. (4)

Note that the first-passage time (from position 1 to L)
distribution F (t ) is determined by the equation F (t ) =
− d

dt

∑L−1
m=1

∑
{α1···αm} pX1X2···Xm···XL

α1α2···αm
(t ), then it’s easy to show

that the mean first-passage time 〈T 〉 = ∫ +∞
0 tF (t ) dt =∑L−1

m=1 �m. Here �m is defined as

�m =
∑

{α1···αm}
�X1X2···Xm···XL

α1α2···αm

=
∑

{α1···αm}

∫ +∞

0
pX1X2···Xm···XL

α1α2···αm
(t ) dt

=
∫ +∞

0
pXm (t ) dt . (5)

According to this definition, �m is exactly the mean
cumulative dwell time of the growing chain of length m
during the first-passage process (a detailed explanation is
given in Appendix A). In other words, 1/�m can be regarded
as the local growth velocity at position m. �m can also be cast
in another form:

�m =
∑

{α1···αm}
�X1X2···Xm···XL

α1α2···αm

= PXm
a

/
gXm···XL

a + PXm
b

/
gXm···XL

b , (6)

which is equivalent to Eqs. (21) and (22) (the mean cumulative
dwell time at position m calculated by the iteration algorithm)
in Ref. [17], and gXm···XL

α is equivalent to vml given by Eq. (18)
in that paper.

Now the probability profile PXm
a,b and the velocity profile

vm = 1/�m can be computed respectively. Figure 1 shows that
the numerical results agrees perfectly well with the simulation
results given by Gillespie algorithm [19].

Our first-passage (FP) calculations are also in perfect
agreement with the numerical results given by the iteration
algorithm (denoted as IFS in Ref. [17]), as shown by the
illustrative example in Fig. 2. It should be pointed out that
since the two algorithms assume different boundary con-
ditions, the numerical results are somewhat different near
the two boundaries. However, by expanding the template
sequence from both ends in our FP algorithm, the difference
can be largely decreased or even eliminated. For instance,
the original template sequence is repeated three times to get
an expanded new template, and the computed profiles of the
middle copy show no difference with the results of the IFS
algorithm (Fig. 2). This treatment and the expanded template
are also used to obtain Fig. 3, Fig. 4, and Fig. 5.

III. CORRELATIONS IN THE PROBABILITY PROFILE

Correlations could be present in the probability profile
due to the nearest or higher-order neighbor effects. To see
if there are long-range correlations in the first-order pro-
cesses, we calculate the correlation function between any
two template positions, say, i, j. The function is defined as
C

Xi .Xj
αi .α j = ∑

{αk ,k �=i, j} PX1..Xk ..XL
α1..αk ..αL

− PXi
αi

P
Xj
α j . There are four types

of correlation functions. To quantify the maximal correlations,
we define Cmax(i, d ) = maxαi,αi+d (|CXi,Xi+d

αi,αi+d |), Cmax(i, 0) = 0,
for any position i, and correspondingly the relative cor-
relation function C̃

Xi .Xj
αi .α j = C

Xi .Xj
αi .α j /(PXi

αi
P

Xj
α j ) and C̃max(i, d ) =

maxαi,αi+d (|C̃Xi,Xi+d
αi,αi+d |).

Under some conditions (e.g., the bio-relevant conditions
such as Parameter 2, which is explained in detail in Sec. IV),
either Cmax(i, d ) or C̃max(i, d ) decays abruptly with the cor-
relation length 1 [illustrated by Fig. 3(a)], implying that the
positional probability is determined by its nearest neighbors.
This does not hold in general, of course. For instance, the
correlation length becomes much larger under some extreme
conditions [e.g., Parameter 3 in Fig. 3(b)] where one can
no longer identify consistent pairing rules for each type of
template units. For instance, (A

a ) is the dominant pairing (say,
with a probability larger than 0.9) only for a part of the
template As while (A

b ) is dominant for the rest, so no WC-
like pairing rules (R or W ) can be universally assigned to
A. Therefore, DNA synthesized in these cases can no longer
fulfill its fundamental role as genetic material. Such extreme
conditions are out of the scope of this paper and will not be
discussed below. Appendix B gives a detailed explanation of
how such long-range correlations may occur.

IV. THE NEAREST-NEIGHBOR APPROXIMATION UNDER
BIO-RELEVANT CONDITIONS

The nearest-neighbor correlations can be observed un-
der the so-called biologically relevant conditions, which are
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FIG. 1. The comparison between numerical and simulation results, with given kinetic parameters (Parameter 1; see Appendix D) and the
random template sequence of length 100 (see Appendix D). The statistics are made over 105 simulations. (a) (top) Numerical results of Pa

for each template position; (bottom) the relative difference �P = maxαm=a,b(|Pnum
αm

− Psim
αm

|/Pnum
αm

). (b) (top) Numerical results of the mean
cumulative dwell time � for each location; (bottom) the relative difference �� = |�num − �sim|/�num.

inspired by the measured kinetic parameters of real DNAPs.
These conditions ensure that, compared with the replication
catalyzed only by the polymerase domain of DNAP, the
introduction of proofreading domain can significantly en-
hance the replication fidelity while still maintaining the high
overall velocity.

The bio-relevant conditions for the first-order process are
intuitive, as below:

(a) kXY
RR 	 kXY

RW , which means that the addition of R is
always much faster than that of W .

(b) kXY
W R/kXY

WW 	 kXY
RR /kXY

RW , which means that the succes-

sive additions of W are almost inhibited. In fact, kXY
WW are hard

to measure in experiments, so kXY
WW ∼ 0 are always assumed.

FIG. 2. Comparison between the numerical results given by FP and IFS under Parameter 2 (Appendix D). The expanded random template
is used in the computations. (a) (top) Pa for each position given by the FP algorithm; (bottom) the relative difference �P = maxαm=a,b |PFP

αm
−

PIFS
αm

|/PFP
αm

. (b) (top) v for each position given by FP algorithm; (bottom) the relative difference �v = |vFP − vIFS|/vFP.
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FIG. 3. The correlation Cmax and the relative correlation C̃max between the position 50 and the rest positions of the random template.
(a) Under Parameter 2 (bio-relevant conditions). (b) Under Parameter 3.

(c) kY Z
RR 	 rXY

RR , rXY
W R, which means that the successive addi-

tions of R always dominate the replication process in order to
guarantee the high replication velocity (i.e., the introduction
of proofreading almost does not decrease the overall velocity),
at the cost that a buried W is hard to proofread.

(d) rXY
WW > rXY

RW , which means that the terminus containing
more W s is more likely to be proofread.

Here 	 means that the term on the left side is more than 10
times bigger than that on the right side. These conditions are
consistent with experimental observations of real DNAPs (see
Sec. 3.2 in Ref. [12] for the data) and in fact are much more
general (for comparison, e.g., kXY

RR /kXY
RW > 105 and kXY

RR 	 kXY
W R

are always observed in real DNAPs). Under such general
conditions, the exact method introduced in Sec. II can be
well approximated by the following method. We start from

the iteration relations

gXi ···XL
αi

= kXiXi+1
αia

1 + rXiXi+1
αia

/
gXi+1···XL

a

+ kXiXi+1

αib

1 + rXiXi+1

αib

/
gXi+1···XL

b

,

gXL−1XL
αL−1

≡ kXL−1XL
αL−1a + kXL−1XL

αL−1b . (7)

Under bio-relevant conditions, one has kXL−1XL
αL−1R 	 kXL−1XL

αL−1W , so

gXL−1XL
αL−1 � kXL−1XL

αL−1R .
The next iteration is

gXL−2XL−1XL
αL−2

= kXL−2XL−1
αL−2a

1 + rXL−2XL−1
αL−2a

/
gXL−1XL

a

+ kXL−2XL−1

αL−2b

1 + rXL−2XL−11

αL−2b

/
gXL−1XL

b

. (8)

FIG. 4. Comparison between the precise (pre) and approximate (app) numerical results. �P̃i = maxαi=a,b (|Papp
αi

− Ppre
αi

|/Ppre
αi

) and �ṽ =
|vapp − vpre|/vpre. (a, c) �P̃, �ṽ, under Parameter 1. (b, d) �P̃, �ṽ, under Parameter 2.
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FIG. 5. Comparison between the precise (pre) and approximated (app) fidelity profile. � f = | f pre − f app|/ f pre. (a) f pre (top) and � f
(bottom), under Parameter 1. (b) f pre (top) and � f (bottom), under Parameter 2.

If XL−1 = A, then rXL−2A
αL−2a � kAXL

aR � gAXL
a and kXL−2A

αL−2a 	 kXL−2A
αL−2b.

This leads to gXL−2AXL
αL−2 � kXL−2A

αL−2a. If XL−1 = B, then rXL−2B
αL−2b �

kBXL
bR � gBXL

b and kXL−2B
αL−2b 	 kXL−2B

αL−2a. This leads to gXL−2BXL
αL−2 �

kXL−2B
αL−2b. Combining these two results, we get gXL−2XL−1XL

αL−2 �
kXL−2XL−1

αL−2R .

Following the same logic, we obtain gXiXi+1···XL
αi �

kXiXi+1
αiR

(denoted as gXiXi+1
αi ) and

∏XiXi+1···XL
αiαi+1

� kXiXi+1
αiαi+1/(rXiXi+1

αiαi+1 +
kXi+1Xi+2

αi+1R ) (denoted as
∏XiXi+1Xi+2

αiαi+1
). Correspondingly, the

stochastic transfer matrix is approximated as MXiXi+1Xi+2
αiαi+1 [the

nearest-neighbor (NN) approximation] which can be trans-
formed by row or column exchange into the equivalent form[

MRR MRW

MW R MWW

]
and correspondingly,

PX1X2···XL
s1s2···sL

� qX1
s1

MX1X2X3
s1s2

· · · MXi−1XiXi+1
si−1si

· · · MXL−1XL
sL−1sL

,

si = R,W (i = 1, . . . , L). (9)

Now we get the approximate expressions of the elements
of M. For instance,

MXiXi+1Xi+2
RW � kXiXi+1

RW

rXiXi+1
RW + gXi+1Xi+2

W

gXi+1Xi+2
W

gXiXi+1
R

� kXiXi+1
RW

rXiXi+1
RW + kXi+1Xi+2

W R

kXi+1Xi+2
W R

kXiXi+1
RR

= kXiXi+1
RW

kXiXi+1
RR

/(
1 + rXiXi+1

RW

kXi+1Xi+2
W R

)
. (10)

It can be shown that MRR 	 MRW , MW R 	 MWW , and
MRW 	 MWW always hold under bio-relevant conditions. For
stochastic matrices like M,[

1 − y y
1 − z z

]
with z � y � 1, one can verify that its left eigenvector as-
sociated with the largest eigenvalue 1 is approximately P =
(1 − y, y) ( lim

n→∞ Mn converges to a matrix in which each row

is the eigenvector P; for more details of the heuristic analysis
see Appendix C). P is a good approximation of the precise
probability distribution at position i + 1, which can be verified
numerically [see Figs. 4(b) and 4(d)]. Even under some con-
ditions different from bio-relevant conditions (Parameters 1),
the NN approximation can also give results of the same orders
of magnitude with the precise numerical results [Figs. 4(a) and
4(c)]. This approximation, however, fails under conditions far
different from bio-relevant conditions (data not shown here;
see the Supplemental Material for more details [20]).

One can also obtain the analytical expressions of the prob-
ability profile (Pi+1

R , Pi+1
W ) � (MXiXi+1Xi+2

RR , MXiXi+1Xi+2
RW ) which

thus gives the approximate fidelity profile

f Xi+1 � MXiXi+1Xi+2
RR

MXiXi+1Xi+2
RW

� kXiXi+1
RR

kXiXi+1
RW

(
1 + rXiXi+1

RW

kXi+1Xi+2
W R

)
, (11)

which includes the analytical expression of fidelity Eq. (15) in
Ref. [12] (template sequence specificity ignored), as a limiting
case. Such expressions show clearly how the polymerase and
the exonuclease coordinate kinetically to contribute to the
overall fidelity. The first factor is solely contributed by the
polymerase even if no NN effects are explicitly considered.
The second term, which accounts for the proofreading effi-
ciency of the last W , can be contributed by the exonuclease
only when NN effects do exist.
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The approximate profile shows perfect agreement with the
precise profile under bio-relevant conditions [Fig. 5(b)] and
also provides a good estimate under some other conditions
[Fig. 5(a) where the approximate and the precise velocity is of
the same order of magnitude].

The NN approximation immediately leads to the conclu-
sion that any kind of correlations in the template sequence,
if one exists (e.g., the possible long-range correlations in the
noncoding DNA sequences [18]), has no substantial impact
on the positional quantities (data are shown in Supplemental
al [20]). This is consistent with the widely acknowledged idea
that DNA replication mutations are randomly distributed in
the genome.

V. GENERALIZATION TO MULTICOMPONENT SYSTEMS

The above methods can be readily generalized to more
realistic cases; e.g., in real DNA replication there are four
types of monomers (A, G, T, C) being added or deleted.
Below we consider a general multicomponent system which
consists of n types of units Ai (i = 1, . . . , n) in the template
and n types of monomers ai (i = 1, . . . , n) in the solution,
and each Ai forms the right pair (R) with only one monomer
ai and forms wrong pairs with the rest monomers (denoted
as Wi, i = 1, 2, . . . , n − 1). The corresponding bio-relevant
conditions are just a simple generalization of those in the
preceding section:

(a) kXY
RR 	 kXY

RWi
,

(b) kXY
WiR/kXY

WiWj
	 kXY

RR /kXY
RWk

,

(c) kY Z
RR 	 rXY

RR , rXY
WiR,

(d) rXY
WiWj

> rXY
RWj

.

Similarly we rearrange the transfer matrix MXi−1XiXi+2 to a
standard form:⎡⎢⎢⎢⎢⎣

MRR MRW1 . . . MRW(n−1)

M (1)
W R M (1)

WW1
. . . M (1)

WW(n−1)

. . .

M (n−1)
W R M (n−1)

WW1
. . . M (n−1)

WW(n−1)

⎤⎥⎥⎥⎥⎦.

It can be shown that MWW � MRW � 1 in general under
bio-relevant conditions, so the eigenvector V1 of this matrix
is approximately (MRR, MRW1 , . . . , MRW(n−1) ), which is a good
approximation of the probability vector PXi .

Simple calculations give results almost the same as
Eq. (10),

MXi−1XiXi+1
RWj

=
kXi−1Xi

RWj

kXi−1Xi
RR

/(
1 +

rXi−1Xi
RWj

kXiXi+1
Wj R

)
, (12)

where j = 1, . . . , n − 1.
Now the positional fidelity at i is f Xi =

MXi−1XiXi+1
RR /(

∑n−1
j=1 MXi−1XiXi+1

RWj
).

VI. GENERALIZATION TO HIGHER ORDER PROCESSES

For h-order processes, we set the initial seed as a given
distribution qX1···Xh

α1···αh
. One can follow the logic of Sec. II to

obtain

PX1···XL
α1···αL

= (
qX1···Xh

α1···αh

/
gX1···Xh···XL

α1···αh

)
×�X1···Xh+1···XL

α1···αh+1
· · · �Xi···Xi+h···XL

αi ···αi+h

· · ·�XL−h−1···XL−1XL
αL−h−1···αL−1

kXL−h···XL
αL−h···αL

,

�Xi···Xi+h···XL
αi ···αi+h

= kXi···Xi+h
αi···αi+h

/(
rXi···Xi+h

αi···αi+h
+ gXi+1···Xi+h···XL

αi+1···αi+h

)
,

gXi+1···Xi+h···XL
αi+1···αi+h

= �Xi+1···Xi+hXi+h+1···XL
αi+1···αi+ha gXi+2···Xi+hXi+h+1···XL

αi+2···αi+ha

+�
Xi+1···Xi+hXi+h+1···XL

αi+1···αi+hb gXi+2···Xi+hXi+h+1···XL

αi+2···αi+hb ,

gXL−h···XL−1XL
αL−h···αL−1

≡ kXL−h···XL
αL−h···a + kXL−h···XL

αL−h···b (13)

or equivalently,

PX1X2···XL
α1α2···αL

= qX1···Xh
α1···αh

MX1···Xh+1···XL
α1···αh+1

· · · MXi···Xi+h···XL
αi ···αi+h

· · · MXL−h···XL
αL−h···αL

,

MXi ···Xi+h···XL
αi ···αi+h

= �Xi···Xi+h···XL
αi···αi+h

gXi+1···Xi+h···XL
αi+1···αi+h

/
gXi···Xi+h−1···XL

αi···αi+h−1
,

MXL−h···XL
αL−h···αL

≡ kXL−h···XL
αL−h···αL

/
gXL−h···XL−1XL

αL−h···αL−1
. (14)

The NN approximations can also applied to these pro-
cesses under the corresponding bio-relevant conditions. For
illustration, we give only a brief introduction to the second-
order processes of binary systems. The bio-relevant conditions
similar to those in Sec. IV are proposed as below:

(a) kXY Z
αβR 	 kXY Z

αβW , α, β = R,W , which means that the ad-
dition rates of R are always much larger than that of W .

(b) k̃XY Z
αβR /̃kXY Z

αβW 	 k̃XY Z
RRR /̃kXY Z

RRW , αβ = RW,W R,WW .

k̃XY Z
αβγ ≡ kXY Z

αβγ /(1 + rXY Z
αβγ /kY ZU

βγ R ) is approximately the

renormalized addition rates. In fact, here kXY Z
αβW � 0 are

always assumed since successive additions of W are almost
inhibited. So these conditions are naturally satisfied.

(c) kY ZU
RRR 	 rXY Z

RRR , rXY Z
W RR, which means that the successive

additions of R always dominate the overall replication pro-
cess.

(d) rXY Z
WW R > rXY Z

RW R, which means that the terminus contain-
ing more W s is more likely to be proofread.

(e) rXY Z
αβW /kY ZU

βW R > rXY Z
αβR /kY ZU

βRR , α, β = R,W , which mean
that the terminal W is always more probable to be deleted than
the terminal R.

To calculate the positional quantities at position i, we
first obtain the transfer matrix MXi−2Xi−1XiXi+1Xi+2 by the fol-
lowing two iterations, starting from gXiXi+1Xi+2

αiαi+1 � kXiXi+1Xi+2
αiαi+1a +

kXiXi+1Xi+2

αiαi+1b � kXiXi+1Xi+2
αiαi+1R :

(I) �Xi−1XiXi+1Xi+2
αi−1αiαi+1

= kXi−1XiXi+1
αi−1αiαi+1

/(
rXi−1XiXi+1

αi−1αiαi+1
+ gXiXi+1Xi+2

αiαi+1

)
,

gXi−1XiXi+1Xi+2
αi−1αi

= �Xi−1XiXi+1Xi+2
αi−1αia gXiXi+1Xi+2

αia

+�
Xi−1XiXi+1Xi+2

αi−1αib
gXiXi+1Xi+2

αib
,

(II) �Xi−2Xi−1XiXi+1Xi+2
αi−2αi−1αi

= kXi−2Xi−1Xi
αi−2αi−1αi

/(
rXi−2Xi−1Xi

αi−2αi−1αi
+gXi−1XiXi+1Xi+2

αi−1αi

)
,

gXi−2Xi−1XiXi+1Xi+2
αi−2αi−1

= �Xi−2Xi−1XiXi+1Xi+2
αi−2αi−1a gXi−1XiXi+1Xi+2

αi−1a

+�Xi−2Xi−1XiXi+1Xi+2
αi−2αi−1a gXi−1XiXi+1Xi+2

αi−1b ,

MXi−2Xi−1XiXi+1Xi+2
αi−2αi−1αi

= �Xi−2Xi−1XiXi+1Xi+2
αi−2αi−1αi

× gXi−1XiXi+1Xi+2
αi−1αi

/
gXi−2Xi−1XiXi+1Xi+2

αi−2αi−1
.
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M can be rewritten as a first-order Markov transfer ma-
trix, with four rows indexed as Xi−2Xi−1

si−2si−1 (RR, RW,W R,WW
from up to bottom) and four columns indexed as Xi−1Xi

si−1si

(RR, RW,W R,WW from left to right), s = R,W :⎡⎢⎢⎢⎣
MRRR MRRW 0 0

0 0 MRW R MRWW

MW RR MW RW 0 0

0 0 MWW R MWWW

⎤⎥⎥⎥⎦.

It can be shown that MWWW , MRWW , MW RW � MRRW �
1. The eigenvector V1 of this matrix is approximately (1 −
2MRRW , MRRW , MRRW , 0), which can be regarded as the posi-
tional probability PXi−1Xi = (PXi−1Xi

RR , PXi−1Xi
RW , PXi−1Xi

W R , PXi−1Xi
WW ).

To be specific,

MXi−2Xi−1XiXi+1Xi+2
Ri−2Ri−1Wi

� kXi−2Xi−1Xi
Ri−2Ri−1Wi

kXi−2Xi−1Xi
Ri−2Ri−1Ri/[

1 + rXi−2Xi−1Xi
Ri−2Ri−1Wi

kXi−1XiXi+1
Ri−1WiRi+1

(
1 + rXi−1XiXi+1

Ri−1WiRi+1

kXiXi+1Xi+2
WiRi+1Ri+2

)]
.

(15)

The positional probability at position i can be calculated
by PXi

R = PXi−1Xi
RR + PXi−1Xi

W R = 1 − MRRW = MRRR(� 1), PXi
W =

PXi−1Xi
RW + PXi−1Xi

WW = MRRW . So the fidelity at position i is

f Xi � 1/MXi−2Xi−1XiXi+1Xi+2
Ri−2Ri−1Wi

� kXi−2Xi−1Xi
Ri−2Ri−1Ri

kXi−2Xi−1Xi
Ri−2Ri−1Wi

×
[

1 + rXi−2Xi−1Xi
Ri−2Ri−1Wi

kXi−1XiXi+1
Ri−1WiRi+1

(
1 + rXi−1XiXi+1

Ri−1WiRi+1

kXiXi+1Xi+2
WiRi+1Ri+2

)]
, (16)

which agrees with Eq. (15) in Ref. [12]. Such expressions
show intuitively the contributions of the polymerase and
the exonuclease to the overall fidelity: the first factor is
contributed solely by the polymerase even if no neighbor
effects are explicitly considered, but the second factor can
only be contributed by the exonuclease when the second-order
neighbor effects do exist. In particular, the second factor
consists of two terms corresponding to the proofreading of
the last W and the penultimate W, respectively, which means
higher proofreading efficiency can be obtained by high-order
neighbor effects [compared with Eq. (11)]. This may explain
the extreme high fidelity of some eukaryotic DNAPs.

The above logic can be directly extended to h-
order processes. Under the corresponding bio-relevant
conditions, one can show that the (2h + 1)-neighbors
Xi−h · · · Xi−1(Xi )Xi+1 · · · Xi+h contribute overwhelmingly to
�

Xi−h···Xi···XL
αi−h···αi . With this generalized NN approximation, we can

readily calculate any positional quantities at i by assuming
gXi ···Xi+h−1···XL

αi ···αi+h−1 � kXi···Xi+h−1Xi+h···XL
αi···αi+h−1R .

VII. SUMMARY

Studies on the template-specific fidelity of DNAPs are
important to understand how genetic mutations are generated
and controlled. While biochemical experiments have offered
many insights on this issue, systematic theoretical studies

are still rare. The only work appeared two years ago [17],
which dealt with the long-time limit of the replication kinetics
and proposed an iteration algorithm to numerically compute
the fidelity or velocity profile. In this paper, we proposed a
different method, based on the first-passage description of
the replication process, to address these problems for com-
plicated processes with high-order neighbor effects. Although
the boundary conditions in our method are different from the
periodic boundary condition in the iteration algorithm, it was
verified numerically that these two choices always give the
same results.

Our method, however, largely simplifies the calculations
by introducing a closed set of kinetic equations and is
more convenient for approximate analytical calculations. We
showed that the positional fidelity and velocity can be reli-
ably estimated by the nearest-neighbor approximations un-
der bio-relevant conditions. The analytical expressions of
the positional fidelity were derived, which show intuitively
how the template-dependent proofreading pathways could
be coordinated with the polymerization pathways to achieve
high fidelity. These results also indicate that the positional
quantities are dependent only on the closely surrounding tem-
plate sequence and irrelevant to the statistical features (e.g.,
long-range correlations) of the template sequence, which is
consistent with the widely held belief that replication mu-
tations are randomly distributed among the genome. This is
also a justification of the somewhat arbitrary choices of the
template sequence (e.g., any expanded sequence containing
the sequence under study can be chosen as the template) and
the initial condition (at the reflecting boundary) in our method.

Our method can also be applied to more realistic cases
in which either the addition or the deletion of monomers
consists of multiple substeps. The widely used models in
biochemistry are nonsuccessive excision models (Model II in
Ref. [12]; also see the biochemical references therein), and
the template-specific fidelity has been investigated in previous
works [14,15] by using the IFS algorithm and additional
steady-state assumptions which are usually adopted to handle
multistep processes in biochemistry (e.g., the well-known
Michaelis-Menten kinetics). Our FP method, however, can
be directly applied to such models without appealing for any
steady-state assumptions. Moreover, successive excision mod-
els are also possible in principle (e.g., Model I in Ref. [12], or
equivalently the model in Ref. [21]), though they are rarely
considered in the literature and the template effects have
never been discussed. Our method can be slightly modified to
handle such models. Comprehensive discussions on the above
issues are too much lengthy to be presented here and will be
published elsewhere.
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FIG. 6. Verification of Eq. (A1) by simulations for the random template. The statistics are made over 105 simulations under Parameter 1.
Open circles: Cumulative dwell time distribution reconstructed from simulations of the original FP process (from the template position 1 to
L). Filled squares: Cumulative dwell time distribution reconstructed according to Eq. (A1), from simulations of the new FP processes (from
the position m to L with a or b at m). (a) T99,100(t ); (b) T51,100(t ).

APPENDIX A: THE CUMULATIVE DWELL TIME
DISTRIBUTION AT POSITION m

We mentioned in the main text that �m is the mean cumu-
lative dwell time of the growing chain at template position
m (which may be revisited many times in a simulation),
according to its definition �m = ∫ +∞

0 pXm (t ) dt . To understand
this, one can imagine N simulation trajectories generated by
the Gillespie algorithm (the first-passage process is divided
into infinitesimal intervals dt) and select the Nm(t ) trajectories
in which the growing end stays at position m at time t , to get
a statistics of pXm (t ) = Nm(t )/N as well as the infinitesimal
dwell time dt at m. As the copolymerization proceeds, the
total dwell time at m contributed from all the N trajectories
should be

∫ +∞
0 Nm(t ) dt , hence the mean cumulative dwell

time per trajectory is given by
∫ +∞

0 pXm (t ) dt .
One can further investigate the cumulative dwell time

distribution at m. Denote the total cumulative dwell time
that the growing chain spends when its length n reaches
gion m � n < L as t , and define the corresponding time
distribution as Tm,L (t ), then we have

∫ ∞
0 Tm,L (t ) dt = 1, and

it’s also known from above that
∫ ∞

0 tTm,L (t ) dt = ∑L
n=m �n.

From the simulation results, we found that Tm,L(t ) can be
precisely expressed as

Tm,L(t ) =
∑

αm=a,b

PXm
αm

T αm
m,L(t ). (A1)

PXm
αm

is the final probability distribution at m, as calculated
in the main text. T αm

m,L (t ) is defined as the first-passage time
distribution of a new imaginary replication process which
initiates at the template position m with initial conditions

qXm
αm

= 1 (αm = a or b) and again terminates at position L.
This equation can be precisely verified by numerical calcu-
lations (Fig. 6).

One can also calculate the positional cumulative dwell time
distribution Tm(t ), by using the convolution relation

Tm,L(t ) =
∫ t

0
Tm(τ )Tm+1,L (t − τ )dτ

with

TL−1(t ) ≡ TL−1,L(t )

=
∑

αL−1=a,b

PXL−1
αL−1

(
kXL−1XL

αL−1a + kXL−1XL

αL−1b

)
× e−(k

XL−1XL
αL−1a +k

XL−1XL
αL−1b )t

.

APPENDIX B: THE CORRELATION FUNCTION

Defining 2 × 2 matrix Bi, j ≡ MXiXi+1···L · · · MXj−1Xj ···L, we
can rewrite the correlation function (defined in Sec. III) as

C
Xi,Xj
αi,α j = PXi

αi

(
Bi, j

αi,α j
−

∑
αi

PXi
αi

Bi, j
αi,α j

)
= PXi

αi
PXi

α̃i

(
Bi, j

αi,α j
− Bi, j

α̃i,α j

)
.

αi = a, b, and α̃i denotes the monomer different from αi.
The stochastic matrix M satisfies row normalization, and

the multiplication of two such matrices results in a new
stochastic matrix. For j = i + 2,

Bi,i+2 =
[

x 1 − x
y 1 − y

][
x′ 1 − x′
y′ 1 − y′

]
=

[
c 1 − c
d 1 − d

]
TABLE I. Random template.

1–10 11–20 21–30 31–40 41–50
BAABAAABBB AAAAABABAA BBBBAAABBB ABBABBAAAB BBABAABAAA

51–60 61–70 71–80 81–90 91–100
BBBBBBABAA ABBBBABABB AAAABAABBB ABBBBBBBBA AABABABABB
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TABLE II. Kinetic parameters (s−1, simulation time unit).

Parameters

Template 1 2 3

Di-unit AA AB BA BB AA AB BA BB AA AB BA BB

kaa 65.0 45.0 76.0 45.0 250.0 0.42 0.52 0.0001 12 344.0 55 325.0 43.0 5436.0
kab 68.0 45.0 64.0 97.0 0.77 200.0 0.0001 0.8 34.0 6325.0 2456.0 54.0
kba 54.0 95.0 56.0 78.0 0.14 0.0001 150.0 0.56 3432.0 342.0 243.0 5456.0
kbb 45.0 66.0 80.0 67.0 0.0001 0.92 0.69 300.0 657 890.0 3424.0 54.0 1324.0

raa 12.0 23.0 7.0 4.0 0.0065 0.018 0.026 2.0 314.0 3244.0 543.0 32.0
rab 16.0 24.0 16.0 4.0 0.033 0.0007 3.0 0.011 2.0 3.0 434.0 2.0
rba 22.0 9.0 17.0 28.0 0.036 5.0 0.0018 0.067 3.0 4.0 543.0 234.0
rbb 14.0 23.0 12.0 19.0 2.0 0.046 0.098 0.0015 43.0 5.0 73.0 12.0

Parameter 1: the addition rates and deletions rates are of the same orders of magnitude, which is different from the bio-relevant conditions.
Parameter 2: bio-relevant conditions in which R and W (base pairs) can be uniquely defined for each template unit (say, A-a, B-b).
Parameter 3: all the rates are randomly assigned, which strongly violates the bio-relevant conditions: no R or W can be properly defined for
each template unit.

in which c − d = (x − y)(x′ − y′), and 0 < x, y < 1. Simi-
larly,

Bi,i+3 =
[

c 1 − c
d 1 − d

][
x′′ 1 − x′′
y′′ 1 − y′′

]
=

[
e 1 − e
f 1 − f

]
in which e − f = (c − d )(x′′ − y′′). By the same logic, we
finally get

∣∣CXi,Xj
αi,α j

∣∣ = PXi
a PXi

b

j−1∏
m=i

∣∣MXmXm+1···XL
aa − MXmXm+1···XL

ba

∣∣.
This formula shows that correlation decays abruptly when the
transfer matrix is close to[

1 0
1 0

]
or

[
0 1
0 1

]
, (M1)

and decays slowly if the transfer matrix is close to[
1 0
0 1

]
or

[
0 1
1 0

]
. (M2)

Under the bio-relevant conditions like Parameter 2, the
transfer matrix M at each template position is like M1, re-
sulting in the abrupt decay of correlation and allowing us
to make the nearest-neighbor assumptions at each position.
For Parameter 3, however, the transfer matrix M at some
position is like M2, and thus the correlation decays slowly
[e.g., Fig. 3(b)].

APPENDIX C: THE EIGENVECTOR APPROXIMATION

Aperiodic and irreducible stochastic matrices like M have
an important property according to the Perron-Frobenius
theorem, i.e., their largest eigenvalue is λ1 = 1, which al-
ways associates with one and only one positive eigenvector

V1 being properly normalized to 1. Other eigenvalues and
eigenvectors are denoted as λi and Vi, i = 2, 3, . . . , n is the
dimension of the matrix. For stochastic matrices like M under
bio-relevant conditions, λi(i � 2) are always far less than 1.
Any probability distribution vector P can be decomposed as
P = V1 + ∑

i>1 siVi, so PM = V1 + ∑
i>1 λisiVi. If PM does

not differ much from P, the second summation in the above
equality is always far less than V1, so PM can be approximated
by V1.

On the other hand, we also know that (PXi
R , PXi

W ) =
(PXi−1

R , PXi−1
W ) · MXi−1XiXi+1, and (PXi

R , PXi
W ) is indeed not too

different from (PXi−1
R , PXi−1

W ) [they both are around (1,0)]. So
we can safely approximate (PXi

R , PXi
W ) by the eigenvector V1 of

the matrix MXi−1XiXi+1.

APPENDIX D: THE TEMPLATE SEQUENCES
AND KINETIC PARAMETERS

The DNA template and kinetic parameters used in the
numerical computations and simulations in the main text are
shown in Tables I and II.

In Sec. IV it has been shown that our first-passage approach
and nearest-neighbor approximation can reliably reproduce
the fidelity and velocity profile under bio-relevant conditions,
which means that these positional quantities are irrelevant to
the long-range properties of the template sequence. To better
illustrate this, we have carried out numerical computations
for a Markov chain template sequence (Table III) in which
the probability of consecutive As (or Bs) is taken as 0.8. Our
results (see the Supplemental Material [20]) clearly show that
the NN approximation still holds for such strongly correlated
template sequences.

TABLE III. Markov template.

1–10 11–20 21–30 31–40 41–50
AAAAAAAAAA AAAAAAAAAA BBBBBBBBBB BBBBBBBBBB BBBBBBBBBA

51–60 61–70 71–80 81–90 91–100
AAAAABBAAA AAAAAAAAAA AAABBBBBBB BBBBBBBBBB BBBAAAAAAA
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