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Stochastic interface dynamics in the Hele-Shaw cell
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A one-parametric stochastic regularized dynamics of the interface in the Hele-Shaw cell is introduced.
The short-distance regularization suggested by the aggregation model stabilizes the growth by preventing the
formation of cusps at the interface and makes the interface dynamics chaotic. The introduced stochastic growth
process generates universal complex patterns with the well-developed fjords of oil separating the fingers of
water. In a long time asymptotic, by coupling a conformal field theory to the stochastic growth process, we
introduce a set of observables (the martingales), whose expectation values are constant in time. The martingales
are closely connected to degenerate representations of the Virasoro algebra and can be written in terms of
conformal correlation functions. A direct link between Laplacian growth and conformal Liouville field theory
with the central charge c � 25 is proposed.
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I. INTRODUCTION

Nonlinear growth phenomena still pose great challenges
in nonequilibrium statistical physics and mathematics. The
growth processes observed in various physical, chemical, and
biological systems typically lead to the formation of self-
similar patterns with remarkable geometrical properties [1,2].
Most of them fall naturally into universality classes depending
on the mechanism driving the growth. However, even the
problems from the same class often require absolutely differ-
ent approaches.

The relevant examples are the deterministic dynamics of
the oil/water interface in the Hele-Shaw cell [3] and discrete
stochastic fractal growth, such as diffusion-limited aggrega-
tion (DLA) [4]. Although these phenomena are both diffusion
driven growth processes, the stochastic dynamics is mainly
studied numerically, whereas the deterministic Hele-Shaw
problem is known to possess a real mathematical structure
owing to integrability [5,6]. A single framework unifying
both processes must resolve the following main obstacles:
(1) A naive limit of the vanishing particle size in DLA
leads to the ill-defined Hele-Shaw problem when the interface
quickly develops cusps, and (2) it is problematic to introduce
stochastic interface dynamics in the Hele-Shaw cell because
the incompressible viscous fluid prevents local fluctuations in
pressure.

Both obstacles can be resolved by introducing a short-
distance regularization of the Hele-Shaw problem suggested
by the aggregation model [7–9]. Namely, one can consider the
short-distance cutoff so that the change in areas of domains is
quantized and equals an integer multiple of the area quanta
h̄. The cutoff prevents the cusps’ production and generates
inevitable noise (fluctuations) on the microscale (the scale
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on the order of h̄). The regularization procedure leads to the
violation of the incompressibility condition on the microscale.
Thus, it becomes possible to introduce local fluctuations of
pressure in the vicinity of the interface, which are forbidden
in the idealized (without a surface tension) Hele-Shaw prob-
lem. The dissipation of fluctuations with time results in the
formation of patterns with the well-developed fjords of oil
separating the fingers of water [9].

In this paper, we continue to study the short-distance regu-
larization of the Hele-Shaw problem introduced in Refs. [8,9].
The laboratory observations of the Hele-Shaw flow show the
formation of multifingered branched universal patterns. Re-
markably, these patterns are known to be (mono)fractals with
the numerically obtained Hausdorff dimension Dh = 1.71 ±
0.01, which appears to be robust and universal [10]. The
conventional analytical methods to study Laplacian growth,
inspired by the Riemann mapping theorem, usually far from
making the problem of multifractal analysis tractable. Al-
though some solutions of the idealized Laplacian growth
problem are found to be in good agreement with experi-
ments [11], they cannot explain the fractal structure of the
interface. Thus, our goal is to introduce a system of coupled
stochastic partial differential equations [see Eqs. (1), (2),
and (4) below], which generates stochastic interface dynamics
in the Hele-Shaw cell and results in the formation of fractal
patterns.

The structure of this paper is straightforward: After recall-
ing the Laplacian growth problem regularized by the short-
distance cutoff, we introduce a model for stochastic interface
dynamics in the Hele-Shaw cell and report a family of mar-
tingales, which can be expressed in terms of the correlation
functions of the conformal field theory (CFT) with the central
charge c � 25. Afterwards, we perform numerical simulations
with which we analyze the patterns, generated by the model.
Finally, we draw our conclusions and indicate some open
problems.
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FIG. 1. The time-dependent conformal map z(w, t )
from the complement of the unit disk D+ on the auxiliary w

plane to the exterior of the domain D+
t on the z plane. The dashed

lines on the z plane represent the fjord centerlines γk bounded by the
end points ζ 0

k ≡ z[1/ξ̄ 0
k (t ), t] = const and ζk = z[1/ξ̄k (t ), t]. The

curve γ̃k on the w plane with the end points ξk and ξ 0
k is the image of

γk under the conformal map.

II. A SHORT-DISTANCE REGULARIZATION OF
LAPLACIAN GROWTH

The Loewner-Kufarev approach is a convenient method to
study the interface dynamics in the Hele-Shaw cell [12,13].
Let z(w, t ):C \ D+ → C \ D+

t be the time-dependent confor-
mal map from the exterior of the unit disk D+ on the auxiliary
w plane to the exterior of the simply connected domain D+

t
on the z plane (see Fig. 1). The exterior of the droplet C \ D+

t
will be called Dt for brevity. The map is unique provided
the following conditions: z(∞, t ) = ∞, and the conformal
radius r(t ) = z′(∞, t ) is a positive function of time t . Then,
the growth of D+

t can be represented as a Loewner chain, i.e.,
a sequence of conformal maps satisfying the following partial
integrodifferential equation1 [12,13]:

ż(w, t ) = −wz′(w, t )
∫ 2π

0

dφ

2π

eiφ + w

eiφ − w
ρ(eiφ, t ), (1)

where z(w, 0) = w, and the function ρ(w, t ) is the Loewner
density. If ρ(eiφ, t ) = δ(eiφ − eiφ0 ) is a Dirac peak at the
point eiφ0 , Eq. (1) generates a local Loewner growth [12];
stochastic dynamics of the peak at the unit circle leads to
the famous Schramm-Loewner evolution (SLE) [14]. In the
case of nonlocal growth processes, the density is a smooth
function on the unit circle. It determines the normal velocity
of the boundary,2 vn = |z′|−1 Im(z̄t zφ ) as follows: vn(eiφ, t ) =
|z′(eiφ, t )|ρ(eiφ, t ). In particular, the idealized (without a sur-
face tension) deterministic Laplacian growth is generated by
the density ρ(eiφ, t ) = Q/|z′(eiφ, t )|2, where Q is the growth
rate. We briefly recall the main features of the idealized
Laplacian growth problem in Appendix A.

The short-distance regularization of Laplacian growth im-
plies the existence of the dimensional cutoff h̄, i.e., the min-
imal value (quanta) of the change in the area of the water
region allowed in the model. Under these circumstances, the

1Here and below, the primes and dots denote partial derivatives with
respect to the coordinate and time, respectively.

2In what follows, the bar denotes complex conjugation.

interface dynamics in the Hele-Shaw cell is described by the
Loewner chain (1) with the following Loewner density [9]
(see also Appendix A):

ρ(w, t ) = 1

|z′(w, t )|2
[

Q − 2ν

N∑
k=1

Re
ξk (t )

w − ξk (t )

]
, (2)

where ν = h̄/δt is the cutoff of the growth rate Q (ν � Q),3

and the collective coordinates ξk (t ) on the w plane |ξk| <

1 parametrize “slow” fluctuations of the interface velocity
obtained by averaging over the “fast” ones. In Ref. [9], it was
shown that dissipation of fluctuations with time, generated
by Dyson Brownian motion, results in the Calogero-type
dynamics of the coordinates,

dξk

ξk
= −σ dτ (t ) + 1

2

N∑
l �=k

ξk + ξl

ξk − ξl
dτ (t ), (3)

where the constant σ = Q/ν produces a drift of ξk’s toward
the origin and the “auxiliary time” τ (t ) parametrizes the
motion of poles inside the unit disk.

In Appendix B, we briefly review the growth process
determined by the set of coupled Eqs. (1)–(3). We also argue
that the patterns generated by these equations capture the
main geometrical features of the patterns typically observed
in experiments [15,16]. However, the quantitative analysis of
the solutions requires to establish an exact relation between
the auxiliary and the physical times.

III. STOCHASTIC LAPLACIAN GROWTH

In this section, we propose a model for stochastic interface
dynamics in the Hele-Shaw cell, which makes the experimen-
tally observed patterns more amenable to an exact analytic
treatment. We introduce stochastic dynamics by adding noise
to the motion of the poles ξk (t ) of the Loewner density (2).
The corresponding (random) curves on the z plane ζk (t ) =
z[1/ξ̄k (t ), t] are the centerlines of the fjords of oil4 separating
the fingers of water5 (see Fig. 1). Thus, we consider each fjord
as the result of stochastic evolution.

A statistical theory of stochastic Laplacian growth studies
possible outcomes of the growth process when the initial
pattern is known. One can argue that the formation of viscous
fingers is described by the relaxation to equilibrium in the
weakly nonequilibrium statistical system [9]. This observation
yields a striking conclusion that in the long time asymptotic
the statistical weights of patterns should obey the ordinary
Gibbs-Boltzmann distribution, which, as a rule, is not applied
out from equilibrium.

The partition function for the system ZD0 is given by the
sum of Boltzmann weights FDt for the possible outcomes Dt

of the growth process D0 → Dt , (t � t0), provided the initial

3One can ignore the details of the construction and consider the
cutoff ν as the independent parameter of the model (instead of h̄),
which appears explicitly in subsequent calculations, and determines
the minimal allowed value of the growth rate.

4The centerlines are equidistant from the fjord’s edges.
5See Ref. [9] and Appendices B and C for a brief review.
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FIG. 2. We plot the interfaces y = Im z(eiφ, t ) vs
x = Re z(eiφ, t ) at an increasing time sequence at κ . The
interface develops three fjords directed along the radial lines.
The bottoms of the fjords at the points ζ 0

1 = 10, ζ 0
2 = 3.21 + 5.96i,

and ζ 0
3 = −4.61 − 3.07i are the stagnation points of the interface

dynamics. On the large scale, the fjords closely resemble the
ordinary U-shaped fjords with parallel walls, which can be nicely
approximated by the smooth logarithmic solutions of the idealized
Laplacian growth problem [24]. However, one can note irregularity
of the interface at the bottoms of the fjords. The black box shows the
region in the bottom of the fjord ζ 0

1 = 10, which is further enlarged
in Figs. 3 and 4.

pattern D0 is given.6 Remarkably, in the long time asymptotic,
the Boltzmann weights can be identified with the martingales7

of the stochastic growth process (cf. Refs. [18,19]). Below, we
show that the patterns Dt possess deep fjords starting at the
“stagnation points” (points of the interface that stay almost
fixed during growth) and going toward infinity (see Fig. 2) as
t → ∞. The positions of stagnation points are specified by
the initial domain D0, whereas the shapes of fjords vary from
sample to sample. Thus, the Boltzmann weights FDt depend
on the position of the fjords and can be written in terms of
certain correlation functions (7).

The construction of martingales of stochastic Laplacian
growth leads to the following proposition:

Let us consider the interface dynamics in the Hele-Shaw
cell, generated by the Loewner chain (1) with the density (2)
so that the poles ξk (t ) of the density move stochastically
with time. Then, the resulting interface dynamics is stochastic
and, moreover, possesses a set of statistical martingales in the

6In Fig. 2, we show a particular outcome of stochastic growth of the
initially perturbed unit circle. It is clear that one has infinitely many
outcomes for the same initial interface.

7Roughly speaking, the martingales are the stochastic processes,
whose expectation values are constant in time [17].

long time asymptotic [which are identified with the statistical
weights (7) of patterns], provided the random processes ξk (t )
satisfy the following system of coupled stochastic differential
equations:8

d ln ξk = −σ dqk − κ

2
gk (ξ1, . . . , ξ̄1, . . .)dqk

+ 1

2

′∑N

l=1

(
ξk + ξl

ξk − ξl
+ ξk + 1/ξ̄l

ξk − 1/ξ̄l

)
dqk +i dWk (qk ),

(4)

with the initial conditions ξk (t0) = ξ 0
k , which determine the

initially perturbed pattern D0.
The driving terms Wk (qk ) = √

κ/2Bk (qk ) in Eq. (4) are
proportional to the uncorrelated Brownian motions Bk (qk )
with the mean zero and covariance cov[Bk (qk )Bs(q′

s)] =
δks min(qk, q′

k ), where the ordinary time variable t is replaced
by the auxiliary times qk (t ), expressed by

dqk (t ) = ν|z′(1/ξ̄ 0
k (t ), t )|−2dt . (5)

The time evolution of the points ξ 0
k (t ), generated by the

stochastic Loewner chain, Eqs. (1), (2), and (4), will be
discussed below [see Eq. (14)]. Note that there was only
one auxiliary time in Eq. (3), obtained on the assumption
of dissipation of fluctuations at the interface with time [9].
However, this qualitative consideration fails to specify an ex-
plicit relation between the auxiliary and the physical times. A
more systematic analysis of the problem, presented hereafter,
shows that more than one auxiliary time qk (t ) individually
parametrizing the fjords evolution, are required to simulate
the growth process properly (cf. Ref. [18] where the multiple
SLE curves are parametrized by multiple times).

The diffusion constant κ > 0 measures the noise strength
cov[Wk (qk )Ws(q′

s)] = (κ/2)δks min(qk, q′
k ) and labels a con-

tinuous family of stochastic Laplacian growth processes. We
argue below, that multifractal properties of grown patterns
depend on the value of κ .

The function gk = ξ−1
k (ξk∂ξk + ξ̄k∂ξ̄k

) ln Z in Eq. (4) is
the logarithmic derivative of the correlation function Z =
〈∏k �(ξk, ξ̄k )〉D of the primary fields � with the conformal
dimensions h = −(6 + κ )/(2κ ) of the boundary CFT with the
central charge c = 1 + 3(κ + 4)2/(2κ ). We briefly recall the
basics of CFT below.

In the next section, we argue that the system of coupled
stochastic equations, (1), (2), and (4) admits a set of mar-
tingales FDt , which is closely connected to the conformal
correlation functions as shown below (7). We will follow the
guideline of Ref. [18] where the construction of martingales
associated with interfaces was proposed. The main idea is to
couple a critical statistical system to the exterior of the grow-
ing domain Dt and consider the observables of the system, i.e.,
the correlation functions of local operators. By conditioning
these observables to be the martingales of stochastic interface
dynamics, one puts strong constraints on the motion of the
poles ξk (t ) and auxiliary times qk (t ).

8The primed sum means that the singular term is excluded.
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IV. MARTINGALES OF STOCHASTIC INTERFACE
DYNAMICS

Our analysis is based on the methods inspired by conformal
field theory. Therefore, it is instructive to begin this section
by recalling the basics of CFT. Let us consider a CFT in the
external domain Dt . It is characterized by the set of scaling op-
erators (primary fields) �h(z, z̄) constituting representations
of the Virasoro algebra [20,21]. A set of conformal dimen-
sions h specifies the transformation of correlation functions of
primary fields under conformal maps,9〈

N∏
k=1

�hk (zk, z̄k )

〉
Dt

=
〈

N∏
k=1

|w′(zk, t )|2hk �hk (wk, w̄k )

〉
D

. (6)

The correlation functions are known to be closely con-
nected to SLE statistical martingales [22]. A similar approach
can be used in the case of stochastic Laplacian growth pro-
vided considerably strict constraints. Let us introduce the
following normalized correlation function,

FDt ({ζ , ζ 0}) =

〈∏
k

�(ζk, ζ̄k )�h
(
ζ 0

k , ζ̄ 0
k

)〉
Dt〈∏

k

�(ζk, ζ̄k )
〉
Dt

, (7)

where k = 1, . . . , N . The positions of the fields are specified
by the end points ζ 0

k ≡ ζk (t0) = const and ζk ≡ ζk (t ) of the
dynamically generated centerlines of the fjords of oil that
separate fingers of water (see Fig. 1),

ζ 0
k = z[1/ξ̄ 0

k (t ), t] = const, ζk (t ) = z[1/ξ̄k (t ), t]. (8)

The relation between the singularities of the conformal map
and the positions of fjords can be established by using the
Schwarz function approach [11,23].

Stochastic evolution of the domain Dt results in the
Langevin dynamics of the correlation functions, which can
be conventionally studied by mapping (7) to the w plane by
means of (6),

FDt ({ζ , ζ 0}) = FD({w,w0})
N∏

k=1

|w′(ζ 0
k , t )|2hk , (9)

where wk (t ) = 1/ξ̄k (t ) and w0
k (t ) = 1/ξ̄ 0

k (t ).
The time evolution of the inverse map w = z−1 can be

obtained from Eq. (1) by the method of characteristics,

dw(z, t )

dt
= w(z, t )

∫ 2π

0

dφ

2π

eiφ + w(z, t )

eiφ − w(z, t )
ρ(eiφ, t ), (10)

with the initial condition w(z, 0) = z. Let w → w + ε(w)
be the infinitesimal conformal transformation generated by
the Loewner chain (10), i.e., ε(w) = wp(w)dt , where p(w)
denotes the integral over the angle in Eq. (10). Since
Re p(eiφ ) < 0, this transformation does not preserve the ge-
ometry.10 Taking account of ε(w)/w = w̄ε(1/w̄) when |w| =

9We only consider the spinless operators with equal holomorphic
and antiholomorphic conformal dimensions.

10More precisely, the CFT is defined on the Schottky double of the
viscous fluid domain Dt .

1 and p(1/w̄) = −p̄(w̄), one determines the transformation of
the antiholomorphic sector in the vicinity of the unit circle:
w̄ → w̄ − ε̄(w̄).

Since the conformal map changes with time stochastically,
we take the Itô derivative of Eq. (9). To begin with, let us con-
sider a variation of the primary field d�h = |w′(z, t )|2h(hε′ −
hε′ + ε∂w − ε∂w̄ )�h. Below, only the key points of the com-
putation will be mentioned whereas the technical details will
be presented elsewhere.

Conformal transformations at the bottoms of fjords. First,
if point w is located in the vicinity of the unit circle, i.e., w ≈
eiθ , the difference I (w) = wp′(w) − wp′(w) reduces to the
contour integral around this point,

I (w) = −2w

∮
w

du

2π i

ρ(u, t )

(u − w)2
. (11)

Since ρ(u, t ) depends on the conformal map, critical points
of z′(w, t ) contribute to the integral. The map z(w, t ) is
conformal outside the unit disk so that all singularities of
z′(w, t ) are located inside.

It is convenient to consider the growth process, specified by
Eqs. (1), (2), and (4) in the discrete framework. Then, z′(w, ti )
can be written in the form [9]

z′(w, ti ) = r(ti) +
N∑

k=1

i∑
j=0

c̄k, j

w − ξ
j

k (ti )
, (12)

where ξ
j

k (ti) is the position of the jth point of the cut γ̃k (ti )
of the map z(w, ti ). The coefficients ck, j are the stochastic
variables, determined by displacements of the images of the
points ξ

j
k on the z plane per time unit [9],

ck, j = ν �t

(
1

�ζk (t j )
− 1

�ζk (t j−1)

)
, (13)

where �ζk (t j ) = ζk (t j ) − ζk (t j−1). Contrary to idealized
Laplacian growth, the interface evolution, (1), (2), and (4),
does not preserve the number of singular points. At each
time unit �t , the function z′(w, ti ) develops N new poles11

at the points ξk (ti) ≡ ξ i
k (ti ) determined by the stochastic dy-

namics (4).
The dynamics of the poles ξ

j
k (t ) of z′(w, t ) is governed by

the constants of motion [9] (see also Appendix C),

ζk (t j ) = z[1/ξ̄
j

k (ti ), ti] = const ( j < i), (14)

and 2πti = (1/2i)
∮
|w|=1 z(w, ti )z′(w, ti )dw is the area of the

domain at time ti. The positions of the remaining N poles ξ i
k (ti )

are determined by the stochastic differential equation (4).
Thus, the system of coupled equations (1), (2), and (4) is self-
consistent and determines uniquely the interface dynamics by
specifying the positions of critical points of the conformal
map.

In the asymptotic r(t ) → ∞ (i.e., as t → ∞), the poles
ξ 0

k (t ) approach the unit circle ln[1 − |ξ 0
k (t )|] ≈ −r(t )/|αk|

where the constants αk are related to the widths of the

11In the limit �t → 0, the generation of poles results in the
evolution of the branch cuts of z′(w, t ).
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fjords [24]. The roots u j
k (t ) and poles ξ

j
k (t ) of the func-

tion (12) are separated in pairs so that |u j
k (t ) − ξ

j
k (t )| ∼

1/r(t ). Therefore, the contribution of the factor |z′(w, t )|−2 to
the integral (11), namely, −2 Im[w0

k z′′(w0
k )/z′(w0

k )]ρ(w0
k ) ∼

ρ(w0
k )/r(t ) is suppressed when compared to the contribution

of the poles at w = ξk of the density (2). Thus,

I (w0
k ) = −2ν

|z′(w0
k , t )|2

N∑
j=1

[
w0

kξ j

(w0
k − ξ j )2

− c.c.

]
+ O(1/r),

(15)
where c.c. denotes the complex conjugated terms. The pref-
actor in Eq. (15) is proportional to the normal interface
velocity squared v∗

n (eiθ , t ) = Q|z′(eiθ , t )|−1. It becomes expo-
nentially small [ln |z′(w0

k , t )| ∼ r(t )/|αk|] at the bottoms of
fjords where interfaces develop stagnation points that stay
almost fixed during growth.

Boundary conditions. The second key point in the compu-
tation of dF is the Neumann boundary condition for the fields
�h(wk, w̄k ) = �h(eiθk ) located exponentially close to the unit
circle,

∂n(ww̄)h�h(w, w̄)|w=exp(iθk ) = 0, (16)

where ∂n = w∂w + w̄∂w̄ is the normal derivative. Note that,
in the coordinates, w = exp(ix − y), Eq. (16) takes the form
∂y�h(x, y)|y=0 = 0.

Transformations of fields. The formulas (11), (15),
and (16), together with the equality Re(dw/w dt ) = −ρ(w)
for w = exp(iθ ), determine the variation of the field
�w

h (z, z̄) ≡ |w′(z, t )|2h�h(w, w̄) under stochastic Laplacian
growth,

d�w
h (ζ 0, ζ̄ 0)

|w′(ζ 0, t )|2hdt
= [hI (eiθ ) + ρ(eiθ )i∂θ ]�h(eiθ ), (17)

where i∂θ = w̄∂w̄ − w∂w stands for the tangential derivative
at the unit circle.

Furthermore, let us consider a contribution of the fields
�(ζk, ζ̄k ) located at the end points ζk (t ) = z[1/ξ̄k (t ), t] of
the fjord’s centerlines. Since the Jacobians coming from the
transformations of the fields are canceled in the numerator and
denominator of the correlation function (9), the Itô derivative
of �(ξ, ξ̄ ) reads

d� = −(κ/4)(ξ∂ξ + ξ̄ ∂ξ̄ )2� dq + ∂ξ� dξ + ∂ξ̄� d ξ̄ . (18)

Langevin dynamics of correlation functions. Finally, one
can neglect the difference in the normal interface velocities
near stagnation points as r(t ) → ∞. Namely, the conformal
factors |w′(ζ 0

k , t )| with k = 1, . . . , N are equal up to expo-
nentially small corrections in r(t ). Then, by taking account
of Eq. (4), one obtains the following expression for the Itô
derivative of FDt ({ζ , ζ 0}):

dFDt =
N∏

j=1

|w′(ζ 0
j , t )|2h j

N∑
k=1

[
i dWk

(
l (k)
−1 + l̄ (k)

−1

)

+ dqk

(
− κ

4

(
l (k)
−1 + l̄ (k)

−1

)2 + l (k,h)
−2 + l̄ (k,−h)

−2

)]
FD,

(19)

where we used (5), took into account that all dqk’s with k =
1, 2 · · · are equal in the limit r(t ) → ∞, and introduced the
following differential operators:

l (k)
−1 = ξk∂ξk ,

l (k,h)
−2 = −1

2

∑
j �=k

ξk + ξ j

ξk − ξ j
ξ j∂ξ j + 1

2

∑
j

ξk + 1/ξ̄ j

ξk − 1/ξ̄ j
ξ̄ j∂ξ̄ j

+ 1

2

∑
j

ξk + eiθ j

ξk − eiθ j
i∂θ j −

∑
j

2hξkeiθ j

(ξk − eiθ j )2
, (20)

where h is the conformal dimension of �h.
Belavin-Polyakov-Zamolodchikov equations. The primary

fields of CFT form the highest weight representations of the
Virasoro algebra. These representations are not necessarily
irreducible because of the existence of the null vectors in
the Verma modules. A relevant example is the null vector
at the second level of the Verma module, which exists when-
ever the highest weight of the module h takes a value from the
Kac table [20],

h = h21 = −6 + κ

2κ
when c = 1 + 3

(κ + 4)2

2κ
. (21)

We emphasize that the central charge is c � 25 so that the
Virasoro algebra is a symmetry algebra of the Liouville field
theory [25], whereas, in the SLE case, the central charge is
c � 1 [22,26]. The reason is that the differential equations for
dF , expressing the decoupling of the null vector, match with
the expression on the right hand side of Eq. (19) when c �
25.12

The correlation functions that involve degenerate fields
(corresponding to the null vectors) satisfy the linear
partial differential equations called Belavin-Polyakov-
Zamolodchikov equations [20]. In particular, the correlation
function (7) with N degenerate fields �(ζk, ζ̄k ) satisfies the
following N differential equations:[

− κ

4

(
l (k)
−1

)2 + l (k,h)
−2

]
FD = 0, k = 1, . . . , N, (22)

and similar equations hold for the antiholomorphic sector.
Equations (22) allow one to recast the Langevein dynam-
ics (19) of F in the form

dFDt ({ζ , ζ 0})∏
k

|w′(ζ 0
k , t

)|2hk
=

N∑
k=1

[
i dWk

(
l (k)
−1 + l̄ (k)

−1

) − dqk
κ

2
�(k)

]
FD,

(23)
where �(k) = l (k)

−1 l̄ (k)
−1 is the Laplace operator.

Martingales of stochastic Laplacian growth. Roughly
speaking, martingales are the random processes whose expec-
tation values are constant in time, i.e., they satisfy stochastic
differential equations without a drift term [17]. The drift
term on the right hand side of Eq. (23) measures the degree
to which FDt fails to be a martingale (cf. Ref. [27]). If
the positions of points ξk (t ) are determined by the equation

12Note that the poles ξk in (4) attract each other in the tangential
direction, whereas, in the (radial) SLE case, they are repealed.
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∑N
k=1 �(k)FD({ξ, ξ̄ , eiθ }) = 0, the function (7) becomes the

martingale of stochastic Laplacian growth. Therefore, we ar-
gued that stochastic interface dynamics (1), (2), and (4), which
describe the evolution of N oil fjords starting from a slightly
perturbed initial interface, admits a family of martingales
closely connected to conformal correlation functions (7).

Statistical mechanics arguments (see, e.g., Ref. [18]) al-
lows one to relate ratios of conformal correlation functions
FDt (ζ1, . . . ; ζ̄1, . . .) with conditioned expectation values of
local operators of statistical systems. In particular, the SLE
martingales are essential objects for estimating crossing prob-
abilities of random curves, representing the conditioned corre-
lation functions of statistical systems [18]. A similar interpre-
tation holds (with minor reservations) in the case of stochastic
Laplacian growth. Namely, instead of random (multiple) SLE
curves, one should consider a family of random centerlines of
the fjords. Then, the correlation functions (7) are the proba-
bilities of the fjords centerlines to pass through the marked
points {ζ 0

k , ζk (t )}N
k=1.

V. NUMERICAL SIMULATIONS

In this section, a set of numerical simulations is presented
with which we analyze what kind of patterns the introduced
model of stochastic Laplacian growth is supposed to produce.
In particular, we will unveil a role of the noise strength κ in
the pattern formation process. For this purpose, we simulate
the process of the fjords’ evolution for the various values of
the noise strength κ .

In all cases, we consider a tiny perturbation of the
initially unit circle z(w, t0) = w on the z plane so that
ν/Q = 0.04, r(t0) = 1, and ξ1(t0) = 0.1, ξ2(t0) = 0.07 +
0.13i, ξ3(t0) = −0.15 − 0.1i. In Fig. 2, we plot various
snapshots of the physical interface y = Im z(eiφ, t ) vs x =
Re z(eiφ, t ) at an increasing time sequence, which repro-
duce the pattern formation processes (1), (2), and (4) for
κ = 4. One can observe a generation of the pattern with
three fjords growing in the radial direction. The tips of the
fjords, located at the points ζ 0

1 = 10, ζ 0
2 = 3.21 + 5.96i, and

ζ 0
3 = −4.61 − 3.07i are the stagnation points of the inter-

face, which have been observed previously in numerous ex-
periments and numerical simulations (see, e.g., Ref. [28]).
Note that, on the large scale, the interface z(eiφ, t ) can be
approximated with the smooth nonsingular exact solutions for
the idealized Laplacian growth problem [24]. However, the
crucial difference between our results and those of Ref. [24]
becomes obvious when one addresses geometrical properties
of the fjords on the microscale. In order to illustrate this
difference in detail, below, we consider the interface in the
vicinity of the tip of the fjord at point ζ 0

1 = 10.
In Fig. 3, we show various snapshots of the fjord’s

centerline y = Im z[1/ξ̄1(t ), t] vs x = Re z[1/ξ̄1(t ), t] in the
vicinity of the points x = 10, y = 0, generated by stochastic
dynamics of the points ξk’s inside the unit circle (4) for
κ = 2, κ = 4, κ = 8, and κ = 16. We see that the higher
the noise strength κ , the greater the angular spread of the
points, which determine the centerlines of the fjords when the
time step goes to zero �t → 0. Contrary to the logarithmic
solutions of the idealized Laplacian growth problem, which
describes the formation of smooth fjords with parallel walls,

FIG. 3. The boxed region in Fig. 2 is enlarged to reveal a
structure of the interface at the bottom of the fjord on the mi-
croscale. We plot the fjord’s centerlines y = Im z[1/ξ̄1(t ), t] vs x =
Re z[1/ξ̄1(t ), t], where ξ1(t0) = 0.1 in the exterior of the growing
domain during the first second of the growth process. The time unit is
�t = 0.01. The centerlines are generated by stochastic dynamics of
singularities of the conformal map (4) for various values of the noise
strength κ = 2, κ = 4, κ = 8, and κ = 16. We see that the higher
the noise strength κ , the greater the angular spread of the points along
the fjord’s centerline. By flowing around these points, the interface
develops a fractal structure shown in Fig. 4.

stochastic dynamics results in the formation of fractal patterns
at the bottoms of the fjords. However, away from the fjord’s
tips, the centerlines become almost smooth radial lines, which
can be approximated by the logarithmic solutions.

It is remarkable that stochastic dynamics of the poles of
the Loenwer density (4) results in the formation of variety
of tiny fjords on the microscale, which repeatedly merge
together to form the larger fjords. We show this feature of the
stochastic interface dynamics in Fig. 4 where we have plotted
various snapshots of the physical interface y = Im z(eiφ, t )
vs x = Re z(eiφ, t ) near the points x = 10, y = 0 at times
t = 47, t = 50, t = 53, t = 56 for two different values of
the noise strength κ = 6 and κ = 16. The black dots indicate
values of the random process z[1/ξ̄1(t ), t] in the first few sec-
onds of the evolution. We see that the positions of the dots can
be considered as small obstacles (more precisely, pointlike oil
sources as discussed in Appendix B) in the Hele-Shaw flow.
By flowing around the obstacles, the interface develops tiny
fjords of oil which separate the fingers of water. As follows
from Figs. 3 and 4, the higher the noise strength κ , the greater
the number of tiny fjords on the microscale at the bottoms of
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FIG. 4. We plot the interface y = Im z(eiφ, t ) as a function of
x = Re z(eiφ, t ) in the vicinity of the points x = 10, y = 0 at times
t = 47, t = 50, t = 53, t = 56 for two different values of the noise
strength: (a) corresponds to κ = 6 and (b) corresponds to κ = 16.
The widths of fjords are determined by the ratio ν/Q = 0.04. The
positions of points ζ1(t ) = z[1/ξ̄1(t ), t] on the z plane can be consid-
ered as pointlike obstacles in the Hele-Shaw flow. By flowing around
these points, the interface develops a variety of tiny fjords of water
separating the fingers of oil on the microscale. The higher values of
the noise strength generate the more fjorded interfaces. The boxed
region in (a) shows the interface in the vicinity of the points x =
10, y = 0, magnified 20-fold and 200-fold correspondingly. Since
the interface exhibits similar patterns on increasingly small scales,
one can argue that the interface in the bottoms of fjords has a fractal
structure.

fjords. The boxed region in Fig. 4(a) shows the interface in the
vicinity of the points x = 10, y = 0, magnified 20-fold and
200-fold correspondingly. Since the interface exhibits similar
patterns on increasingly small scales, one can argue that the
interfaces in the bottoms of fjords have fractal structures.

A nontrivial relation between the auxiliary and the physical
times (5) results in the reduction in amplitude of angular
fluctuations of the fjord centerlines with time. This feature
of the fjord’s evolution can be already observed in Fig. 3.
However, it is more instructive to consider the fjord’s evo-
lution on larger scales. In Fig. 5, we show the formation of
the fjord’s centerline for the noise strength κ = 16 generated

FIG. 5. We plot the fjord’s centerline y = Im z[1/ξ̄1(t ), t] vs x =
Re z[1/ξ̄1(t ), t], generated by stochastic dynamics of singularities of
the conformal map (4) for κ = 16 during the first 4 s of the growth
process. We see a fast reduction in the amplitude of angular fluctu-
ations of the curve with time so that initially chaotic distribution of
points quickly reduces to an almost smooth curve, thus, generating
the well-known logarithmic solutions of the Hele-Shaw problem.

in the first 4 s of the stochastic growth process. We see that
initially chaotic distribution of points quickly reduces to an
almost smooth curve.

We conclude that the proposed stochastic growth model
allows one to address the fractal properties of patterns at the
bottoms of deep fjords where tiny fjords repeatedly merge
together to form the larger ones (see Fig. 4). However, further
elaboration of the model is required to explain the formation
of fractal branched patterns on the macroscale: since the
fjords’ centerlines quickly become almost smooth curves,
tip splitting and side branching of viscous fingers on the
macroscale cannot be explained by the proposed model [see
Fig. 2]. Note, however, that random fluctuations in pressure
appear inevitably during the whole growth process, thus,
producing various generations of fjords on the macroscale.
This process manifests itself in the repeated events of tip
splitting and side branching of viscous fingers (in this paper,
we consider the time evolution of the only generation of
fjords).

VI. CONCLUSION AND DISCUSSION

In this paper, we introduced and studied a self-consistent
model of stochastic interface dynamics in the Hele-Show cell
described by Eqs. (1), (2), and (4). Our initial motivation was
to consider the effect of the short-distance regularization of
the interface dynamics suggested by the aggregation model
[7–9], which effectively makes the two-dimensional fluid
compressible on the microscale, and, therefore, allows one
to study local fluctuations of pressure in the vicinity of the
moving interface. Let us briefly summarize the results.

We argued that dissipation of fluctuations in pressure
results in the evolution of tiny initial perturbations at the
interface into the patterns with well-developed fjords of oil
separating fingers of water. The introduced model, in par-
ticular, explains a relevance of logarithmic solutions in the
Hele-Shaw problem (on the large scale), and why these so-
lutions are found to be in excellent agreement with the known
experimental observations [15,16,29,30]. By using numeri-
cal simulations, we presented typical patterns generated by
stochastic Laplacian growth (1), (2), and (4) in Figs. 2–5.

We also argued that the only stochastic dynamics of poles
of the conformal map, consistent with the interpretation of
martingales as conditioned statistical averages, is given by (4).
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A role of the noise strength κ can be anticipated by using
the following rough estimate. If to ignore the interaction
between the poles, Eq. (4) takes the form:

d ln ξk (t ) = −σ dqk (t ) + i dWk (t ). (24)

By using ξk (t ) = rk (t )eiϕk (t ), one can reduce the complex
equation (24) to the following real equations:

d ln rk (t ) = −σ dqk (t ), dϕk (t ) = dWk (t ). (25)

From the first equation, it follows that the poles move toward
the origin regardless of the noise strength.13 The second
equation implies that the noise strength determines the angular
spread of the points of the fjord’s centerlines. Because of (5),
the amplitude of angular fluctuations of the fjords’ centerlines
quickly reduces with time. These arguments are in excellent
agreement with numerical simulations presented in Figs. 3–5.
Thus, the proposed model of stochastic interface dynamics
in the Hele-Shaw cell generates fractal patterns on the mi-
croscale where tiny fjords repeatedly merge together to form
the large ones.

Although the introduced model provides a promising angle
for understanding Laplacian growth, much remains to be
done. Contrary to the conventional cutoff mechanisms, e.g.,
by means of the surface tension, the proposed model allows
one to study analytically regularized interface dynamics in the
Hele-Shaw cell, thus simplifying analysis of the problem. In
particular, it becomes possible to consider some long-standing
problems in Laplacian growth by means of novel analytical
methods.

For example, it is instructive to revise the pattern selec-
tion problems, e.g., a selection for the Saffman-Taylor finger
propagating in a long rectangular Hele-Shaw cell. Histori-
cally, the problem was addressed by including surface tension
and applying the nontrivial WKB-like technique. We believe
that Eqs. (1), (2), and (4) (after minor modifications due to
rectangular geometry) allow one to study evolution of tiny
perturbations at the initial flat front into the Saffman-Taylor
finger occupying exactly 1/2 of the channel width. The next
step would be to consider the pattern selection problem in
the so-called wedge geometry, which serves as a prototype
(building block) for the whole growing structure since any
fingerlike fragment of a moving interface can be considered
as propagating in a virtual wedge geometry formed by center-
lines of two fjords surrounding the finger.

The relation between the martingales and the conformal
correlations functions also deserves further study. The corre-
lation functions (7) [due to the transformation rules (6)] allow
one to estimate a scaling of the harmonic measure |w′(z, t )|
in the bottoms of fjords. The main idea is to use a Coloumb
gas formalism [21], which was previously applied to consider
a harmonic measure of SLE curves [19]. However, coupling
of the Gaussian free field to the growing domain runs into
difficulties, which are beyond the scope of this paper, and will
be considered in future publications.

We emphasize that the introduced model of stochastic in-
terface dynamics generates fractal patterns on the microscale

13More precisely, dqk (t ) depends on κ through |z′(w, t )|. This
dependence, however, is insignificant in the limit r(t ) → ∞.

where tiny fjords repeatedly merge together. However, since
the fjords center lines quickly become smooth curves (see
Fig. 5), further elaboration of the model is required to explain
the fractal patterns on the macroscale. One can argue that fluc-
tuations in pressure inevitably appear during the whole growth
process, thus, resulting in the tip splitting and side branching
of viscous fingers. Therefore, the next important step is to
study regularized Laplacian growth obtained by driving the
interface dynamics (1), (2), and (4) with a compound random
process producing fluctuations with time.14

Afterwards, it will become possible to attack derivation
of a spectrum of fractal dimensions. The patterns typically
generated in the Hele-Shaw flow have the same universal
Hausdorff dimension DF = 1.71 ± 0.01, which is still out of
analytic reach [32]. Although the fractal dimension in the
bottoms of deep fjords can be anticipated from our results,15

they cannot be used to explain the fractal spectrum of the
whole interface because of the existence of different scales
in the model. The patterns on the macroscale are developed
by side branching and tip splitting of viscous fingers due to
different fjords’ generations. It is remarkable, however, that
Laplacian growth generates monofractals [10]. This result
implies a nontrivial relation between different scales of the
model (probably, this connection can be addressed by renor-
malization group arguments) and will be considered in future
publications.
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APPENDIX A: SHORT-DISTANCE REGULARIZATION
OF LAPLACIAN GROWTH

A standard formulation of the Hele-Shaw problem is as fol-
lows [3]. The droplet of water D+

t is surrounded by a viscous
fluid (oil) D−

t = C \ D+
t , called Dt for simplicity. The velocity

of viscous fluid in a thin gap between two parallel plates obeys
Darcy’s law v = −∇P (in scaled units) where the pressure
P(z) as a function of z = x + iy satisfies the Laplace equation
with a sink at infinity, i.e., ∇2P = 0, and P(z) = −Q ln |z|
as z → ∞. If one neglects the surface tension, P = 0 at the
interface between two fluids. The kinematic identity requires
the normal interface velocity to be equal to the fluid velocity
at the interface vn = −∂nP(ζ ), ζ ∈ ∂D, where ∂n stands for
the normal derivative at the boundary. Solutions to Laplace
equation ∇2P = 0 can be written in terms of Green’s func-
tions of the (external) Dirichlet boundary problem,16 namely,
P(z, t ) = QGDt (z,∞). By using GDt (z,∞) = − ln |w(z, t )|,

14A similar idea was previously implemented to describe the
Loewner evolution with random branching curves [31].

15As we mentioned, the analytic analysis of this problem requires
advanced field theoretical methods, which are beyond the scope of
this paper.

16By definition, GD(z, z′) is a harmonic function in D, except at
z = z′, where GD(z, z′) diverges as ln |z − z′| and GD(z, z′) = 0 at
the boundary ∂D [33].
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where w(z, t ) is a conformal map from the exterior of the
domain D+

t to the exterior of the unit disk and computing the
pressure gradient at the boundary, one determines the normal
velocity of the interface,

vn(ζ , t ) = Q|w′(ζ , t )|, ζ ∈ ∂Dt . (A1)

Equation (A1) describes two-dimensional free boundary
dynamics of a viscous incompressible fluid, pushed out by
another inviscid liquid or a gas. In terms of the conformal map
z(w, t ), Eq. (A1) takes the form

Im[∂t z(eiφ, t )∂φz(eiφ, t )] = Q, (A2)

which was intensely studied earlier and known to possess a
rich integrable structure [3].

The idealized Laplacian growth problem (A2) is ill de-
fined because initially smooth interfaces quickly evolve into
fingerlike patterns, which develop cusp singularities at finite
time [34]. Indeed, the Hele-Shaw dynamics (A2) of the n-fold
perturbed unit circle,

z(eiφ, t ) = r(t )eiφ + a(t )ei(1−n)φ (A3)

results in the fast growth of the perturbation a(t ) =
a0[r(t )]n−1, thus, evolving in the needlelike cusps.

On the other hand, there exists a family of explicit logarith-
mic solutions, which remain smooth for all times [11],

z(eiφ, t ) = r(t )eiφ +
N∑

k=1

αk ln

[
eiφ

ak (t )
− 1

]
, (A4)

where
∑N

k=1 αk = 0 and |ak (t )| < 1. Time dependence of
ak (t ) and r(t ) can be obtained from the equations,

βk = z[1/āk (t ), t] = const, 2πt = At , (A5)

where At = (1/2i)
∮
|w|=1 z(w, t )z′(w, t )dw is the area of the

growing domain at time t . The logarithmic terms in (A4)
have a clear geometric interpretation of oil fjords with parallel
walls separating the fingers of water. These patterns are found
to be in excellent agreement with some experiments [29,30]
(see also Ref. [23] for a more general family of “multicut”
solutions, which describe fjords with nonparallel walls).

The mentioned agreement between the logarithmic solu-
tions and the experimentally observed patterns raises a natural
question: Why do the logarithmic (and multicut) solutions
appear to be extremely important in the Hele-Shaw problem
and describe the experimentally observed patterns?

It was argued previously that these patterns can be under-
stood as examples of the pattern formation in the regularized
Hele-Shaw problem [9]. Let us briefly summarize the main
results:

(i) The formation of cusps is forbidden: The regularization
procedure suggests that the inviscid fluid (water) consists of
particles with a minimal area h̄, which serves as a short-
distance cutoff curbing singularities of the fluid dynamics [7].
The growth process is generated by the aggregation of a large
number K � 1 of uncorrelated Brownian particles of the size
h̄ issued from infinity and stuck to the interface per time
unit [8].

(ii) Upon the short-distance regularization, the Hele-Shaw
problem possesses a dimensional parameter, i.e., the particle

size h̄. Simple combinatorics allows one to study random
distributions of the attached particles (per time unit), which
have a clear geometrical interpretation as static fluctuations
at the interface. Statistics of the fluctuations is described by
Dyson’s circular ensemble [9,35].

(iii) It is assumed that solutions to the regularized problem
permit separation of scales in a form of a slow modulation of
fast fluctuations (on a scale on the order of h̄) at the boundary.
The hydrodynamical evolution of the interface (1)–(3) can be
obtained by averaging over the fast fluctuations [9].

APPENDIX B: LAPLACIAN GROWTH IN THE PRESENCE
OF FLUCTUATIONS

Let us briefly review the growth process generated by the
coupled equations (1)–(3). It can be formally represented as
the idealized Laplacian growth problem with time-dependent
oil sources. Indeed, from Eqs. (1) and (2), one obtains the
effective pressure field, which drives the interface dynamics,

P(z, t ) = (Q + νN )GDt (z,∞) − ν

N∑
k=1

GDt (z, ζk ), (B1)

so that ∇2P = ν
∑N

k=1 δ(2)(z − ζk ), where ζk (t ) =
z[1/ξ̄k (t ), t] and P = −Q ln |z| as z → ∞. Thus, the points
ζk (t ) can be considered as the positions of oil sources with
rates ν. The motion of ξk’s with time (3) results in the time
evolution of ζk’s inside the oil domain.

The emergence of these sources can be misleading because
the only physical oil sink is located at infinity [from Eq. (B1),
it also follows that the total growth rate is Q]. This apparent
contradiction has the following resolution. The short-distance
regularization suggested by the aggregation model effectively
leads to a compressible liquid on a microscale due to a finite
size and irregular shape of the particles. The incompressibility
condition holds in the bulk, where P = QGDt (z,∞) but is
violated in the vicinity of the boundary on a scale on the order
of h̄. Thus, tiny perturbations in pressure close to ∂Dt only
formally can be attributed to the oil sources of the Hele-Show
flow.

The violation of the incompressibility condition on the
microscale allows one to introduce local fluctuations in pres-
sure in the vicinity of the interface, which are forbidden in
the idealized Hele-Show problem. Indeed, due to a continuity
condition, small perturbations of the interface, e.g., Eq. (A3),
result in variations of the pressure field in the viscous fluid.
However, because of the incompressibility of oil, these varia-
tions are nonlocal and require to change the pressure field in
the whole domain occupied by a viscous fluid.

Small perturbations of the initial smooth contour do not
evolve in cusp singularities at the interface: Solutions to
Eqs. (1)–(3), which are the time-dependent conformal maps
z(eiφ, t ) with the dynamically generated branch cuts inside the
unit circle, describe the formation of oil (viscous fluid) fjords
with nonparallel walls separating the fingers of water [9].
Thus, the logarithmic solutions (A4) naturally appear in the
regularized Hele-Shaw problem.

Let ξ 0
k = ξk (t0) be the coordinates, which determine the

initial perturbation at the interface at time t0. From Eqs. (1)
and (2), it follows that the conformal map z(w, t0) has simple
poles at ξ 0

k . The growth process, Eqs. (1)–(3), then implies
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a splitting of these poles into the branch cuts γ̃k (t ) (t > t0)
with the time-dependent end points ξk (t ) and ξ

(0)
k (t ) so that

|ξk (t )| → 0 and |ξ 0
k (t )| → 1− as τ (t ) → ∞.17 Tiny perturba-

tions at the initial circle z = r(t0)eiφ , similar to (A3), do not
lead to the formation of cusps but evolve in the contour, which
can be represented as a sum of Cauchy type integrals [9],

z(eiφ, t ) = reiφ + u0 −
N∑

k=1

∫
γ̃k (t )

P̄k{z̄[1/ξ (t ), t], t}
ξ − eiφ

dξ

2π i
,

(B2)

where Pk[z(1/ξ̄ , t ), t] are the time-dependent Cachy densities
on the cuts γ̃k (t ) with the end points ξ 0

k (t ) and ξk (t ). The
Cauchy densities are determined by the velocities of the end
points ζk (t ) = z[1/ξ̄k (t ), t] on the z plane [see the discussion
below Eq. (C1)]. In particular, the uniform motion of ζk’s
generates the fjords described by logarithmic solutions (A4).

APPENDIX C: THE SCHWARZ FUNCTION APPROACH

The Schwarz function provides an elegant geometrical
interpretation of solutions to the Hele-Shaw problem. The
Schwarz function S (z, t ) for a smooth curve �t ⊂ C is an
analytic function in a striplike neighborhood of the curve such
that z̄ = S (z, t ) for z ∈ �t [36]. It can be decomposed in a sum
of two functions S+ = ∑

k�0 Skzk and S− = ∑
k�1 S−kz−k ,

that are regular in D+
t and D−

t , respectively.18 The idealized
deterministic Laplacian growth (A2) implies that S+(z, t )
does not vary in time, thus, possessing an infinite number
of conserved quantities Sk = const (k > 0). A physical inter-
pretation of this result is straightforward: The initial circle
z = r0eiφ continues to stay as the circle z = r(t )eiφ with a
growing radius r(t ).

17One can show that ξ 0
k (t ) approaches the unit circle |ξk (t )| → 1−

as t → ∞ but never touches it [24].
18The coefficients S±k = ∓ ∫

D∓ z∓kd2z are the external and internal
harmonic moments of the domain correspondingly.

In the regularized problem Ṡk �= const (k > 0) but slowly
decays with time. The Schwarz function S+ can be repre-
sented as a sum of Cauchy type integrals [9],

S+(z, t ) = S+(z, 0) + 2ν

N∑
k=1

∫
γk (t )

Pk (l )dl

z − l
, (C1)

where the integration contours γk (t ) are the trajectories of
ζk (t ) on the z plane. The Cauchy densities Pk (l ) = 1/vk (l )
are determined by the velocities vk (l ) = dl (t )/dt of the end
points ζk (t ).

In terms of the Schwarz function, the growth pro-
cess (1), (2) reads [9]

S+(z, ti ) − S+(z, ti−1) = ν �t
N∑

k=1

1

z − ζk (ti )
. (C2)

The interface dynamics, described by this equation, is similar
to the idealized Hele-Show dynamics with N oil sources at
the points ζk (ti ) and a sink at ∞ (see also Appendix B). Equa-
tion (C2) implies that logarithmic branch points ζk (t j ) (0 �
j < i) of the function S+(z, ti−1) are integrals of motion,

ζk (t j ) = z
[
1/ξ̄

j
k (ti ), ti

] = const ( j < i), (C3)

Solutions (B2) [or (C1)] to the regularized Laplacian
growth problem Eqs. (1)–(3) have a clear geometrical inter-
pretation (see Fig. 1):

(a) The branch cuts of the Schwarz function γk (t ), which
coincide with the trajectories of ζk’s inside the oil domain,
are the centerlines of the dynamically generated oil fjords.
Because of the interaction (3), the centerlines are typically
curved.

(b) The walls of the fjords are not parallel but have
nonzero opening angles determined by the velocities of the
branch points ζk (t ) of the Schwarz function.
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