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Formation of viscous fingers in regularized Laplacian growth
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A systematic analytic treatment of local fluctuations in the regularized Laplacian growth problem is given.
The interface dynamics is stabilized by a short-distance cutoff h̄ preventing the cusps production in a finite
time. The regularization mechanism results in the violation of the incompressibility condition of the viscous
fluid on a microscale in the vicinity of the moving interface, thus producing local fluctuations of pressure.
Dissipation of fluctuations with time is described by universal Dyson Brownian motion, which reduces to the
complex viscous Burgers equation in the hydrodynamic approximation. Because of the intrinsic instability of the
interface dynamics, tiny fluctuations of pressure generate universal complex patterns with well developed fjords
and fingers in a long time asymptotic.
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I. INTRODUCTION

A pattern formation in highly unstable, dissipative, non-
linear growth processes still possesses a great challenge in
nonequilibrium statistical physics. Although the role of noise
on a microscale is believed to be crucial in the pattern
formation phenomena [1], this mechanism has never been
implemented for a broad class of growth processes known
as Laplacian growth [2,3]. The Laplacian growth problem
embraces a variety of diffusion driven growth processes typi-
cally observed in physical, chemical, and biological systems.
The best known examples are the viscous fingering in a
Hele-Shaw cell, when a less viscous fluid is injected into a
more viscous one in a narrow gap between two plates [2,3],
and diffusion-limited aggregation, which is realized by tiny
Brownian particles with size h̄ diffusing and sticking to the
boundary of the cluster [4,5]. Although it is believed that both
these processes are from the same universality class [6], the
relation between them is still puzzling [7,8].

A compact formulation of the idealized (without a surface
tension) Hele-Shaw problem is as follows. Let D+(t ) (where t
is time) be a simply connected domain occupied by inviscous
fluid or gas. It is surrounded by a viscous fluid, D−(t ) =
C \ D+(t ). Both liquids are sandwiched between two parallel
close plates. Fluid velocity in D−(t ) obeys the Darcy law,
v = −∇p (in scaled units), where p(z, z̄) is pressure and
z = x + iy is a complex coordinate on the plane. Because of
incompressibility, ∇ · v = 0, then ∇2 p = 0 in D−(t ), except
infinity. Also, p = 0 at the interface, �(t ) = ∂D+(t ), between
two fluids, if to neglect surface tension. The kinematic identity
requires that the normal interface velocity, vn(ζ ), equals the
fluid normal velocity at the interface,

vn(ζ ) = −∂n p(ζ ), ζ ∈ �(t ), (1)

where ∂n is a normal derivative at the boundary.

*teknoanarchy@gmail.com

The idealized Laplacian growth problem has a conve-
nient formulation in terms of complex variables and analytic
functions [9]. Let z(w, t ) be a time-dependent conformal map
from the complement of the unit disk in the auxiliary w plane
to the exterior of the domain D+(t ) in the physical z plane, so
that z(∞, t ) = ∞, and the conformal radius r(t ) = z′(∞, t )
is a positive function of time (see Fig. 1). In terms of the
conformal map the interface dynamics (1) can be written as
follows:

Im[∂t z(eiφ, t )∂φz(eiφ, t )] = Q, (2)

where Q is a growth rate.
An important feature of this nonlinear partial differential

equation is its integrability. Namely, if the initial interface is
an algebraic curve of a given order, it will remain so until
the solution to Eq. (2) ceased to exist due to the boundary
cusps production. Therefore, the idealized Laplacian growth
problem is ill defined, because the normal interface velocity
diverges in critical points, where the cusps appear [10].

The Mullins-Sekerka instability [11] provides a clue to
the cusps production in the Hele-Shaw flow. Let us consider
the n-fold perturbation of the circle, z(eiφ, t0) = r(t0)eiφ +
a(t0)ei(1−n)φ , with a(t0) � r(t0) at the time instant t0. Then,
the Laplacian growth dynamics (2) leads to the fast growth of
the perturbation with time, a(t ) = a0[r(t )]n−1, thus evolving
in the cusps.

A conventional mechanism stabilizing the interface dy-
namics is a surface tension. However, it destroys the math-
ematical structure of the idealized problem and complicates
its analytical analysis. Nevertheless, it is believed that the
fractal character of patterns does not depend on the particular
regularization mechanism at the microscale. This assumption
suggests considering other regularization mechanisms, which
retain the integrable structure of the idealized problem, e.g.,
the short-distance regularization at the microscale proposed
by the aggregation model [12]. It implies that the area of the
growing domains is quantized, so that the growth process is

2470-0045/2019/100(1)/012129(8) 012129-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.012129&domain=pdf&date_stamp=2019-07-22
https://doi.org/10.1103/PhysRevE.100.012129


OLEG ALEKSEEV PHYSICAL REVIEW E 100, 012129 (2019)

FIG. 1. Time dependent conformal map z(w, t ) from the com-
plement of the unit disk in the auxiliary w plane to the exterior of
D(t ) in the physical z plane. The dashed line in the z plane represents
the advance of the interface, �(t ) → �(t + δt ), per time unit δt . The
distribution of normal velocities vn(ζ , t ) = |z′(eiθ , t )|−1ρ(θ ) along
�(t ) is determined by the density of eigenvalues ρ(θ ) of the Dyson
ensemble.

similar to aggregation of a large number of tiny uncorrelated
particles (issued from infinity) at the boundary.

In this paper we continue to study the short-distance reg-
ularization (closely related with diffusion-limited aggregation
[4]) of the Hele-Shaw problem initiated in Ref. [8]. Diffusion-
limited aggregation is a process where the Brownian particles
with size h̄ are issued one by one from infinity and diffuse
until they stick to a growing cluster. A naive limit of the van-
ishing particle size, h̄ → 0, is similar to the ill-defined Hele-
Shaw dynamics with zero surface tension. Thus the particle
size h̄ serves as a short-distance cutoff curbing singularities of
the fluid dynamics.

The short-distance cutoff at the microscale significantly
affects the macroscopic interface dynamics. Due to the finite
size and irregular shape of particles, taking the vanishing
particle size limit of the aggregation model effectively leads
to a compressible fluid at the microscale in the vicinity of
the interface.1 The violation of the incompressibility condition
results in local fluctuations of pressure, which are forbidden in
the idealized Hele-Show problem. Indeed, because of the con-
tinuity and incompressibility conditions small perturbations of
the interface, e.g., the n-fold perturbation of the circle, require
changing the pressure field in the whole domain occupied by
a viscous fluid.

In accordance with common principles of statistical me-
chanics local microscopic fluctuations of pressure should
relax to the equilibrium value. We will show that this process
leads to the formation of macroscopic patterns with deep
fjords of oil separating fingers of water in a long time asymp-
totic. These patterns are closely connected to the family of
“logarithmic” (and “multicut” [13]) solutions, which are of
great importance in the Laplacian growth problem. Namely,
the logarithmic solutions remain well defined (under certain
constraints) for all positive times and describe the nonsingular
interface dynamics. Besides, the patterns described by these
solutions are found to be in an excellent agreement with some

1Note that the incompressibility still holds in the bulk of the oil
domain.

experimental observations [14–17]. This paper elucidates the
following question: why are the experimentally observed pat-
terns in the Hele-Shaw cell well described by the logarithmic
solutions?

The structure of the paper is straightforward: first, we
briefly recall a theory of static fluctuations at the interface
(the boundary of the aggregate) in the regularized Hele-Shaw
problem introduced in Ref. [8]. Then, we consider relaxation
of local fluctuations in the pressure and argue that this pro-
cess can be described by one-dimensional hydrodynamical
equations. Afterwards, we study the pattern formation in the
regularized Hele-Shaw problem, where the incompressibility
condition is violated at the microscale in the vicinity of the
interface. We argue that the dissipation of fluctuations leads
to the formation of patterns with the well-developed fjords.
Finally, we draw our conclusion and indicate some open
problems.

II. STATIC FLUCTUATIONS IN LAPLACIAN GROWTH

The short-distance regularization of the Hele-Shaw dy-
namics suggested by the aggregation model implies that the
change of the area of the domain is quantized and equals an
integer multiple of the area quanta h̄ [8]. The domain can then
be considered as an incompressible aggregate of tiny particles
with the size h̄ obeying the Pauli exclusion principle. The
growth process is generated by aggregation of a large number,
N � 1, of uncorrelated Brownian particles of the size h̄ issued
from infinity and stuck to the interface per time unit [8,18].
Then, statistical properties of the aggregate can be studied
within Laughlin’s theory of the integer quantum Hall effect
[12] (see also Ref. [19]).

Let us consider the joint distribution function of the eigen-
values {eiθ j }N

j=1 of a random unitary N × N matrix,

P(θ1, . . . , θN ) = CNβ

∏
i< j

∣∣∣∣2 sin

(
θi − θ j

2

)∣∣∣∣
β

, (3)

where CNβ is a normalization constant and β is a parameter.
The density of eigenvalues is given by the sum of one-
dimensional delta functions,

ρ(θ ) = q
N∑

i=1

δ(θ − θi ), (4)

where q = h̄/δt is a quanta of the growth rate Q = Nq, so that
ρ(θ ) is normalized as (2π )−1

∫ 2π

0 ρ(φ)dφ = Q. In the limit
N → ∞, the density ρ(θ ) becomes a smooth function of the
angle on the unit circle.

In the previous works on stochastic regularized interface
dynamics in the Hele-Shaw cell we argued the following
proposition [8,18] (see also the AppendixA for a brief review).

The normal interface velocity, vn(ζ , t ), determined by the
distribution of aggregated particles per time unit, is connected
to the density of eigenvalues (15) of Dyson’s circular ensem-
bles on symmetric unitary matrices (i.e., at β = 2) as follows:

vn(ζ , t ) = |w′(ζ , t )|ρ(θ ), ζ = z(eiθ , t ). (5)
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In particular, the uniform (most probable) distribution of
eigenvalues, ρ(θ ) = Q, generates the deterministic Laplacian
growth (2) with vn(ζ , t ) = Q|w′(ζ , t )|.

The position of eigenvalues {eiθ j }N
j=1 have a clear geometri-

cal interpretation as the points, which provide growth. Indeed,
Eq. (5) can be recast in the Loewner-Kufarev equation de-
scribing a sequence of conformal maps of subordinal domains
parametrized by time t [20,21],

∂z(w, t )

∂t
= wz′(w, t )

∫ 2π

0

dφ

2π

w + eiφ

w − eiφ

ρ(φ)

|z′(eiφ, t )|2 , (6)

where the function ρ(φ) is known as Loewner density.2 In par-
ticular, when ρ(θ ) = |z′(eiφ, t )|2 ∑N

j=1 δ(eiθ − eiθ j ) is a sum
of normalized Dirac peaks, Eq. (6) generates the well-known
Loewner evolution of N curves growing from the points eiθ j

on the unit circle [20]. Thus, in the limit N → ∞ [so that the
density (15) becomes a smooth function on the unit circle], all
points of the boundary become the sources of Loewner curves.
We also note that, in the case ρ(θ ) = Q, Eq. (6) is equivalent
to Laplacian growth equation (2).

III. DISSIPATION OF FLUCTUATIONS

Time evolution of the Loewner density. Let us generalize the
density (4) in such a way that the distribution of eigenvalues
(3) acquires a meaning of the dynamical system which may be
in an arbitrary nonequilibrium state changing with time. For
this purpose, one can use the following two interpretations of
the distribution (3).

(i) The distribution function P is a ground state wave func-
tion for the conservative Calogero-Sutherland model defined
on the unit circle by the Hamiltonian [22]

H = −
N∑

j=1

∂2

∂θ2
j

+ 1

4

N∑
k 	= j

β(β/2 − 1)

sin2(θk − θ j )/2
. (7)

(ii) The function P is the probability distribution function
of N charged Brownian particles, subjected to an electric force
E (θi ) = −∂θiW [where W = −∑

i< j log | sin(θi − θ j )/2| is
the potential] and friction with strength γ .3 At temperature
β−1 during a small “time” interval,4 δτ , the positions of
particles change as follows:

〈δθi〉 = qE (θi )δτ, 〈(δθi )
2〉 = 2qβ−1δτ, (8)

and all higher moments are zero. The joint probability density
P(θ1, . . . , θN ; τ ) then satisfies the Fokker-Planck equation
[23],

q−1 ∂P

∂τ
= LP, L =

∑
i

∂

∂θi

(
β−1 ∂

∂θi
+ ∂W

∂θi

)
, (9)

and its stationary solution is given by (3). Although the
transformation P̃ = P exp(−W/2) recasts the Fokker-Planck
operator (9) in the Calogero Hamiltonian (7), the system (9)
is dissipative.

2More precisely, the Loewner density is ρL (θ ) = ρ(θ )/|z′(eiθ , t )|2.
3Without loss of generality, we will set γ = 1 below.
4The auxiliary time τ is a parameter of the Dyson model. Its

relation with the physical time t will be clarified below.

Hydrodynamical description. In the limit N → ∞ exact
collective descriptions of both models, (7) and (9), are known
and have the hydrodynamical form closely connected to the
Hopf equation [23,24],

∂τ u + u∂θu = 0, (10)

where u = v + iπρ (outside the unit disk) is a sum of the
density ρ and velocity v operators in the case of Calogero
model (7), while in the case of Dyson’s model u = ρH − iρ,
where ρH stands for the periodic Hilbert transform of the
density,

ρH (θ ) = P.V.
∫ 2π

0
cot

(
θ − θ ′

2

)
ρ(θ ′)dθ ′, (11)

where P.V. indicates the principal value. The nonlinearity
of the Hopf equation results in the formation of shock
waves, which must be regularized either by dispersion (in the
Calogero model) or by dissipation (in the Dyson model). In
the former case one obtains the Benjamin-Ono equation as an
effective description of Calogero hydrodynamics in the limit
of weak nonlinearity and dispersion [24,25],

∂τ u + u∂θu = −αBO∂2
θ uH , (12)

where 2αBO = √
β/2 − √

2/β. In the latter case one arrives
at the complex Burgers equation,

∂τ u + u∂θu = ν∂2
θ u, (13)

with ν/q = 1 − β/2. Equation (13) describes the hydrody-
namic limit of Dyson’s Brownian model as the interplay
between nonlinearity and dissipation [23]. Although the
Benjamin-Ono term, αBO∂2

θ uH , is of the same order as the
Burgers term, ν∂2

θ u, it is very different in nature. Namely,
the dispersive perturbation results in the real correction, δω ∼
αBOk|k|, to the spectrum of linear waves, while the diffusive
term leads to the dissipation, δω ∼ −iνk2.

The semiclassical limit of the quantum hydrodynamical
equations, (12) and (13), is subtle. In particular, the semi-
classical limit of the Benjamin-Ono equation (12) requires
a shifting 2αBO → √

β/2, so that dispersion survives even
for free fermions when β = 2 [24,26]. Following this result,
one can expect that dissipation regularizes shock waves in the
complex Burgers equation (13) even when the semiclassical
limit of the quantum system with β = 2 is implemented. Thus
below we will refer to ν as to the “effective” quanta of the
growth rate.5

Dissipation of fluctuations. Solutions to both equations,
(12) and (13), can be coupled with the Loewner-Kufarev
equation (6), thus generating a nontrivial evolution of the
interface in the presence of fluctuations.

In this paper we only consider the dissipation mechanism
for regularizing the Hopf equation. The reason is that the
Hele-Shaw flow is a highly dissipative process. The relaxation
of local fluctuations of pressure in the vicinity of the interface,

5Note that the dimensionless parameter, ν/Q, of the short-distance
regularization plays a similar role as the “surface tension parameter,”
d0, in the Hele-Shaw problem [3].
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described by Eq. (13), can then be considered as a coarse-
grained limit of viscous dissipation and/or impact of the third
dimension.

In terms of the density, ρ = − Im u, the complex Burgers
equation (13) takes the following form:

∂τρ + ∂θ (ρρH ) = ν∂2
θ ρ. (14)

Remarkably, this nonlinear partial differential equation can
be reduced to the many-body problem. Indeed, exact analyti-
cal formulas for its solutions can be obtained by the method
of pole expansion [27,28]. The idea is to consider the density
ρ(θ, τ ) as the meromorphic functions in the complex plane,
namely,

ρ(θ, t ) = Q − 2ν Re
M∑

k=1

ξk (t )

eiθ − ξk (t )
, (15)

where the poles’ ξk’s are located inside the unit disk in the
w plane and the normalization, (2π )−1

∫ 2π

0 ρ(φ, t )dφ = Q, is
assumed. By using the ansatz (15) one reduces the transport
equation (14) to the system of M coupled ordinary differential
equations, which describe motions of the poles’ ξk’s inside the
unit circle:

dξk

ξk
= −Q dτ + ν

∑
l 	=k

ξk + ξl

ξk − ξl
dτ. (16)

The exact relation between the “auxiliary” and “physical”
times, i.e., the function τ (t ), possesses a nontrivial problem.
However, in the large time asymptotic it acquires a particular
simple form (see Ref. [29] for details):

dτ (t )

dt
∝ exp

{
−2r(t )

δ

}
, (17)

where r(t ) and δ are the conformal radius and characteristic
scale (e.g., a typical width of fjords) of the domain cor-
respondingly. The exact relation can be obtained from the
statistical mechanic point of view, i.e., by coupling regular-
ized Laplacian growth to statistical systems and finding the
conditions for certain objects to be martingales. However, this
approach requires sophisticated methods of conformal field
theories and, therefore, is considered in detail in the separate
publication [29].

From Eq. (16) it follows that the poles attract each other
in the tangential direction, and repel each other in the radial
direction. They tend to form radial lines, eventually coalescing
into a single point at the origin (because of the constant
drift −Q) with a characteristic “lifetime” τ ∗ ∼ Q−1. Thus any
initial density relaxes to the uniform distribution ρ(θ, t ) → Q
as t → ∞.

To clarify the physical meaning of the collective coordi-
nates, ξk (k = 1, . . . , M), we note that stochastic interface
dynamics (5), generated by Langevin dynamics of eigenvalues
in the w plane (8), admits a separation of scales in a form
of a “slow” modulation of “fast” fluctuations of pressure (at
a scale of the order of h̄) in the vicinity of the boundary.
The hydrodynamical evolution (14) of the Loewner density,
ρ(eiθ , t ), is obtained by averaging over fast fluctuations, so
that ξk’s parametrize their slow modulations.

Coupling the Burgers hydrodynamics with Laplacian
growth. The density of eigenvalues, ρ(θ, t ), determines the

interface dynamics in the Hele-Shaw problem (5). The normal
interface velocity can be rewritten in terms of the conformal
map, z(w, t ), as follows:

vn(eiθ , t ) = |z′(eiθ , t )|−1 Im[∂t z(eiφ, t )∂θ z(eiθ , t )], (18)

where eiθ = w(ζ , t ) [ζ ∈ �(t )] parametrizes the boundary.
Then, from Eqs. (5) and (15), one obtains the following
equation of motion of the boundary:

Im[∂t z(eiθ , t )∂θ z(eiθ , t )] = Q − 2ν Re
M∑

k=1

ξk (t )

eiθ − ξk (t )
, (19)

where the functions ξk (t ) are solutions to Eq. (16).
Formally, Eq. (19) describes the idealized Laplacian

growth problem with the sink at ∞ and M time-dependent
sources located at the points

ζk (t ) = z(1/ξ̄k (t ), t ), k = 1, . . . , M. (20)

In the case ζk (t ) = const, these points have a clear physical
interpretation as the positions of oil wells, which inject the oil
to the reservoir with the rate ν. In our case, the Calogero-type
dynamics of ξk’s (16) results in the motion of the points ζk (t )
inside the oil domain.

The emergence of the sources at the points (20) can be
misleading, because the only physical oil sink is located at
infinity [from Eq. (19) it also follows that the total growth
rate is Q]. This apparent contradiction has the following
resolution. The short-distance regularization effectively leads
to a compressible liquid at a microscale due to a finite size and
irregular shape of particles. The incompressibility condition
holds in the bulk, but is violated in the vicinity of the boundary
at a scale of order h̄. Thus tiny perturbations of pressure close
to ∂D(t ) only formally can be attributed to the oil sources of
the idealized Hele-Show flow.

The violation of the incompressibility condition at the mi-
croscale allows one to consider local fluctuations of pressure,
which are forbidden in the idealized Hele-Show problem.
Indeed, due to a continuity condition small perturbations of
the interface in Eq. (2) result in variations of the pressure field
in the viscous fluid. However, because of the incompressibility
of oil these variations are nonlocal and require one to change
the pressure field in the whole domain occupied by a viscous
fluid.

IV. EVOLUTION OF DOMAIN

Evolution of the Schwarz function. The Hele-Shaw problem
can be integrated in terms of the Schwarz function [9], which
provides an elegant geometrical interpretation of the inter-
face dynamics. The Schwarz function S (z) for a sufficiently
smooth curve � drawn on the complex plane is an analytic
function in a striplike neighborhood the curve, such that
z̄ = S (z) for z ∈ � [30]. If the curve �(t ) evolves in time,
so does its Schwarz function, S (z, t ). The Schwarz function
admits the following decomposition: S = S+ + S−, where

012129-4



FORMATION OF VISCOUS FINGERS IN REGULARIZED … PHYSICAL REVIEW E 100, 012129 (2019)

the functions S+ = ∑
k�0 Skzk and S− = ∑

k�1 S−kz−k , that
are regular in D+ and D−, respectively.6

In terms of the Schwarz function the Laplacian growth
equation (19) reads [9]

∂tS (z, t ) = 2∂zW (z, t ), (21)

where the complex potential, W = −p + iψ , is a sum of the
negative pressure p and the stream function ψ . In the ideal-
ized Laplacian growth the complex potential reads W (z, t ) =
(Q/2) log w(z, t ). Since ∂z log w(z, t ) is analytic everywhere
in the oil domain both sides of Eq. (21) are regular in D−(t ).
Therefore, idealized Laplacian growth implies that S+(z, t )
does not vary in time, thus possessing an infinite number
of conserved quantities Sk = const (k > 0). From this obser-
vation it follows that any algebraic curve of a given order
remains so until the solution to Eq. (2) ceased to exist due
to the cusps production at the boundary.

The short-distance regularization of the Hele-Shaw prob-
lem results in local fluctuations of pressure at the microscale.
Because of instability of the interface dynamics the micro-
scopic fluctuations affect the macroscopic evolution of the
domain. The effective complex potential which drives the
interface dynamics (19) reads

W (z, t )= Q + Mν

2
log w(z, t ) − ν

2

M∑
k=1

log
w(z, t ) − 1/ξ̄k

1 − w(z, t )1/ξk
.

(22)

The pressure, p = − ReW (z, t ), satisfies the Laplace equa-
tion ∇2 p = ν

∑
k=1 δ(2)(z − ζk ) with the sources located at

the points (20) and the asymptotic behavior p = −(Q +
Mν) log |z| as z → ∞. Besides p(z, t ) = 0 if z ∈ ∂D(t ). Then,
Eq. (21) implies that

∂tS+(z, t ) = ν

M∑
k=1

1

z − ζk (t )
. (23)

From this equation one concludes that the function S+ has
branch cuts in the oil domain evolving with time.7 Integrating
both sides of Eq. (23) with respect to time, one obtains the
function S+(z, t ):

S+(z, t ) = S+(z, t0) + ν

M∑
k=1

∫ ζk (t )

ζ 0
k

Pk (l )dl

z − l
, (24)

where Pk (l ) are the time-dependent Cauchy densities along
the cuts γk (t ) with the end points ζ 0

k = ζk (t0) and ζk (t ). These
cuts are the trajectories of of the virtual sources ζk (t ) in
the oil domain. The Cauchy densities, Pk (l ) = 1/vk (l ) are
determined by the velocities, vk (l ) = dl/dt , of the end points
ζk (t ).

Let ζk (t0) parametrize “slow” fluctuations of the pressure
in the vicinity of the circle, S (z, t0) = r(t0)/z, with the radius

6The coefficients S±k = ∓ ∫
D∓ z∓kd2z are the external and internal

harmonic moments of the domain correspondingly.
7In the idealized Laplacian growth one has ∂tS+ = 0. Thus all

singularities of S+ are frozen in time.

FIG. 2. Dynamical generation of the fjords of oil, which separate
fingers of the water droplet, is schematically depicted in three succes-
sive instants of time t0 < t1 < t2. The center lines of the dynamically
generated fjords (the dashed curves outside the growing domain) are
the branch cuts of S+(z, t ).

r(t0) at the time instant t0. Then, the perturbed function
S+(z, t0) reads

S+(z, t0) = ν

M∑
k=1

1

z − ζk (t0)
. (25)

It is well known that the idealized Hele-Shaw dynamics (2)
of the boundary (25) leads to the formation of cusps at the
interface. However, the dissipation of fluctuations, due to the
Calogero-type motion of the collective coordinates (16), re-
sults in a smooth evolution of the contour and the development
of fjords, described by the function (24) (see Fig. 2).

To gain a better understanding of solutions (24), let us
consider the uniform motion of the end points ζk (t ) toward
infinity, i.e., vk (t ) = vk . This process generates the Schwarz
function with logarithmic branch cuts in the oil domain:

S+(z, t ) =
M∑

k=1

ck log
z − ζk (t )

z − ζ 0
k

, t > t0, (26)

where ck = ν/vk . In particular, in the limit ζk (t ) → ∞ as
t → ∞ solutions (32) reduce8 to the well known logarithmic
solutions of the idealized Hele-Shaw problem. Then, the
logarithmic terms in (32) have a clear geometric interpretation
of the fjords of oil with parallel walls separating the fingers
of water. The stagnation points of the fjords are located at
ζ 0

k − c̄k log 2 and their widths are π |ck|. The direction of the
fjord is given by arg c̄k (for more details about logarithmic
solutions, see Ref. [31]).

Below, we explain how to construct explicit formulas for
conformal maps, z(eiφ, t ), knowing the singularities of the
Schwarz function, S+(z, t ), in the oil domain (24).

V. SOLUTION SCHEME

In order to obtain the Hele-Shaw dynamics, one should
recover the conformal map z(w, t ) given the function S+(z, t ).
It can be formally determined by integrating both sides of the
relation z(w, t ) = S̄ (z̄(1/w, t ), t ) with the kernel (u − w)−1

over the unit circle provided that |w| > 1:

z(w, t ) = rw + u0 +
∮

|u|=1

S̄+(z̄(1/u, t ), t )
w − u

du

2π i
. (27)

8It is implicitly assumed that
∑M

k=1 ck = 0, so that S+ has no
branching at infinity.
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Then, by substituting (24) in the right hand side of Eq. (27),
taking the integral over |u| = 1, and changing the integration
variable, l = z̄(1/ξ, t ), one obtains [13]

z(eiφ, t ) = r eiφ + u0 −
M∑

k=1

∫
γ̃k (t )

P̄ (1/ξ (t ), t )
ξ − eiφ

dξ

2π i
. (28)

To clarify, it is convenient to consider the growth process,
Eqs. (19) and (16), in a discrete framework, so that the
integrals in (24) are replaced by the sums over the points along
the cuts. For example, the change of the Schwarz function (23)
reads

S+(z, ti ) − S+(z, ti−1) = ν�t
M∑

k=1

1

z − ζk (ti )
. (29)

The interface dynamics described by this equation is similar
to the idealized Hele-Show dynamics with N oil sources at the
points ζk (ti ) and a sink at infinity. Equation (29) implies that
singularities of ζk (t j ) (0 � j < i) of the function S+(z, ti−1)
are integrals of motion. Then, the dynamics of poles, ξ

j
k (t ),

of the conformal map is governed by the following system of
equations:

ζk (t j ) = z(1/ξ̄
j

k (ti ), ti ) = const ( j < i), (30)

and 2πti = (1/2i)
∮
|w|=1 z(w, ti )z′(w, ti )dw is the area of the

domain at time ti. The positions of the remaining N poles,
ξ i

k (ti ), are determined by Eq. (16). Thus the system of coupled
equations, (19) and (16), is self-consistent.

Contrary to the idealized Laplacian growth (2), the evo-
lution of the interface, (19) and (16), does not preserve the
number of singular points: each time step, �t , the function
z′(w, ti ) develops N new poles9 at the points ξk (ti ) ≡ ξ i

k (ti)
determined by the Calogero-type dynamics (16). In order to
prove this statement, we recast Eq. (29) in the form

�S+(z, ti ) =
M∑

k=1

ν

vk (ti−1)
log

z − ζk (ti−1)

z − ζk (ti)
+ O((�t )2), (31)

where vk (ti ) is the velocity of ζ i
k (ti ). Therefore, the branch cuts

of the Schwarz function can be written as a sum of logarithmic
terms with tips at the points ζk (ti ):

S+(z, ti ) = S+(z, t0) +
i∑

j=0

M∑
k=1

ck, j log[z − ζk (t j )], (32)

where the coefficients ck, j read

ck, j = ν
[
v−1

k (t j ) − v−1
k (t j−1)

]
. (33)

The one-to-one correspondence between singularities of
S+(z, t ) and z(w, t ) allows one to determine the conformal
map. Namely, if the Schwarz function has a logarithmic
singularity at the point ζk with the coefficient ck , then the
conformal map also has the logarithmic singularity at the
point ξk = 1/w(ζk, t ) inside the unit disk with the coefficient

9In the limit �t → 0 the generation of poles results in the evolution
of the branch cuts of z′(w, t ).

c̄k [9]. Therefore, Eq. (32) allows one to obtain the following
expression for the conformal map:

z(w, ti ) = rw +
N∑

k=1

i∑
j=0

c̄k, j log
[
w − ξ

j
k (t j )

]
, (34)

where ξ
j

k (ti ) is a position of the jth point of the cut γ̃k (ti ) of
the map (28).

The geometrical interpretation of solutions (34) is straight-
forward: we put many identical (logarithmical) fjords along
the centerlines. Thus, instead of the “U” shaped fjord with
parallel walls, one obtains the so-called “V” shaped fjords
with nonzero opening angles (see also Refs. [31,32] for a
similar construction). We summarize as follows.

(a) The branch cuts of the Schwarz function, γk (t ), i.e.,
the trajectories of ζk’s inside the oil domain, are the center
lines of the dynamically generated fjords of oil separating the
fingers of water (see Fig. 2). Because of the interaction (16),
the center lines are typically curved.

(b) The walls of the fjords are not parallel, but have nonzero
opening angles determined by the velocities of the branch
points, ζk (t ), of the Schwarz function.

However, the quantitative analysis of solutions requires
one to establish an exact relation between the “auxiliary” and
physical times, i.e., the function τ (t ). We address this problem
in a separate publication [29].

VI. CONCLUSION AND DISCUSSION

In this work we considered a stochastic regularization (sug-
gested by the aggregation model similar to diffusion-limited
aggregation) of the Hele-Shaw problem. The growth of the
droplet is generated by aggregation of a large number, N � 1,
of tiny uncorrelated particles with the size h̄. Although the
naive limit of the vanishing particle size, h̄ → 0, is widely
believed to be similar to the ill-defined Hele-Shaw problem,
we argued that the short-distance cutoff changes the interface
dynamics qualitatively. Namely, the regularized interface dy-
namics does not result in the formation of needlelike fingers,10

but rather to the tip splitting and side branching, thus generat-
ing the fjords of oil separating the fingers of water. Solutions
(28) are well defined in the limit h̄ → 0 and do not lead to the
cusps production. Let us briefly summarize the main results.

(i) The short distance regularization allows one to study
analytically random distributions of the attached particles (per
time unit), which have a clear geometrical interpretation as
static fluctuations at the interface. Statistics of the fluctuations
is described by Dyson’s circular ensemble (3) (see Ref. [19]
and the AppendixA for a brief review).

(ii) Due to discreteness of particles, the short-distance
regularization effectively leads to a compressible viscous
liquid (oil) at a microscale. The incompressibility condition
holds in the bulk of the oil, but is violated in the vicinity
of the boundary at a scale of order h̄. The violation of the
incompressibility condition at the microscale allows one to
introduce local fluctuations of the pressure in the vicinity of

10A curvature of the tip of the needle is controlled by h̄ and becomes
infinite in the limit h̄ → 0.
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the interface, which are forbidden in the idealized Hele-Show
problem. Assuming that the dissipation of fluctuations with
time is described by Dyson’s Brownian motion (8), we obtain
a set of coupled partial differential equations, (19) and (16),
which describe the interface dynamics in the presence of local
fluctuations.

(iii) The formation of cusps is forbidden. The effect of
cutoff is to create side-branch structures on the interface.11

Thus the long-time solutions (28) for small and positive h̄
differ from that for zero h̄ fundamentally in that secondary
structures develop. In particular, the interface remains smooth
during the whole evolution and the complex irregular shapes
with the well-developed fjords and fingers are observed at
large times.

The geometric features of the solutions (28) are in an
qualitative agreement with some experimental observations
[14,15]. Namely, solutions (28) describe the formation of
fjords of oil left behind the moving fronts with nonparallel
walls. Besides, the walls of the fjords are not always straight,
but more often curved. The dynamics of poles (16) shows a
tendency of small fjords to coalesce and form the larger ones.

Viscous fingering patterns are extremely complex, because
the fingers repeatedly split and branch to form new fingers and
fjords. Thus it is valuable that the regularized dynamics of the
interface can be described from the point of view of weakly
nonequilibrium statistical mechanics. Namely, in this work we
argued that relaxation of local fluctuations of the pressure in
the vicinity of the interface results in the side branching and
tip splitting of viscous fingers. The complexity of patterns in
the large time asymptotic is then explained by the instability
of the interface dynamics with respect to tiny fluctuations of
pressure close to equilibrium.

To conclude, let us also mention some open problems and
further directions.

Although the proposed model captures the main features of
the experimentally observed patterns, the quantitative analysis
of the model requires one to couple properly the dynamics
of poles (16) to the Laplacian growth equation (19), i.e., to
determine the function τ (t ). There are two ways to proceed.
First, one can fine-tune the pole dynamics in such a way
that the fjord’s evolution, described by Eqs. (19) and (16),
reproduces the experimental observations [16]. The second
possibility requires a further investigation of the mathematical
structure underlying the regularized growth process. Namely,
the interface dynamics, (19) and (16), can be considered as
a classical limit of stochastic process, because the points ξk ,
which parametrize the “fast” fluctuations at the interface, are
random variables. One can put strong constraints on possible
forms of the pole’s dynamics [and the function τ (t )] by study-
ing martingales12 of stochastic growth process. We address
this problem in detail in the separate publication [29].

11Similar phenomena is expected in the Hele-Shaw problem in
the presence of surface tension. The short-distance regularization,
however, allows one to study the branching and splitting processes
analytically.

12Roughly speaking, the martingales are the stochastic processes
whose expectation values are constant in time [33].

Once the dynamics of poles (16) is coupled with the Lapla-
cian growth equation (19) properly, one can study analytically
the process of the fjord’s formation. In particular, the proposed
theory promises to explain remarkable geometrical features
of the fjords observed in experiments [16]. Afterwards, it
becomes possible to address the long standing problems in the
wedge geometry by novel methods, and to revise the pattern
selection problems without surface tension.

The regularized Laplacian growth problem, (19) and (16),
describes the interface dynamics resulted from the relaxation
of local fluctuations of the pressure (in the vicinity of the
interface) to the equilibrium value. However, fluctuations re-
peatedly appear during the whole growth process. Therefore,
the next important step is to study the regularized Lapla-
cian growth model obtained by driving the Laplacian growth
equation (19) with a compound random process producing
fluctuations with time.13
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APPENDIX: STATIC FLUCTUATIONS
IN LAPLACIAN GROWTH

In this section we briefly describe the relation between the
distribution of eigenvalues in Dyson’s circular ensemble and
stochastic interface dynamics in the Hele-Shaw cell. Let us
consider the growth process generated by aggregation of a
large number, N � 1, of uncorrelated Brownian particles of
size h̄ issued from infinity and stuck to the interface per time
unit. Let us partition the boundary into K � 1 tiny segments
of the size

√
h̄. Then, the N issued uncorrelated particles are

to be distributed into K bins of the boundary, such that the
particles stuck to the same bin form a column. The statistical
weight (probability) of the possible outcome of this growth
step is given by the multinomial formula [8],

P({ki}) = N!
K∏

i=1

pki
i

ki!
, (A1)

where ki is the number of Brownian particles attached to
the ith bin of the boundary14 and pi is the probability of
attachment. By definition, the probability of attachment is
equal to the harmonic measure of the boundary and, therefore,
can be expressed in terms of the conformal map, w(z), from
the exterior of the growing domain, D, in the physical z plane
to the complement of the unit disk in the auxiliary w plane:

pi = |w′(ζi )|
√

h̄, (A2)

where ζi ∈ ∂D.
In the Stirling approximation, N � 1, statistical weights

of randomly attached Brownian particles can be recast in the

13A similar idea was previously implemented to describe the
Loewner evolution with random branching curves [34].

14Note that
∑K

i=1 ki = N .
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following form [18]:

P({ki}) ∝ exp

{
−

K∑
i=1

ki log
ki

N pi

}
. (A3)

The variation of (A3) shows that P is maximal when the
number of Brownian particles, k∗

i = N pi, attached to the ith
bin of the interface is proportional to the harmonic measure
of the boundary (A2). This maximum is exponentially sharp
when h̄ → 0 so all fluctuations around k∗

i are suppressed.
Hence k∗

i is a classical trajectory for the stochastic process,
which describes deterministic Laplacian growth. Indeed, the
normal interface velocity vn(ζi ) is related to the numbers ki in
the following way:

vn(ζi ) =
√

h̄ki/δt . (A4)

Taking into account the identity, vn(ζ ) = Im[∂t z(eiφ, t )
∂φz(eiφ, t )]/|∂φz(eiφ, t )|, one obtains the Laplacian growth
equation

Im[∂t z(eiφ, t )∂φz(eiφ, t )] = Q, (A5)

which was intensely studied earlier [1–3]. Thus it turned out
possible to derive the Laplacian growth equation directly from
variational calculus based on elementary combinatorics.

The next step is to take a continuum limit of (A3). In
this limit

√
h̄ki → 0 and δt → 0, so that the normal interface

velocity (A4) remains fixed. The key observation is that the

exponent of (A3) can be rewritten in a remarkably simple way
(see Refs. [8,18] for details):

P[vn] ∝ eq−2
∮
∂D

∮
∂D vn (ζ ) log |w(ζ )−w(ζ ′ )|vn(ζ ′ )|dζ ||dζ ′|, (A6)

where q = h̄/δt is the quanta of the growth rate Q = Nq
and w = w(z) is the conformal map from the exterior of the
growing domain in the physical z plane to the exterior of the
unit disk in the mathematical w plane (see Fig. 1). Finally,
introducing the density ρ(θ ) by (5) and recasting the contour
integrals in (A6) into the integrals along the corresponding
angles in the w plane one obtains

P[ρ] ∝ e
∫ 2π

0

∫ 2π

0 ρ(θ ) log |eiθ−eiθ ′ |ρ(θ ′ )dθ dθ ′
. (A7)

The expression in the exponent of (A7) has a clear elec-
trostatic interpretation, namely, it is the electrostatic energy
of self-interacting charge induced on the unit circle with
density ρ(θ ) kept at zero potential. Thus the entropy (A1) was
transformed to electrostatic energy, so that the probability of
a single growth step takes the form of the Gibbs-Boltzmann
distribution (implying that probability Pi ∝ e−Ei , where Ei is
the energy of the ith state).

The function ρ(θ ) can be considered as a macroscopic
density function of N point charges on the unit circle in the
limit N → ∞ (15). Therefore, in the discrete approximation
the probability distribution function (A7) takes the form of
joint probability distribution function of eigenvalues of a
random unitary N × N matrix (3) with β = 2.
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