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Stochastic thermodynamics extends the notions and relations of classical thermodynamics to small systems
that experience strong fluctuations. The definitions of work and heat and the microscopically reversible condition
are two key concepts in the current framework of stochastic thermodynamics. Herein, we apply stochastic
thermodynamics to small systems with odd controlling parameters and find that the definition of heat and
the microscopically reversible condition are incompatible. Such a contradiction also leads to a revision to the
fluctuation theorems and nonequilibrium work relations. By introducing adjoint dynamics, we find that the total
entropy production can be separated into three parts, with two of them satisfying the integral fluctuation theorem.
Revising the definitions of work and heat and the microscopically reversible condition allows us to derive two sets
of modified nonequilibrium work relations, including the Jarzynski equality, the detailed Crooks work relation,
and the integral Crooks work relation. We consider the strategy of shortcuts to isothermality as an example and
give a more sophisticated explanation for the Jarzynski-like equality derived from shortcuts to isothermality.
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I. INTRODUCTION

In the past several decades, growing interest in small
systems has been boosted by the tremendous progress in
nanotechnology [1-4] and biomolecular machines [5-9].
Because small systems are susceptible to thermal fluctuations,
the mean values of thermodynamic quantities such as work,
heat, and entropy are not sufficient to predict the behavior of
small systems. Fluctuations and probability distributions of
thermodynamic quantities also play a vital role. The frame-
work of stochastic thermodynamics has been developed to
study fluctuating behaviors of thermodynamic quantities on
individual trajectories [10-14]. By applying the first law of
thermodynamics to fluctuating trajectories, Sekimoto [15,16]
first defined work and heat on individual trajectories. A
steady-state thermodynamic framework was put forward later
by Oono and Paniconi [17] and further refined by Hatano and
Sasa [18]. However, the generality of the current framework
of stochastic thermodynamics remains a fertile topic to be
applied to more complex conditions [19,20].

The probability distributions of these thermodynamic
quantities obey various exact fluctuation relations. These in-
clude the Jarzynski equality [21-23], which connects free
energy differences between two equilibrium states with an
exponential average over nonequilibrium work along fluctu-
ating trajectories, the Crooks relation [24,25], which relates
the probability distribution of nonequilibrium work in the
forward driving processes to the probability distribution of
nonequilibrium work in the time-reversed driving processes
by means of a detailed and an integral equality, and a series
of fluctuation theorems [26-31], which use the integral and
detailed equalities, respectively, to describe the exponential
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average and the probability distributions of entropy produc-
tion along fluctuating trajectories. Most of these fluctuation
relations can be derived from a fundamental relation: the mi-
croscopically reversible condition connecting the probability
functionals of the forward and the time-reversed trajectories
with the stochastic heat along the forward trajectory [32-34].

The fluctuation relations listed above mainly focused on
the probability distributions of entire thermodynamic quanti-
ties. According to the framework of steady-state thermody-
namics [17,18], the total heat of a stochastic trajectory can be
separated into a housekeeping and an excess part. The former
is necessary to maintain the system in the nonequilibrium
steady state, while the latter is associated with transitions
between nonequilibrium steady states. Hatano and Sasa [18]
found that the part of the total entropy production related to
excess heat satisfies the integral fluctuation theorem. Speck
and Seifert [35] then demonstrated that the remaining part of
the entropy production related to housekeeping heat also satis-
fies the integral fluctuation theorem. By introducing an adjoint
dynamics [36,37], Esposito and Van den Broeck [38—40]
generalized the Hatano-Sasa [18] and the Speck-Seifert fluc-
tuation theorem [35] into discrete stochastic systems and
gave a detailed version of them. Spinney and Ford [41-43]
recently investigated systems with odd dynamical variables
(such as momentum that changes its sign under time-reversal
operation) and found that the total entropy production can be
separated into three parts, with two of them satisfying the
integral fluctuation theorem. Lee ef al. [44,45] modified the
separation rule for the total entropy production put forward in
[41-43] and endowed each part of the total entropy production
with clear physical origins.

The controlling parameters, which control small systems
during stochastic processes, are usually assumed to be even
variables. However, in recent studies we found that control-
ling parameters in small systems can also be odd variables.
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FIG. 1. Schematic of the research motivation of this paper. For the explanation of the meaning of each physical quantity, see the main text.

One example is from controlling theories in small systems.
Shortcut to isothermality provides a unified controlling strat-
egy for conducting a finite-rate isothermal transition between
equilibrium states with the same temperature [46]. An aux-
iliary potential is introduced in this strategy to escort the
evolution of small systems. It has been demonstrated that the
auxiliary potential in shortcuts to isothermality always con-
tains the time derivative of an even controlling parameter. As
with the velocity variable, which is the time derivative of the
position variable, the time derivative of the even controlling
parameter should also change its sign under time-reversal
operation, thus failing to guarantee the strategy of shortcuts
to isothermality in the time-reversed driving process. In other
controlling theories [47—49], the time derivative of the even
controlling parameter is also contained in the external field,
which results in the failure of the controlling theory in the
time-reversed driving process. Active biological systems can
be considered as another example. Mandal et al. [20] studied
entropy production and fluctuation theorems for active matter.
The effective field in their formalism also contains the time
derivative of an even controlling parameter. Moreover, the ap-
plied magnetic field in charged Brownian particle systems also
changes its sign under time-reversal operation. To distinguish
between different types of controlling parameters, we call the
parameters that retain their sign under time-reversal operation
as even controlling parameters and those that change their sign
under time-reversal operation as odd controlling parameters.
In this paper, we focus on small systems with both odd
and even controlling parameters. However, to highlight the
unique properties of odd controlling parameters, we still set
the topic as stochastic thermodynamics with odd controlling
parameters. As shown in Fig. 1, the research motivation of
this paper is to determine whether the current framework of
stochastic thermodynamics can be extended to systems with

odd controlling parameters. If not, can we construct a matched
framework of stochastic thermodynamics for systems with
odd controlling parameters? In Sec. II, we apply the current
framework of stochastic thermodynamics to systems with odd
controlling parameters and show that there is a contradiction
between the definition of heat and the microscopically re-
versible condition. Such a contradiction also leads to a revi-
sion to the fluctuation theorems and the nonequilibrium work
relations. In Sec. III, we discuss the entropy production and
fluctuation theorems for systems with odd controlling param-
eters. By introducing an adjoint dynamics, we can separate
the total entropy production into three parts. The total entropy
production and two of the three parts satisfy the integral
fluctuation theorem. In Sec. IV, we discuss nonequilibrium
work relations for systems with odd controlling parameters.
We find that two sets of nonequilibrium work relations can be
obtained by revising the definitions of work and heat and the
microscopically reversible condition, respectively. In Sec. V,
we consider the strategy of shortcuts to isothermality as an
example. Starting from two different choices of the definition
of work, we give different explanations of the Jarzynski-like
equality derived from shortcuts to isothermality. We conclude
with a discussion in Sec. VI.

II. CONTRADICTION BETWEEN THE DEFINITION
OF HEAT AND MICROSCOPIC REVERSIBILITY

The general setting considered in this paper involves a
Brownian particle coupled to a thermal reservoir with a con-
stant temperature 7. External driving is applied to the system
by introducing a time-dependent potential U (x, A, A,) within
the time interval [0, t], with A; = A (¢) and A, = A,(t) repre-
senting even and odd controlling parameters, respectively. The
motion of the stochastic system is governed by the Langevin
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equation
dx dp U (x, Ay, A2)
— =D, —_——— — t S 1
TR AYT o yp+&E@), (1)

where y represents the coefficient of friction and & (¢) denotes
the standard Gaussian white noise satisfying (£(¢)) = 0 and
(E@)E(')) =2yTS8(t —1t'). The ensemble behavior of the
stochastic system is described by the Fokker-Planck equation

ap

9 0 oU dp
=—o—(po)+ —\ypo+—p+yT—) (2
ot dax ap

ax op
with p = p(x, p, t) representing the distribution function of
the stochastic system. Throughout this paper, we set the
mass of the system and the Boltzmann factor to be unit for
simplicity.

Sekimoto proposed to endow the Langevin dynamics with
a thermodynamic interpretation [10]. The difference between
odd and even controlling parameters was not considered in his
original formalism. Stochastic work and heat are respectively
defined along an individual stochastic trajectory as

oU (x, Ay, A aU (x, A1, A
_ (x, A Z)dkl+ (x, A Z)dkz

d 3
v oM 0ha ©)
and
dp BU(X,)Ll,)»z)
dg=(—+ ——)0dx. 4
i (dz R o @
We adopt the Stratonovich convention o in this paper.
The condition of microscopic reversibility
er[Xv plx(0)7 P(O)] — efq[x,p]/T (5)
p-[X, plx(0), p(0)]
provides another way to define heat [32-34]. Here,

o+[x, plx(0), p(0)] denotes the probability of the trajectory
{x, p}, given that the system started at {x(0), p(0)} and is
driven by the protocol {A(#), A»(¢)}. The probability of the
time-reversed trajectory {X, p} with the time-reversed dynam-
ics is expressed as p_[X, p|x(0), p(0)], given that the system
started at {x(0), p(0)} and is driven by the time-reversed
protocol {A| (), A,(f)}. Here “—” represents the time-reversal
operation. g[x, p] denotes the heat absorbed from the thermal
reservoir by the system along the forward trajectory.

The mapping relation between the time-reversed trajectory
and the forward trajectory reads

%) = x(t — 1),

g pt) = —p(r — 1),
(D) = ri(z —1),

Ma(f) = —ha(T — 7). (6)

=T1T—1,

The time-reversed driving process follows the same dynami-
cal equation as the forward driving process, namely
dx  _ dp  OUQ& A1, Ay)
ai -~ Uoar T o
while the dynamical variables and the parameters are replaced
by the time-reversed ones.
The probability of observing a trajectory of the system for
a given initial state can be obtained by using the path-integral
methods [13,50,51]. For the forward driving process, the
conditional probability of observing increments dx = x(t +

—yp+&@O, ()

dt) —x(t)anddp = p(t + dt) — p(t) in a time interval dt can
be written as

p1lx(@ +dt), p(t + dt)|x(t), p(t)]
8(dx — pdr) [ (dp+ypdt+wczr)z}
= (.€ — .

- AmyTdt 4yT dt
®)
The detailed derivations of this short-time conditional prob-
ability are provided in Appendix A. Similarly, the short-time
conditional probability of the time-reversed driving process
can be expressed as
p-1X(7 +di), p(t + di)|x(F), p(7)]
5(dx — pdr) [ (dp+ypdi + —E’U“éf_;"z)df)z}
= exp| — .

- JAmyTdi 4yT di

€))

From microscopic reversibility (5), we can then give a defini-
tion of the heat along a stochastic trajectory as

p+lx( +dt), p(t +dn)|x@), p(t)]

p-IX(t 4 di), p( +di)|x(t), p(©)]

N p+x(t +dt), p(t +d0)|x@), p(t)]
p-[x(t —dt), —p(t — dt)|x(1), —p(t)]

U (x, A1, A 2
(x, A1, Z)dt)
dx

d/ = —T In

4y dt

AU (x, Ay, —A 2
X

dp 1[/0U aU"
= [E+E<E+ ox )}d

n 1 [dp n 1/0U n aU" oU aUT dr
2y ldt 2\ 9x = dx dx dx ’
(10)

where we have defined U"(x, A1, A2) = U(x, A1, —A2). Ap-
plying the first law of thermodynamics to a stochastic trajec-
tory, we can then define the stochastic work as

dw’' = de — dq’

W o U, LU Uty
— _— | — - odx
an T o2 ax T o

1 [dp 1/0U 09U U U’
—— =+ z|l =+ — = dt,
2y | dt 2\ ox 0x ox ax
(11

with e = p?/2 + U representing the energy of the system.
To distinguish them from previous definitions, we use ¢
and w’ to denote the stochastic heat and work derived from
microscopic reversibility (5), respectively. In the particular
situation U (x, A1, A2) = U(x, A1, A2), we can easily verify
that the definitions of work (11) and heat (10) reduce to
Egs. (3) and (4), respectively.

1
= —|:(dp+ypdt +
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Unlike systems containing only even controlling param-
eters, in which the two definitions of work and heat given
above should be consistent [10,32,33], we find that, with the
inclusion of odd controlling parameters, the definition given
by microscopic reversibility diverges substantially from the
one given by the current framework of stochastic thermo-
dynamics. This indicates that either the definitions of work
and heat or microscopic reversibility in the current frame-
work of stochastic thermodynamics needs to be modified.
Because of the fundamental status in stochastic thermody-
namics of the work and heat definitions and of microscopic
reversibility, such a contradiction may also lead to a revision
to the fluctuation theorems and the nonequilibrium work
relations.

III. ENTROPY PRODUCTION AND FLUCTUATION
THEOREMS

Having introduced the contradiction in the definitions of
work and heat, we next investigate the form of the stochastic
entropy production and fluctuation theorems for systems with
odd controlling parameters.

A. Total entropy production and fluctuation theorems

For a stochastic system evolving in the time interval
[0, ], the probability ratio of the forward trajectory {x, p}
and time-reversed trajectory {X, p} defines the total entropy

J

Ao —n <p+(x(0>, p(0), 0)>
tot —

P+ (x(7), p(1), T)

1 [dp 1[/0U
- — —+ =+
2yT Jo [dt 2\ ox

Such a form of the total entropy production is much more
complicated than the case containing only even controlling
parameters [12,29,38-40]. Therefore, the inclusion of odd
controlling parameters also changes the form of the total
entropy production, but the fluctuation theorem for the total
entropy production still holds.

B. Three parts of the total entropy production

To further exploit nonequilibrium properties of the entropy,

we introduce an adjoint dynamics

dx_ dp_ oU (x, Ay, A2)

dt dr dx
Note that such a counterintuitive dynamics is mathematically
constructed just to separate the total entropy production into
meaningful parts [25,37,38]. The short-time conditional prob-
ability of this adjoint dynamics satisfies the relation

P [x(1), p()|x(t + dt), p(t + dt)]
p4[x(t +dt), p(t +dt)|x(t), p(t)]

B Pst(x(t), pt), k1, A2)
© ps(x(t +dt), p(t +dt), A1, Ar)

’

yp+&@). (16)

a7

production

p+[x, pl

p-[X, p]

. <p+(x(0),p<0>, 0))
p-(x(0), p(0), 0)

Astol =In

p+[x, plx(0), p(0)]
p-[%, pIx(0), p(0)]’

(12)
where p.(x(0), p(0),0) and p_(x(0), p(0), 0) represent the
initial distributions of the forward and the time-reversed driv-
ing processes, respectively.

It has already been proved that a random variable such as
Aso; obeys an integral fluctuation theorem

o) = [[axdppeixple s =1 a3

if this random variable can be expressed as the ratio of
the forward trajectory probability functional p4[x, p] and
another transformed trajectory probability functional, such as
p—[X, p]. The transformed trajectory and the forward trajec-
tory must have the Jacobian of unity, such as [0X/dx| = 1 and
[0p/ap| = 1[29,38-40,52].

The initial distribution of the time-reversed driving process
is chosen as the final distribution of the forward driving
process, i.e.,

p-(x(0), p(0), 0) = p1(x(7), p(1), 7). (14)

Substituting Egs. (8), (9), and (14) into Eq. (12), we can
express the total entropy production as

dp 1/0U aU’
/[z+§(§+ o )] o dx
au’ 104 U’
—_— = dt. (15)
ox ox ox

where pg(x, p, A1, Ap) represents the stationary distribution of
the forward dynamics [36]. We can verify that the adjoint dy-
namics gives the same stationary distribution and the opposite
stationary flux as the forward dynamics.

Based on the adjoint dynamics, we construct two adjoint
driving processes A and B. The mapping relation between
the A adjoint driving process and the forward driving process
reads

(

@) =x(x —1),

M@ =1 = 1),

M) = ra(t — 1), (18)

while the mapping relation between the B adjoint driving
process and the forward driving process reads

=t, X(@)=x(),

7 pt) = —p(1),
@) =r@),

M(f) = —a(0). 19)

Herein, variables with hat and tilde represent the variables
in the A adjoint driving process and in the B adjoint driv-
ing process, respectively. The initial distributions of the A
adjoint driving process and the B adjoint driving process are
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respectively chosen as

pa(X(0), p(0), 0) = p4(x(7), p(7), 7) (20)

and

p(X(0), p(0), 0) = p4+(x(0), p(0), 0). 21

By utilizing these two adjoint driving processes, we can
further separate the total entropy production into three parts

ASior = Asa + Asg + Asc, 22)

with the trajectory entropy related to the A adjoint driving
process
p+[x, pl
palX, Pl
I <p+(X(0),p(0), 0)) i (m[x, plx(0), p(0)1>
pa(%(0), p(0), 0) PAlX, PI(0), p(0)] )’

ASA =In

(23)
the trajectory entropy related to the B adjoint driving process
Asg = In p+[i(’ P]

palX, Pl

I <,0+(x(0), p(0), 0)) I <,0+[X’ plx(0), p(O)])
pe(%(0), p(0), 0) pB[%, PI%(0), p(0)] )
(24)
and the remaining part
Ase — (pA(fC(O), p(0), 0)pp(x(0), p(0), 0))
Sc = In - —
p+(x(0), p(0), 0)p—(x(0), p(0), 0)
+n (pA[ﬁ, pIx(0), p(0)lpp [ff, Ii)lff(o), pi(O)]>‘ 25)
p+[x, plx(0), p(O)]p-[X, pIx(0), p(0)]

According to the structure of the trajectory entropy (23)
and (24), we can prove that Asa and Asg satisfy the integral
fluctuation theorems

(=) =1,

(e7Bm)y = 1. (26)

The third trajectory entropy Asc does not satisfy the fluc-
tuation theorem since it cannot be written in the form of
Asa, Asg, and Asiy.

The concrete expressions of Asa, Asg, and Asc can be
further derived respectively as

Asp =1n (—'OJF(X(O)’ P©). 0)) - l/ <@ + &) odx,

p+(x(z), p(), 7) T dr  0Ox
(27)
1 oU aU"
Asg = ——/ —_— = odx
2T 0x ox
1 [dp 1[/0U dU"
- — —+ | — +
2yT Jo [dt 2\ ox 0x
oU aU"
x| — — dr, (28)
ax ox
and
1 U aU"
Asc = —/ —— odx. 29)
T ox 0x

The detailed derivations of the above expressions are shown in
Appendix B. Note that if the potential satisfies U (x, A1, Ap) =
U(x, A1, L), we can easily verify that Asg = Asc =0 and
the total entropy production reduces to the case for systems
containing only even controlling parameters [12,29]. The
inclusion of odd controlling parameters leads to two extra
entropy contributions Asg and Asc and fluctuation theorems
(26).

IV. NONEQUILIBRIUM WORK RELATIONS

In Sec. II, we put forward the contradiction between the
definition of heat and microscopic reversibility for stochastic
systems with odd controlling parameters. In this section,
we revise the definitions of work and heat and microscopic
reversibility in the current framework of stochastic thermo-
dynamics and check the form of the nonequilibrium work
relations, including the Jarzynski equality and the Crooks
work relations.

A. Revising the definitions of work and heat

In this subsection, we choose to retain the form of micro-
scopic reversibility (5) and revise the definitions of work and
heat in the current framework of stochastic thermodynamics
to be Egs. (11) and (10), respectively. In this situation, micro-
scopic reversibility should be reformulated as

P+ [X» P|x(0)s p(O)] — e_q/[x‘p]/T. (30)
p-[x, plx(0), p(0)]

We keep the form of microscopic reversibility (30) for the
following reasons. First, starting from microscopic reversibil-
ity and choosing proper initial and final distributions, we can
derive most of the fluctuation theorems and nonequilibrium
work relations, such as the Jarzynski equality [32], the Crooks
work relations [24,25], and the total entropy production fluc-
tuation theorems [29]. In view of the vital bond role, many
researchers believe that microscopic reversibility is funda-
mental in the framework of stochastic thermodynamics. Sec-
ond, combining microscopic reversibility (30) with Eq. (12),
we can naturally follow the statement of Seifert [29] and
separate the total entropy production into two contributions:
the entropy variation of the stochastic system itself

As = —1Inpi(x(7), p(7), T) — [—In p1.(x(0), p(0), 0)]
€19

and the entropy variation of the thermal reservoir (or the
medium)

Asy = 4 In p+[X, pIx(0), p(0)] 32)

T p-[%, pl%(0), p(0)]’
with Asie = As + Asp,.

Herein, we set the initial and the final distributions to
be stationary distributions. The expression of the stationary
distribution can be easily derived from the Fokker-Planck
equation (2) as

psi(X, py A1,y A2) = e%[m"“)_é_w’k"“”, (33)
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where
7
F,2)=—-T1In |:// e_;(2+U)dxdp:| (34)

represents the normalization factor. The stationary distribution
(33) possesses the form of canonical distribution. However,
combining the stationary distribution (33) with the short-time
conditional probability (8) and (9), we can verify that the
principle of detailed balance [53] is broken

pst(x(2), p(t), A1, A2)p+[x(t + dt), p(t + dt)|x(1), p(1)]
# pst()_c(f)a ﬁ(f)7 le XZ)
X p_[X(& + df), p(f + df)|x(@), p(F)]. (35)

This is different from systems with the magnetic field as
a controlling parameter in which the principle of detailed
balance is satisfied (see Appendix C for details). Conse-
quently the concept of equilibrium cannot be applied to sys-
tems with odd controlling parameters if the potential satisfies
U'(x, A1, A2) # U(x, A1, Az). The breaking of detailed bal-
ance is usually caused by nonequilibrium constraints such as
nonconservative force [41-45]. Here we find that odd control-
ling parameters can also cause ‘“nonequilibrium” behaviors
through breaking the time-reversal invariance of the sys-
tem Hamiltonian, i.e., U"(x, Ay, A2) #Z U(x, Ay, A2). Without
causing ambiguity, we refer to the traditional nonequilibrium
thermodynamics and still call the stationary distribution (33)
the steady-state distribution.

By combining microscopic reversibility (30) with the form
of the steady-state distribution (33), we can obtain the relation

IOJr[Xv p] _ e(w/fAF)/T’ (36)
p-[X, p]
which leads to three nonequilibrium work relations:
(e™/T)y = e BT, (37)
10+(w ) — e(w/fAF)/T’ (38)
p-(—w')
and
(O)4 = (O™ =20IT)_ (39)

AF = F(1 (1), A2(17)) — F(11(0), A2(0)) represents the
“steady-state” free energy difference. O is a functional of the
forward trajectory, while O is the corresponding functional of
the time-reversed dynamical trajectory. We have assumed that
the functional satisfies O[x, p] = O[X, pl. (- - - )4 represents
the ensemble average over trajectories stemming from the
initial steady state in the forward driving process. (---)_
represents the ensemble average over trajectories stemming
from the initial steady state in the time-reversed driving
process. These three nonequilibrium work relations (37),
(38), and (39) maintain the respective forms of the Jarzynski
equality [21], the detailed Crooks work relation [24], and the
integral Crooks work relation [25], while the stochastic work
expression in these relations is replaced by the revised one
(11).

Referring to the steady-state thermodynamics [17,18],
we can associate part of the total stochastic heat with the

trajectory entropy Asa

dp U

gy = —T(Asp — As) = f (E + E) odx.  (40)

Note that the expression of partial heat (40) is the same as
the definition of heat in the current framework of stochastic
thermodynamics (4).

Considering transitions between steady states and substi-
tuting Eq. (40) into relation (23), we can obtain the relation

IOJr[i(v E)] — e(wp—AF)/T’ (41)
,OA[X, p]
where we have defined partial work as
w, = Ae—qp
oU (x, A1, A2) / oU (x, A1, A2)
= | ————————dx —————dA,. (42
/ o 1+ o 2. (42)

According to relation (41), we can also derive three nonequi-
librium work relations:

(e7m/Ty, = e AT, (43)
P+(wp) Ze(wpfAF)/T’ (44)
PA(_wp)
and
(0); = (O e m=ARITy (45)

(- - - ) A represents the ensemble average over trajectories stem-
ming from the initial steady state in the A adjoint driving
process. Comparing with the previous three nonequilibrium
work relations (37), (38), and (39), we can find that the above
three nonequilibrium work relations (43), (44), and (45) also
retain the respective forms of the Jarzynski equality [21], the
detailed Crooks work relation [24], and the integral Crooks
work relation [25]. However, it is worth noting that the partial
work w;, we consider here is just part of the total work w’. In
addition, the time-reversed driving process is replaced by the
A adjoint driving process.

B. Revising microscopic reversibility

In this subsection, we instead keep the form of the def-
initions of work (3) and heat (4) in the current framework
of stochastic thermodynamics and instead revise microscopic
reversibility. We retain the form of the definitions of work and
heat for the following reasons. First, the form of the definitions
of work (3) and heat (4) seem a natural means of extension
from systems containing one kind of controlling parameter
to systems containing two types of controlling parameters.
Second, the form of the definitions of work (3) and heat
(4) coincide with the thermodynamic interpretation of the
Langevin dynamics given by Sekimoto [10]. This makes
the definitions of work (3) and heat (4) physically easier to
understand than the alternative definitions of work (11) and
heat (10).

According to the definition of heat (4), the microscopically
reversible condition should be revised to be

pilx. PIXO). PO _ ey
p_I%. pIF(0), H(0)]

, (40)

012127-6



STOCHASTIC THERMODYNAMICS WITH ODD ...

PHYSICAL REVIEW E 100, 012127 (2019)

with
I[x, p] = In 2AL P
o-[X, p]
1 AU AU*
= —_ odx
2T 0x 0x

1 /dp+1 8U+8Ur aUu  aUur dr
2yT ) [ dt ~ 2\ 0x ax ox ox

(47)

representing the correction term caused by the inclusion of
odd controlling parameters. This correction term is related
with the trajectory entropy by the relation

I = Aslot - ASA = ASB + ASC. (48)

In the particular situation U"(x, A1, A2) = U(x, Ay, A»), this
correction term vanishes. Since this correction term does not
obey an integral fluctuation theorem, we cannot give any
bounds on the sign of its mean.

Considering transitions between stationary states and tak-
ing revised microscopic reversibility (46) into account, we can
obtain the relation

p+[X, p] — e(w—AF)/T-H’ (49)
p-[X, p]
which leads to three nonequilibrium work relations:
(e—w/T—l>+ — e—AF/T, (50)
p+(w) — e(waF)/T#»I’ (51)
p—(—w)
and
(O)y = (O80T (52)

This indicates that for systems with odd controlling parame-
ters, if we keep the form of the definitions of work (3) and heat
(4) in the current framework of stochastic thermodynamics,
a correction term [ needs to be added to revised versions of
microscopic reversibility [32], the Jarzynski equality [21], and
the Crooks work relations [24,25].

Note that we can derive a modified second law of thermo-
dynamics

(w) = AF = T(I) (53)

from Eq. (50) by using the Jensen inequality. Here we have set
the Boltzmann factor to be unit and omitted the subscript “+”
for simplicity. The average correction term (/) can be positive
or negative. It looks similar to the mutual information in
the feedback-driven process [54]. However, we are not using
any feedback information in the present framework. Such a
correction term results from odd controlling parameters. It
is meaningful to investigate the form of the protocol and
the potential that can keep the average correction term (/)
negative. In this case, Eq. (53) will give a stronger bound for
the maximal mean extractable work —(w). We leave this issue
for future works.

On the other hand, if we start from Eq. (23) and con-
sider transitions between stationary states, we can derive the
relation

P+ [?f’ IA’] _ Jw—AF)T (54)
palX, Pl

Comparing with Eq. (49), we can find that the time-reversed
driving process is replaced by the A adjoint driving process
in Eq. (54), but the additional quantity /[x, p] is successfully
eliminated. Three different nonequilibrium work relations can
also be derived from Eq. (54):

(e Ty = e AT, (55)
p+(w) Ie(w_AF)/T, (56)
pa(—w)
and
(0)y = (O e 20T . (57)

These three nonequilibrium work relations (55), (56), and (57)
mathematically recover the Jarzynski equality [21], the de-
tailed Crooks work relation [24], and the integral Crooks work
relation [25], respectively. However, it is worth noting that the
time-reversed driving process in the traditional detailed and
integral Crooks work relations [24,25] is replaced by the A
adjoint driving process in Egs. (56) and (57).

V. EXAMPLE: SHORTCUTS TO ISOTHERMALITY

To explain our results explicitly, we consider the strategy of
shortcuts to isothermality [46] as an example. In conventional
thermodynamics, it is widely believed that the realization of
an isothermal process needs to quasistatically drive control-
ling parameters. The strategy of shortcuts to isothermality
is designed to realize a finite-rate isothermal transition be-
tween two equilibrium states with the same temperature [46].
Within the above framework of stochastic thermodynamics
for systems with odd controlling parameters, we can give a
deeper understanding of shortcuts to isothermality as well as
the Jarzynski-like equality derived from it.

We first briefly introduce the strategy of shortcuts to
isothermality; please refer to [46] for further details. Within
the framework of shortcuts to isothermality, an auxiliary po-
tential U; (x, ¢) is introduced to the system of interest with the
Hamiltonian Hy(x, p, A) = p2/2 + Up(x, A). Herein, A =
A(t) is the controlling parameter. This auxiliary potential is
required to escort the evolution of the system so that the
system distribution is always in the instantaneous equilibrium
distribution of the original Hamiltonian Hy(x, p, A(?)):

PLx pu1) = Picg(x, p. A) = TP VT (58

with
Fo(A)=—T In [ / / e Howp M/T g dp] (59)

representing the free energy of the original system in equilib-
rium. To this end, the auxiliary potential is demonstrated to
have the structure

Ui(x,t) = Af(x, A), (60)

where function f(x, A) can be determined according to the
method in [46] and A = dA(t)/dt. By imposing boundary
conditions

A) = A(r) =0, (61)
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we can make the auxiliary potential vanish at the beginning
t =0 and end ¢ = t of the driving process, which indicates
that the distribution functions at the two end points of the
driving process become equilibrium distributions. This is the
main idea of shortcuts to isothermality.

As the time derivative of the controlling parameter changes
its sign during time-reversal operation, i.e.,

dA@)  dAQ)
di — dt

we can treat it as the odd controlling parameter and map
shortcuts to isothermality into the stochastic thermodynamic
framework for systems with odd controlling parameters. The
mapping relations read

(62)

M) = A), M) = A@), (63)

and
U(x, A1, 22) =Up(x, 1) +Ui(x, A1, A2)
= Up(x, A1) + A2 f (x, Ap). (64)

Therefore, during the driving process of shortcuts to isother-
mality, the system cannot reach the equilibrium state because
of the existence of the odd controlling parameter A, = A(z).
Only at the two end points of the driving process, the odd
controlling parameter vanishes, allowing the system to evolve
to equilibrium state.

Three nonequilibrium work relations were derived under
the framework of shortcuts to isothermality in [46]. Among
the three nonequilibrium work relations, the third relation, a
Jarzynski-like equality, is closely related to the choice of the
definition of work. In the following, we discuss the relation-
ship between this Jarzynski-like equality and the definition of
work.

In [46], the definition of work maintains the form (3). In
this situation, the integral Crooks work relation is revised to
be Egs. (52) or (57).

Starting from Eq. (57) and assuming that O = §(x —
x(7))8(p — p(t)), we can obtain the relation

pr(x, p,T) = (8(x —x()8(p — p(1)))+
= (8(x — 2(0))8(p — ﬁ(O))e_("’_AF)/T)A
,(waF)/T){x’p}’A' (65)

Here (---)(, .4 represents the ensemble average over all
trajectories starting from a fixed state {x, p} in the A adjoint
driving process. p4(x, p, T) and pg(x, p) respectively repre-
sent the final state in the forward driving process and the
corresponding steady state when the controlling parameter is
fixed. AF represents the free energy difference of the system
with the auxiliary potential (60). Applying the strategy of
shortcuts to isothermality, we can evolve the system from an
equilibrium state to another one at the same temperature, i.e.,
P+(x, p, T) = psi(X, p) = peq(x, p) in Eq. (65). Therefore, we
can derive the equality

(e ARy A= 1. (66)

= pu(x, p)e

In the forward driving process, the system Hamiltonian is

H(x’ 2 t) = Ho(x9 D, )\'](t)) + Ul (xa )"l(t)v )"2(t)) (67)

Considering the mapping relation between the A adjoint
driving process and the forward driving process (18), we can
derive the system Hamiltonian in the A adjoint driving process
as

H(%, p, 1) = Hy@®, p, M () + Ui, A1 (P), 12(7)).  (68)

Note that the system Hamiltonian in the A adjoint driving
process (68) has the same structure as the one in the forward
driving process (67). This means that, in the A adjoint driving
process, the strategy of shortcuts to isothermality can also
drive the system from an equilibrium state to another one at
the same temperature. According to this property of shortcuts
to isothermality, we can omit the subscript “A” in Eq. (66) and
simplify it to be

(emw=aRNTy = 1. (69)

This equation is a Jarzynski-like equality and implies that
one can estimate AF by taking the exponential average of
the work w over trajectories that start from an arbitrary fixed
state {x, p} and then evolve under the strategy of shortcuts to
isothermality.

Equation (69) is derived from the revised integral Crooks
work relation (57). If we instead start from Eq. (52), we can
also derive a Jarzynski-like equality

(e—(w—AF)/T—l>{X’p}’7 -1 (70)
In the time-reversed driving process, the system Hamiltonian
is expressed as

H(-Y:v p_s t_) :HO(Xv p_sxl(t_))—i_Ul()_C»)_\l(f)v _;«2({))
= Ho(%, p, M (D)) + U{ (X, 11 (D), 2a(D)).  (71)

Compared with the system Hamiltonian in the forward driving
process (67), we find that, in the time-reversed driving pro-
cess, the strategy of shortcuts to isothermality cannot drive the
system from an equilibrium state to another one at the same
temperature. Therefore, the subscript “—"" in Eq. (70) cannot
be omitted directly.

The Jarzynski-like equalities (69) and (70) are all derived
under the choice of keeping the form of the definition of
stochastic work (3) unchanged. If we instead choose to retain
the form of the microscopically reversible condition (30) and
revise the definition of work to be (11), the integral Crooks
work relation is revised to be Eq. (39) or (45). Starting from
these two relations, we can similarly derive two Jarzynski-like
equalities

(ef(w’fAF)/T)[x,p}ﬁ_ -1 (72)
and
(e_(wp_AF)/T>{x,p},A = 1. (73)

As the system Hamiltonian in the A adjoint driving process
(68) has the same structure as the one in the forward driving
process (67), the subscript “A” in Eq. (73) can be omitted, i.e.,

(e7em ATy =1, (74)

[T

However, the subscript in Eq. (72) cannot be omitted
directly because of the different structures between the system
Hamiltonians (67) and (71).
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VI. CONCLUSION AND DISCUSSION

In this paper, we constructed a stochastic thermodynamic
framework for systems with odd controlling parameters. With
the inclusion of odd controlling parameters, we find that the
definition of heat is incompatible with the microscopically
reversible condition when applying the current framework of
stochastic thermodynamics to systems with odd controlling
parameters. Such a contradiction also induces a revision to
the fluctuation theorems and the nonequilibrium work re-
lations. By introducing adjoint dynamics, the total entropy
production Asg, can be separated into three parts: Asa, Asg,
and Asc. The total entropy production Asy, the trajectory
entropy Asa, and the trajectory entropy Asg are respectively
shown to satisfy the integral fluctuation theorem. By revis-
ing the definitions of work and heat and the expression of
microscopic reversibility, we obtained two sets of modified
nonequilibrium work relations, including the Jarzynski equal-
ity, the detailed Crooks work relation, and the integral Crooks
work relation. We considered the strategy of shortcuts to
isothermality as an example. According to the two different
choices of the definition of work, we gave different explana-
tions for the Jarzynski-like equality derived from shortcuts to
isothermality.

In the above framework, we have assumed that odd con-
trolling parameters are only contained in the potential. It
is straightforward to extend our framework to more general
cases in which odd controlling parameters can appear in the
whole Hamiltonian. A familiar example is when systems
take the magnetic field as a controlling parameter, where
the magnetic field appears in the kinetic term. The mag-
netic field as an odd controlling parameter has already been
widely investigated in the field of nonequilibrium thermody-
namics [12,55,56]. Since the Hamiltonian for systems with
the magnetic field as the only odd controlling parameter
is always time-reversal invariant, the correction term I to
the Jarzynski equality (50) or the second law of thermody-
namics (53) will vanish in this situation (see Appendix C
for details). In contrast, the applied potential or the Hamil-
tonian in our framework is not necessarily an even func-
tion of odd controlling parameters, for example, shortcuts
to isothermality [46], active Ornstein-Uhlenbeck processes
[20], isothermal-isobaric molecular dynamics [57], and other
controlling theories [47-49]. In this situation, the odd con-
trolling parameters break the time-reversal invariance of the
Hamiltonian and lead to a series of fluctuation relations in this
paper.

In Sec. IV, we have proposed two schemes to solve the
contradiction between the definition of heat and microscopic
reversibility. Heat or work along the stochastic trajectory
may need to be measured experimentally for small systems
with odd controlling parameters to determine which scheme
is more suitable. Differential fluctuation theorem has been
experimentally verified in both underdamped and overdamped
situations for systems containing only even controlling pa-
rameters [58]. A similar experiment may be conducted for
small systems with odd controlling parameters to answer the
question above. We prefer to choose the scheme of keeping
the definitions of work and heat and revising the expression
of microscopic reversibility because it is compatible with

the thermodynamic interpretation of the Langevin dynamics.
In this scheme, we can express heat as [—yp+ £(¢)] o dx
through substituting the Langevin equation (1) into Eq. (4).
From the standpoint of the Brownian motion, the energy
[—yp + &(t)] o dx can be naturally interpreted as work done
on the system by the thermal reservoir [10]. This makes
the definitions of work (3) and heat (4) physically easier to
understand than the alternative definitions of work (11) and
heat (10).

We have discussed the stochastic thermodynamic frame-
work in the underdamped situation. It is straightforward to ex-
tend this framework to the overdamped situation. In addition,
our discussion has assumed that the system does not contain
a momentum-dependent driving force [59-61]. Such a force
has induced rich phenomena for small systems [41-45,59,60].
The investigation of small systems with odd controlling
parameters will be an interesting topic for future work,
as will systems possessing a momentum-dependent driving
force.
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APPENDIX A: DETAILED DERIVATIONS OF SHORT-TIME
CONDITIONAL PROBABILITY

In this section, we derive the short-time conditional prob-
ability for systems with odd controlling parameters. The
Fokker-Planck equation (2) can be abbreviated as

ap 2

0 0 0
—=—(D — (D —(Dzp), Al
” 8x( 1,0)+ap( zp)+8p2( 30) (A1)
where
104
Dl = —D, D2:Vp+ Ev D3:)/T (A2)

After discretization, we can express the left side of Eq. (A1)
as

p',p't+ Atlx, p,t) — p(X, P/ tlx, p, 1)
At

p(x',p',t+ Atlx, p,t) — 8§(x' —x)8(p' — p)
At ’

left =

(A3)
where we have included abbreviations x’ = x(t + At), p' =
p(t + At), x = x(t), and p = p(t). The right side follows:

: a / / a / /
right = ( —Di(x, p') + ——=D2(x', p)
ax’ ap’

2

0
+ WDs(x/, P’))S(x’ —x)3(p' = p). (Ad)
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Combining Egs. (A3) and (A4), we can obtain the conditional
probability as

p', Pt + Atlx, p, 1)

0 0
=(1+Ar—D(x, p)+ At —D>(x', p)
ax’ ap’

82
Farg D p/))‘s(x/ —0)8(p —p). (AS)

In the short-time limit At — dt, we can then derive the short-
time conditional probability

o, p,r+dtlx, p, 1)

d 0
= (14+dt—=D\(xX, p') +dt —D,(x', p)
ax’ ap’

2

a
+dt Py 5 D3 (x, p))S(x —x)3(p' = p)

0 0
=14+ Di(x, P)df— + Dy (x, P)df—
ox’ ap’

82 / /
+ Ds(x, p)dtm>5(x —x)8(p" — p)

1 a a
(2 )2 1+D1dl +D2dl—

+D3dta_,2> // M =TV =) gy gy

(2 @y / (1 + iuDydt + ivD,dt — v*Dsdt)

X ezu(x —x)+iv(p —p)du dv

m(x —x+D;dt) —ngde—w(p p+Dzdl)dudv
(271 @n)2

S — 3+ Dydr) e
=o(x —x+ t)—————e D3t
! 4 Dsdt

We  have substituted the Fourier expansion §(x) =
1/27 [ €™du in the third line. From the fourth line to
the fifth line, we have taken advantage of the first-order
approximation for the exponential function. Substituting
Eq. (A2) into the above equation, we can derive the form of
short-time conditional probability (8) found in the main text.

(A6)

APPENDIX B: EXPRESSIONS FOR As,, Asg, AND Asc

In this part, we give detailed derivation of expressions for
trajectory entropy Asa, Asp, and Asc. Taking the relation
(17) into account, we can derive the short-time conditional
probability for A adjoint driving processes as

palX( + di), p(t + di)|2({), p(P)]

8(d% — pdf) [ (dp+ypdi — %ﬁhiﬂdif}
= eXp — .

JAryT di 4yT di

(BI)

Substituting the short-time conditional probability (8) and
(B1) into Eq. (23), we can express the trajectory entropy

Asa as

A _ <p+(-x(0)a p(o)a O)) <p+[xs p|x(0)1 p(o)])
spa=In[{——————)+In — -
pa(£(0), p(0), 0) palX, plX(0), p(0)]

p+(x,, p,0) 1 / dp U
=h|——)—= + — o
o+ (x, p,T) T dr
Herein, we have considered the initial distribution of the A
adjoint driving process (20) and the mapping relation (18).
For the B adjoint driving process, the evolution of the

system also follows the adjoint dynamics. Therefore, we can
express its short-time conditional probability as

dx. (B2)

pBlX(T + di), p(f + dD)|%(), p(D)]

5(dx — pdr) (dp + ypdi — UGLt) g7)?
= €X — = .
by Tdi T 4yT di

(B3)

Substituting Eq. (B3) into the definition of Asg (24), we can
derive that

N </0+(X(0), p(0), 0)) i </0+[X, plx(0), p(O)])
pe(%(0), p(0), 0) ps[X, pIx(0), p(0)]

1 U aU"
= —— —_—— odx
2T 0x 0x

1 Tdp 170U 9U"
- — + +
2yT Jo | dt ax 0x
ou U’
x| — — dt,
ox ax
where the initial distribution of the B adjoint driving process
(21) and the mapping relation (19) have been considered.

Subtracting trajectory entropy Asa and Asg from the total
entropy As (15), we obtain the expression for Asc as

ASB =

(B4)

Asc = Asir — Asp — Asp
aU 8Ur
= —/( >de.

APPENDIX C: SMALL SYSTEMS WITH THE MAGNETIC
FIELD AS A CONTROLLING PARAMETER

(BS)

Consider a charged Brownian particle moving in a har-
monic potential. A time-dependent magnetic field B(¢) is
applied in the z direction. The Hamiltonian of the system is

o=l B 2+ B.Y e
o\ py— 3t 2Ty

(ChH
where k represents the constant stiffness of the harmonic
potential. Here we have set the mass and the charge of the
particle to be unit for simplicity. The magnetic field B(¢) is
an odd controlling parameter which changes its sign under
time-reversal operation. The motion of the particle is governed
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by the Langevin equation

dx B

T px + E)’,

dp. B B B

prale §<Py - §x> — kx — V(Px + Ey) +&:(1),

dy B

Z =Py — Exv
% = —g(px + §y> —ky — V(Py - §x>+ &(1), (C2)

where £,(t) and &,(r) denote the standard Gaussian white
noise along the x and y directions, respectively. The noise
satisfies the relation

(1)) =0,

EWDE ) =2yT8;8¢ — 1), i,j=x,y.

(C3)

The ensemble behavior of the particle is described by the
Fokker-Planck equation

% L Do)+ L Do)+~ (Daup)
9t - ax 1xP ay 1yP apx 2x P
9 82 2
+ ——(D2yp) + — (D3.p) + ~— (Dyyp),  (C4
apy( 20) Bpf(( 3x0) 8p§( o), (C4)
where
B B
Dy, = P oY D1y=—Py+§x,
B B B
Doy = =5y = 5% +kx+y Pxt 5y )
B B B
Doy = S\ pxt Sy ) Hhy+y(py—5x),
D;, = D5, = yT. (&%)

Through steps similar to those in Appendix A, we can
derive the corresponding short-time conditional probability

p+(x/, y/v p,/xv p;’ t+ dtl-x» Ys Dxs pyv t)

_ Ph—px+Dyydn)?

1
=8(x —x 4+ Dy dt) ———¢ D3t

V4n D3, dt
X 8(y/ —y+ Dlydt)—e 4Dy, di ) (C6)

,/47‘[D3ydl‘

Similarly, the short-time conditional probability of the time-
reversed driving process can be derived as

p—(X. ¥, P Py T+ dIIX, 3, py. Py, ©)
- 1 _ e +Dyed?
=8(G' —x+ Dy dt)——=e¢ aDydi
Va4r D3, di
X 3(y/ _ )—] + Dlydl_)—_e D3, di , (C7)

with
_ . B_ _  B_
Dlx__ x_Eya D]v:_py+§x,
B/_ B_ _ B_
DZ}C__E y_E +kx+y px+5 s
_ B/ B_ B B_
Doy =S\ Pt 5V | Hk3+y{ Py — %),
D3x = D3y = )/T (CS)

The mapping relation between the variables in the time-
reversed driving process and those in the forward driving
process follows relation (6).

The stationary distribution of this system can be derived
from the Fokker-Planck equation (C4) as

pst(x’ Y, Px» Dys B) = e%[F—H()C,Yv[’xa[’y,B)]’ (C9)
where
FOu,2) =T In (//f[ e7dxdydpxdpy>
47212
=-T1In . (C10)

The stationary distribution (C9) possesses the form of canon-
ical distribution. Combining the stationary distribution (C9)
with the short-time conditional probability (C6) and (C7),
we can verify that the principle of detailed balance is also
satisfied:

Ps(X, ¥, Prs Py, BYo+ (X', Y, Pl Do t + dt1X, Y, pr, Py, 1)
= pst(X, ¥, Px» ﬁys B)P—()_C/» )_/’ p_;w ply’ t
+dt|x, ¥, px, Py, I). (C11)

Substituting Egs. (C6) and (C7) into microscopic re-
versibility (5), we can derive that

er(-x/’ y/7 p;’ p;v t + dt|x, Y5 Px, py’ t)
o—(X, ¥, Py Py, T+ dEIX, 3, Py, Py, )

dp, 0oH dp, 0H
) odn+ (24 0 ) ody, (C12
<dt+8x>ox+(dt+8y ody. (C12)

dg= —-T In

which recovers the definition of heat. This indicates that the
condition of microscopic reversibility is compatible with the
definition of heat for systems with the magnetic field as the
only odd controlling parameter. Starting from relation (C12),
we can further verify that the Jarzynski equality and the
second law of thermodynamics are also recovered.

Back to Eq. (C1), the Hamiltonian is an even function
of canonical momentum. Thus the odd controlling parameter
does not break the time-reversal invariance of the Hamiltonian
(C1). This may be the essential difference between the system
with the magnetic field as the only odd controlling parameter
and the system we considered in the main text.
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