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We study a quantum Stirling cycle which extracts work using quantized energy levels of a potential well. The
work and the efficiency of the engine depend on the length of the potential well, and the Carnot efficiency is
approached in a low temperature limiting case. We show that the lack of information about the position of the
particle inside the potential well can be converted into useful work without resorting to any measurement. In the
low temperature limit, we calculate the amount of work extractable from distinguishable particles, fermions, and
bosons.
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I. INTRODUCTION

The idea of Maxwell’s demon occupies a central position
in the understanding of thermodynamics and information.
It was introduced in a thought experiment that envisaged a
situation in which there could be a possible violation of the
second law of thermodynamics [1,2]. A classical analysis
of Maxwell’s demon was first developed in the form of the
Szilard engine [3]. The Szilard engine consists of an enclosed
chamber containing a gas molecule. A thin and massless
partition is inserted in the middle of the chamber [4]. The
demon measures the position of the molecule to the right
or to the left of the partition and records it. Based on the
measurement, the demon then connects a mass to the partition
on the same side as the molecule. Now by absorbing heat
from a hot bath, the gas can expand isothermally to occupy
the original full volume of the chamber. The partition, con-
sequently, in pulling the mass, performs work of magnitude
kBT ln 2, where T is the temperature of the bath and kB

is the Boltzmann constant. Superficially, it seems that the
involvement of the demon enables a Szilard engine, with a
single gas molecule, to perform a kBT ln 2 amount of work,
leading to a decrease of entropy of the heat bath, measuring
kB ln 2. This is impossible, according to the second law of
thermodynamics, as a minimum of an equivalent increase
of entropy is required in some part of the global system.
In [3] it was suggested that an equivalent amount of work
is required in the measurement of the position of the gas
molecule which saves the second law. However, it was not
until [5] that the work done in the erasure of information in
the demon’s memory was taken into consideration and the role
played by measurement was refuted [5,6]. Landauer’s erasure
principle showed that minimum amount of increase in the
entropy has to be kB ln 2 for erasing one bit of memory stored
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by the demon, establishing an intriguing connection between
information and thermodynamics [5,6]. Further, Landauer’s
erasure principle has been experimentally established using
a single colloidal particle [7]. An amount of work, which is
nearly kBT ln 2, has been experimentally extracted from one
bit of information, using a single electron engine [8].

In the quantum version of the Szilard engine, the insertion
and the removal of the barrier constitutes a certain amount
of work and heat exchange, unlike in the classical case [9].
Compared to the compression of the particle to the left (or
right) side of the box, the insertion of the barrier needs a lower
amount of work. This can be interpreted as follows. In an
insertion scenario, the position of the particle is unknown. One
has to perform a measurement after the insertion to determine
the position of the particle. Therefore, the state of the system
after compression is equivalent to the state of the system after
insertion followed by the projective measurement. Similarly,
during the removal process, the particle is delocalized due to
tunneling, a factor that does not come into play during expan-
sion. Hence the extractable work during the removal process
is less compared to that obtained during expansion. There
is an element of lack of information due to the degeneracy
(regarding the particle’s location) and tunneling which causes
a difference in the amount of work.

The modeling of a quantum Szilard engine begins with
the conversion of a single infinite potential well to an infinite
double well potential by introducing a barrier in the middle
represented by a delta function potential of the form αδ(0).
Delta function potentials with positive values of α are reg-
ularly used in the literature to represent thin barriers [10],
while negative values represent thin wells with attractive
potentials [11]. Consider a box of length 2a with rigid walls
containing a single molecule [12–14]. The slow insertion of
the barrier corresponds to an increase in the value of α from
zero to infinity, at the end of which the barrier is inserted
completely. When the barrier is introduced in the middle
completely and thereby the system is converted to an infinite
double well potential, the even energy levels, each of which
have a node at the origin, remain static while the odd energy
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levels shift upwards and overlap with the immediately next
even energy levels [15]. In practice, one can think of a delta
potential growing in strength from zero to a finite height X∞,
that is large enough to prevent any tunneling through the
barrier. This can be ensured if the tunneling time exceeds
the time required for the completion of the thermodynamic
processes. In this situation, although the previously adjacent
pairs of energy levels do not overlap, they come sufficiently
close to each other and become almost degenerate. This is
more pronounced in the lower levels, which, as we show
below, plays a significant role for the regime we consider. One
should also note that by odd and even energy levels we mean
odd and even numbered energy levels and do not refer to the
parity of the energy eigenfunctions.

The main motivation for the present work is to devise a
quantum heat engine which will work exclusively on quantum
features [16–19] and which may not operate in a classical
regime. The quantum behavior, in our case, results from the
energy quantization due to the small size of the potential
well we consider. The Szilard engine converts information
into useful work and hence measurement is needed to extract
work [9,10,20–26]. Our analysis shows an effective way of
converting lack of information, emerging from degeneracy of
energy levels, to useful work without any measurement but
using two different reservoirs. The amount of extractable work
depends on the nature of the particle such as distinguishable
particles, bosons, or fermions [9,21,22,24,26–29]. The cycle
we use is quite similar to the Stirling cycle. Quantum versions
of Stirling engines have been studied in the recent past
[30–33]. In this paper, we provide a model of a quantum
Stirling engine whose efficiency approaches the Carnot value
at the low temperature limit. It is to be noted that in a
modified version of the Szilard engine, the Carnot efficiency
can be achieved by erasing the information (obtained from
the measurement) using a heat bath of lower temperature
compared to the one attached to the engine [22,34]. We also
discuss the case where more than one partitions are inserted
with a greater number of particles.

The paper is organized as follows: In Sec. II, we give
a brief description of the quantum model of a Stirling-like
engine. Section III consists of a brief discussion that points
out the distinguishing features of our engine compared to
the more conventional one that is based on expansion and
compression. Section IV is devoted to the limiting cases
and discusses the behavior in a low temperature (reversible)
limit. In Sec. V, we discuss the amount of work extractable
from distinguishable particles and indistinguishable particles
(fermions and bosons). We conclude the paper with discussion
in Sec. VI.

II. STIRLING-LIKE CYCLE

A Stirling cycle [30–32,35] consists of four stages: two
isothermal processes and two isochoric processes. In the first
stage, a barrier is inserted isothermally in the middle of the
well such that the working medium is in equilibrium with a
hot bath at a temperature Th during the quasistatic insertion
process. In the second stage, the working medium undergoes
isochoric heat exchange by connecting it with a heat bath at
a lower temperature Tc. Next, an isothermal removal of the
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FIG. 1. The four stages of the Stirling cycle. Stage 1 is isothermal
insertion, stage 3 is isothermal removal, and stages 2 and 4 are
isochoric processes. The dashed circles in B and C signify ignorance
about the location of the particle, which is represented by solid
circles in A and D.

barrier is effected by keeping the engine in equilibrium with
the lower temperature bath at Tc. In the final stage, the engine
is once again connected to the hot bath at the temperature Th

and an isochoric heat absorption is carried out. The process is
pictorially represented in Fig. 1.

Let us consider a particle of mass m inside a one dimen-
sional potential well of length 2a, the well being at equilib-
rium with a bath of temperature Th. The nth energy level of
the one dimensional potential well is given by

En = n2π2h̄2

2m(2a)2
(n = 1, 2, 3, . . .). (1)

This can be used to calculate the corresponding partition
function of the system, given by

ZA =
∞∑

n=1

e− En
kBTh =

∞∑
n=1

e
− n2π2 h̄2

2m(2a)2kBTh , (2)

where kB is the Boltzmann constant. The energy levels in
Eq. (1) are evidently nondegenerate.

Suppose that a wall is inserted slowly in the middle of
the box isothermally at this point. As discussed earlier, this
is achieved by increasing the value of α, in αδ(0), from zero
to infinity. For all the subsequent analyses and discussions we
consider the middle point as the origin of coordinates. Imme-
diately, the problem is then converted into an infinite double
well potential. The energy levels get reoriented as a result of
this action. The energy levels corresponding to even values of
n remain unchanged while each energy level with odd value
of n shifts upwards and overlaps with the nearest neighboring
even energy level of the original single well potential. This
leads to a degeneracy in the energy levels of this new setup
(i.e., for the double well). We can thereby express an arbitrary
energy level of the partitioned one dimensional potential well
as

E ′
n = (2n)2π2h̄2

2m(2a)2
with n = 1, 2, . . . . (3)

Accordingly, the new partition function becomes

ZB =
∞∑

n=1

2e
− (2n)2π2 h̄2

2m(2a)2kBTh := 2Za,Th , (4)
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where Za,Th is the canonical partition function for a particle in
potential well with length a which is in thermal equilibrium
with temperature Th. The prefactor 2 in Eq. (4) arises because,
due to the insertion of the barrier at the midpoint of the poten-
tial well, the even energy levels of the original potential well
become twofold degenerate. The internal energies UA and UB

of the system can be calculated by employing the respective
partition functions ZA and ZB from Eqs. (2) and (4) as UA/B =
−∂ ln ZA/B/∂βh, where βh = 1

kBTh
. The heat exchanged in the

isothermal process (stage 1 in Fig. 1) of introducing the wall
is thus

QAB = UB − UA + kBTh ln ZB − kBTh ln ZA. (5)

In the next step (stage 2 in Fig. 1), the system is connected
to a heat bath at a lower temperature Tc after disconnecting it
from the bath at temperature Th. The energy levels remain the
same, while the new partition function is given by

ZC =
∞∑

n=1

2e− E ′
n

kBTc := 2Za,Tc , (6)

where Za,Tc is the canonical partition function for a particle in
a potential well with length a which is in thermal equilibrium
with a bath at temperature Tc. The prefactor in Eq. (6) appears
for the same reason as that for Eq. (4). The heat exchanged is
now the difference of the average energies of the initial and
the final configurations,

QBC = UC − UB, (7)

with UC = −∂ ln ZC/∂βc as the internal energy in the state
C where βc = 1

kBTc
. The wall is now removed slowly and

isothermally (see stage 3 in Fig. 1), with the system connected
to the heat bath at temperature Tc. The energy levels are once
again restored to initial values given in Eq. (1), while the
partition function is now given by

ZD =
∞∑

n=1

e− En
kBTc =

∞∑
n=1

e
− n2π2 h̄2

2m(2a)2kBTc . (8)

If UD = −∂ ln ZD/∂βc is the internal energy in the state D, the
heat exchanged in the process is

QCD = UD − UC + kBTc ln ZD − kBTc ln ZC . (9)

In the final step (stage 4 in Fig. 1), the system is connected
to the higher temperature bath at Th once again. The energy
levels remain unchanged but the partition function changes to
ZA. The corresponding heat exchanged is given by

QDA = UA − UD. (10)

In the entire cyclic process, the total work done is therefore

W = QAB + QBC + QCD + QDA

= kBTh ln
ZB

ZA
− kBTc ln

ZC

ZD
. (11)

Hence, the efficiency of the cycle is given by

η = total work done

heat supplied
= 1 + QBC + QCD

QDA + QAB
. (12)

It is to be noted that our engine represents an idealized
case where the isothermal processes are done slowly enough
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FIG. 2. Pressure-volume (P-V) diagram for a classical Stirling
cycle: AB and CD are the isothermal processes. BC and DA are
isochoric (constant volume) processes. The system is in contact with
the hot bath during DA and AB. The system is in contact with the
cold bath during BC and CD. Work is done only during isothermal
branches.

(compared to the tunneling timescales) to keep the system in
equilibrium throughout the processes. We also consider the
energy needed to couple and decouple the system with the
baths is negligible.

The same methodology can be employed to investigate
the cases where more than one barrier are inserted inside the
potential box. Consider the case of two barriers, inserted at
distances 2a

3 from the two walls of the box. Note that the
third energy eigenstate, in the case of no barrier, has nodes at
the above two points. This implies that upon insertion of the
two barriers, the third energy level remains unchanged while
the first and the second energy levels shift to the third level.
Similarly, all the energy levels in multiples of three remain
unchanged on inserting the two barriers and the others shift
accordingly. Thus an infinite triple potential well has energy
levels that are triply degenerate. Hence, for the case of N − 1
barriers, the original energy levels that are multiples of N re-
main unchanged while the others shift and become degenerate
with the former. This makes the energy levels of a potential
well with N − 1 barriers degenerate, with degeneracy N .

III. COMPARISON WITH THE
CONVENTIONAL SCENARIO

In a conventional Stirling engine, the isothermal expansion
is carried out by keeping the engine in equilibrium with a
hot bath while the compression is carried out using the cold
bath in contact, as given in Fig. 2. On the other hand, in our
cycle, the insertion is done when the system is in contact with
the hot bath during the isothermal process (1) in Fig. 1 and
isothermal removal of the barrier is assisted with the cold
bath during the process (3) in Fig. 1. Consider the stage 1
discussed in Sec. II, a particle in the infinite potential well
of length 2a and in equilibrium with a bath of temperature
Th. The canonical partition function is ZA. Now, consider a
process in which we isothermally insert a barrier in the middle
of the box. The partition function at the end of the process
is ZB = 2Za,Th , where Za,Th is partition function for particle
trapped in box of length a. The factor 2 appears because of
the degeneracy, or in other words, due to the ignorance about
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the particle being in the left or right side of the box. Therefore,
the work done by the engine is the difference in free energies:
Wins = kBTh[ln 2 + ln Za,Th − ln ZA]. This work is less than
that needed to compress the box from 2a to a. In the latter
case, the amount of work needed is Wcom = kBTh[ln Za,Th −
ln ZA]. This is due to the fact that in the compression scenario,
the position of the particle is known whereas in the insertion
scenario, there is a lack of knowledge about the position
of the particle. Similarly, the work extracted in the removal
process is Wrem = kBTc[ln ZD − ln 2 − ln Za,Tc ]. In this paper,
we consider a cycle in which we insert the barrier when the
system is attached to a hot bath of temperature Th and remove
when the system is attached to a cold bath of temperature Tc.
Therefore the net work done by the system [Eq. (11)] in our
model is given by

W = Wins + Wrem

= kB(Th − Tc) ln 2 + kBTh ln

(
Za,Th

ZA

)

− kBTc ln

(
Za,Tc

ZD

)
. (13)

The second term of the right hand side of Eq. (13) is equivalent
to the work done during an isothermal compression from a
box of length 2a to a at the higher temperature Th. On the
other hand, the third term is equal to the work done during an
isothermal expansion of a box of length a to 2a at the lower
temperature Tc. In a certain limiting case, we show that the
work done by the engine is kB(Th − Tc) ln 2; i.e., the second
and third terms in Eq. (13) cancel each other. The appearance
of ln 2 is due to the change in the entropy of the working
fluid during insertion and removal of the barrier because of
the degenerate energy levels (causing ignorance about the
position of the particle).

IV. LOW TEMPERATURE LIMIT

In this section, we discuss the extractable work from our
model in the low temperature limit. In this limit [9,21,22], the
system works in an almost reversible manner at near Carnot
efficiency.

Let us consider a box with length 2a such that
π2h̄2/2m(2a)2 � kBTh, where Th > Tc. It can be seen that the
above condition holds good for lower values of temperatures
Th as well as small values of a. We will refer to this case as
the low temperature limit in all subsequent discussions. In the
low temperature limit, at the beginning of stage 1 (point A
in Fig. 1), the occupational probability in the ground state
is close to unity and the entropy of the system approaches
zero. When the partition is inserted (during stage 1), the
ground state of the double well becomes doubly degenerate
with occupational probability 1/2 for each state and hence the
entropy becomes kB ln 2. Therefore, the total heat absorbed
by the system from the hot bath becomes kBTh ln 2. Similarly,
when the wall is removed, the heat exchanged between the
system and the cold bath is −kBTc ln 2. The second and third
terms in Eq. (13) cancel each other in the low temperature
limit. Therefore, the work done and the efficiency in this case

0 10 20 30 40
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
or

k
k B

c 10 20 30 40

0

0.2

0.4

E
ffi

ci
en

cy

a (nm)

a (nm)

T

FIG. 3. Plot of W/kBTc, with W of Eq. (11), vs a (in nanometers),
the width of each well of a double well potential. The horizontal
dotted line represents the low temperature limiting case (with a →
0). Inset shows the plot of efficiency Eq. (12) vs a. The horizontal line
for the inset represents the Carnot efficiency (1 − Tc

Th
) obtained from

the low temperature limit. Here, we have taken m = 9.11 × 10−31 kg,
Th = 2 K, and Tc = 1 K.

become respectively

W ≈ kB(Th − Tc) ln 2, η ≈ 1 − Tc

Th
. (14)

The system can, therefore, nearly attain Carnot efficiency
and hence it is almost reversible. The dimensionless work
(W/kBTc) and the efficiency are plotted with the length a of
the box in Fig. 3 and the corresponding values of these two
quantities, for the low temperature limit, are also depicted.
It is to be noted that for a two-level system at temperature
T with energy-level spacing ω, the canonical heat capac-
ity can be written as ∂U

∂T |ω = (ω2/kBT 2) exp (ω/kBT )/[1 +
exp (ω/kBT )]2, where U is the mean energy of the sys-
tem [19,36,37]. Therefore, for ω � kBT , the heat capacity
goes to zero. Analogously, one can see that in the low temper-
ature limit of the particle in a box, the heat capacity vanishes
and hence the heat exchanged to lower or raise the temperature
during stage 2 [QBC given in Eq. (7)] or stage 4 [QDA given in
Eq. (10)], respectively, also vanishes.

It will be interesting to contrast the work extracted for
our cycle in the low temperature limit with the conventional
compression-expansion based Stirling cycle. In the low tem-
perature limit, the ground state population is close to unity
owing to the large energy spacing between the first two levels
compared to thermal fluctuations. During the process of slow
insertion of the barrier in the middle of the box, the ground
state of the system moves towards the first excited state, which
remains stationary. After a certain time during the process, the
two levels come close enough to allow considerable transi-
tions between them, resulting in decreased population in the
ground state. The changes in populations can be associated
with the heat exchanged between the system and the bath.
At the end of the process, when the barrier is completely
inserted, the two energy levels overlap and become equally
populated; i.e., the probability of occupancy of each is 1

2 .
Hence the contribution of heat during insertion is kBTh ln 2.
On the other hand, if we analyze the isothermal compression,
the width of the well is reduced and consequently, the gap
between the two energy levels increases. This further restricts
the transitions between the ground state and the first excited
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state. Therefore the heat exchanged between the system and
the bath is close to zero. The sole contribution to the increase
in the internal energy of the system comes from the work done
on the system. This explains the difference in the amounts of
work needed in the insertion and the compression processes.
Similar arguments can be made in the removal and expansion
processes where the difference is −kBTc ln 2. In our cycle,
for the low temperature limit, we exploit these heat exchange
amounts with the baths.

It is worthwhile to note here the behavior of the Stirling-
like cycle in the classical limit. The classical limit is ob-
tained from a large width of the potential box (i.e., a → ∞),
where the particle behaves like a free particle. In case of a
potential box, the energy difference between the two adjacent
levels [nth and (n + 1)th] is (2n + 1)π2h̄2/2m(2a)2. During
the insertion of the barrier, the odd numbered energy levels
approach the next even numbered levels. When the barrier is
fully inserted, each energy level will be doubly degenerate.
Therefore the gaps between the adjacent energy levels are
responsible for the work. When a → ∞, the energy gaps go to
zero and there will be a continuum of energy levels. Therefore
the work required to insert or remove the barrier goes to zero,
as the particle becomes a free particle in that limit. Note that
the classical limit has been explored earlier in the context of
the Szilard engine in [20].

Refrigerator in low temperature limit

A modified version of our cycle can be used as a quantum
refrigerator where heat is transferred from the cold to the
hot reservoir by doing work on the system [32,33,38–42]. In
this model, the isothermal insertion is achieved by keeping
the system in contact with the cold bath at temperature T ′

c .
In the low temperature limit, the heat absorbed by the re-
frigerator from the cold bath is kBT ′

c ln 2. The system then
undergoes an isochoric process by attaching it to a hot bath
at temperature T ′

h (T ′
h > T ′

c ). Again, the isothermal removal
of the barrier is carried out by attaching the system to the
hot bath. To complete the cycle, the system is attached to the
cold bath and another isochoric process is carried out. The
coefficient of performance [43] of such a cycle can approach
the Carnot value T ′

c /(T ′
h − T ′

c ) in the low temperature limit
[π2h̄2/2m(2a)2 � kBTh]. In this scenario, the first term in
Eq. (13) becomes kB(T ′

c − T ′
h ) ln 2, a negative quantity. Cor-

respondingly, the sum of the second and third terms can be
positive but negligible compared to kB(T ′

h − T ′
c ) ln 2 in the

low temperature limit, resulting in the total system working
as a refrigerator. But for a sufficiently larger value of a and
before reaching the classical limit, the sum of the second and
third terms can be larger than kB(T ′

h − T ′
c ) ln 2, resulting in the

system performing like a heat engine.

V. ENGINE WITH DISTINGUISHABLE AND
INDISTINGUISHABLE PARTICLES

We have looked at the behavior of the work extracted from
the Stirling engine at low temperature and classical limits.
In this section, we explore the properties of the working
fluid manifesting as the amount of extractable work in the
low temperature limit. Let us consider two fermions and two

(a)

(b)

(c)

FIG. 4. Particle statistics after inserting the barrier: (a) Distin-
guishable particles, (b) bosons, and (c) fermions.

bosons in the low temperature limiting case with a single
partition. Before inserting the partition, the system is in the
ground state (or at least highly probable to be in the ground
state) because of low temperature. The ground states of the
system for bosons (	B) and fermions (	F ) are given as

	B/F = 1√
2

[ψn1 (x1)ψn2 (x2) ± ψn2 (x1)ψn1 (x2)], (15)

where ψn1 and ψn2 represent the wave functions correspond-
ing to the nth

1 and nth
2 energy eigenstates. The ground state for

the case of fermions takes the values n1 = 1 and n2 = 2. On
the other hand for bosons, both of the particles can be in the
same state and hence it can take n1 = n2 = 1. Upon the inser-
tion of the wall, the ground state becomes doubly degenerate.
Moreover, the number of ways of arranging different classes
of particles is also different.

It is interesting to study the quantity of work extracted from
the engine in the case of different classes of particles and the
effects of increasing the number of partitions in the potential
well. We would like to clarify here that the present analysis
relates only to the limiting case (i.e., the low temperature
regime). Suppose after keeping our potential box with two
distinguishable particles in the ground state, in equilibrium
with a bath at temperature Th, we insert a single partition in
the middle. From the previous discussion, we know that the
energy levels are doubly degenerate. Thus two particles can
occupy the two states of the lowest energy level, one in each
state, in two possible ways. Again, two particles can be in the
same state in two different ways (see Fig. 4). Each of these
possibilities comes with a probability 1

4 . Thus the entropy
of the system is 2 ln 2 and the heat absorbed from the hot
reservoir upon isothermal insertion of the wall in the middle is
2kBTh ln 2. Now if the system is connected to a heat bath at a
lower temperature Tc and the wall is removed isothermally, by
the previous argument, the heat released is 2kBTc ln 2. Thus the
work done by the system is 2kB(Th − Tc) ln 2. The situation
becomes even more exciting in the case of two fermions in
the ground state. There is only one configuration in which
two fermions can be arranged in the two states of the same
energy level after the barrier is inserted. Hence, the changes
in entropy during insertion and removal processes are zero
and consequently no work can be extracted from the engine
in the case of two fermions in the ground state. This must be
contrasted with the case in which the potential well contains
two bosons in the ground state and the work extracted out
of a Stirling-like cycle performed on it. In the ground state,
two bosons can have three possible configurations; hence the
change in entropy upon insertion or removal of the barrier is
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TABLE I. Comparison of work for the case of two particles.

Particles Barriers Work

Distinguishable 1 kB(Th − Tc ) ln 22

Bosons 1 kB(Th − Tc ) ln 3
Fermions 1 0
Distinguishable 2 kB(Th − Tc ) ln 32

Bosons 2 kB(Th − Tc ) ln 6
Fermions 2 kB(Th − Tc ) ln 3

kB ln 3. Thus the work that can be extracted out of the engine
is kB(Th − Tc) ln 3.

Let us now examine the case in which we have a potential
well with two distinguishable particles and insert two parti-
tions, isothermally, at − a

3 and a
3 . Upon insertion at a tempera-

ture Th, the change in entropy is 2 ln 3 and the heat exchanged
is 2kBTh ln 3 as each energy level acquires a threefold de-
generacy. Similarly the heat exchanged during the isothermal
removal of the walls at a temperature Tc is 2kBTc ln 3. The
amount of work that can now be extracted from the engine
is 2kB(Th − Tc) ln 3. Fermions, however, can occupy the three
states of the ground level in three possible ways only and
hence the work extracted can be only kB(Th − Tc) ln 3. Bosons,
on the other hand can occupy these states in six possible ways
and therefore the work done is kB(Th − Tc) ln 6. In general,
upon inserting g partitions in a box with n particles, there are
(g + 1)n possible ways to arrange distinguishable particles in
the degenerate ground states, while bosons and fermions can
be arranged in (n + g)!/(n!g!) and (g + 1)!/(n!(g + 1 − n)!)
numbers of different ways, respectively. The entire discussion
is summarized in Table I. The magnitudes of work done
by the engine for three particles of different classes is also
summarized in Table II. It is observed that for a given number
of particles and partitions, the maximum work is extracted
from distinguishable particles followed by bosons and then
by fermions.

VI. DISCUSSION AND CONCLUSION

We considered a Stirling-like cycle which uses quantized
energy levels to extract work. The lack of knowledge of the
particle’s position can be effectively converted into useful
work without involving measurement to locate the particle.
Our engine operates exclusively using quantum features and
does not work in the classical limit where the width of
the box is large. In the low temperature limit our engine
approaches the Carnot efficiency. The work obtained from the

TABLE II. Comparison for the case of three particles.

Particles Barriers Work

Distinguishable 1 kB(Th − Tc ) ln 23

Bosons 1 kB(Th − Tc ) ln 22

Fermions 1 kB(Th − Tc ) ln 2
Distinguishable 2 kB(Th − Tc ) ln 33

Bosons 2 kB(Th − Tc ) ln 10
Fermions 2 0
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FIG. 5. (a) Plot of work/kBTc vs the a which is the half-width of
the total potential well, for different values of ε in nanometers. The
horizontal line represents the low temperature limiting case value
(Th − Tc ) ln 2/Tc. (b) The plot shows the behavior of efficiency vs
a for different values ε. The horizontal line represents the Carnot
efficiency (1 − Tc

Th
) obtained from the limiting case. Here, we have

taken m = 9.11 × 10−31 kg, Th = 2 K, and Tc = 1 K.

engine depends upon the number of partitions and the number
particles as well as the spin-statistics nature of the particles.
The extractable work from distinguishable particles, fermions,
and bosons is compared.

It is worth noting that we have discussed the effects of
inserting one or more partitions on the energy levels of a
potential well at particular points. To start off, we note that all
the wave functions corresponding to even numbered energy
levels of an infinite single potential well have nodes at the
origin. Hence, inserting a partition at the origin leaves them
unchanged. Similarly, all energy levels with multiples of
three have nodes at − a

3 and a
3 . Thus to leave these energy

levels unchanged, it is required to insert the barrier at these
precise points. The same argument holds for energy levels
with multiples of N , an arbitrary integer. Considering more
practical situations, it is useful to explore the effects of in-
serting one or more partitions at some other points. All the
energy levels would then shift resulting in different amounts
of work. Particularly, if a single partition is inserted ε distance
away from the origin, say to the left, then the original first
and second energy levels before insertion do not completely
merge but remain very close to each other. The widths of the
right and left wells are now a + ε and a − ε, respectively.
Hence we get nearly degenerate levels for small ε. An effect
of degeneracy is the additional term ln 2 in the work extracted.
The near degeneracy ensures a value that is close to ln 2. The
efficiency of such an engine in the low temperature limit is
thus close to the Carnot value as discussed earlier. However,
for large ε, the shifts do not bring the energy levels close
enough, resulting in no such term. The work and efficiency
of such an engine would be significantly lower. For different
values of ε, the work and efficiency are plotted versus the
half-width of the total potential well in Fig. 5. A study in
which the barrier is inserted asymmetrically and adiabatically
can be found in [44]. It is to be noted that in all our analysis,
we restrict the length of the box to be much greater than the
Compton wavelength and hence our analysis is completely
nonrelativistic [45].

A future direction includes modeling a heat engine with fi-
nite time processes with a finite barrier. For practical purposes,
such cycle may be of interest due to finite power. Our model
can be applied to any other potential where the insertion of
the barrier leads to degenerate or nearly degenerate eigen-
states. Apart from an infinite square well potential, one of the
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alternatives is a harmonic potential. One can also take dif-
ferent forms of potentials with interacting particles [26]. A
micrometer-sized Stirling engine has already been realized
with a single colloidal particle [35]. In [16] a double well
infinite potential with or without a delta-function barrier has
been mimicked by a laser-cooled trapped ion in a combined
potential of a Paul ion trap and a sinusoidal potential of an
optical lattice. The potential has been used to implement an
Otto cycle, enabled by energy quantization and operating by
adiabatic insertion and removal of the barrier. A possible

candidate to realize our model of the quantum Stirling engine
involves superconducting flux qubits where the symmetric po-
tential can be controlled at very low temperatures [46,47] with
well defined heat baths and the possibility of measurement of
heat power [48].

ACKNOWLEDGMENT

The authors acknowledge D. S. Golubev for useful
discussions.

[1] J. C. Maxwell, in Life and Scientific Work of Peter Guthrie Tait,
edited by C. G. Knott (Cambridge University Press, London,
1911).

[2] H. Leff and A. F. Rex, Maxwell’s Demon 2: Entropy, Classical
and Quantum Information, Computing (Institute of Physics,
Bristol, 2003).

[3] L. Szilard, Z. Phys. 53, 840 (1929).
[4] K. Maruyama, F. Nori, and V. Vedral, Rev. Mod. Phys. 81, 1

(2009).
[5] R. Landauer, IBM J. Res. Dev. 5, 183 (1961).
[6] C. H. Bennett, Int. J. Theor. Phys. 21, 905 (1982).
[7] A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R.

Dillenschneider, and E. Lutz, Nature (London) 483, 187 (2012).
[8] J. V. Koski, V. F. Maisi, J. P. Pekola, and D. V. Averin, Proc.

Natl. Acad. Sci. USA 111, 13786 (2014).
[9] S. W. Kim, T. Sagawa, S. De Liberato, and M. Ueda, Phys. Rev.

Lett. 106, 070401 (2011).
[10] W. H. Zurek, in Frontiers of Nonequilibrium Statistical Physics,

edited by G. T. Moore and M. O. Scully (Plenum, New York,
1986), pp. 151–161 (reprinted in Ref. [2], pp. 249–259); W. H.
Zurek, arXiv:quant-ph/0301076.

[11] G. A. Vugalter, A. K. Das, and V. A. Sorokin, Phys. Rev. A 66,
012104 (2002).

[12] D. J. Griffiths, Introduction to Quantum Mechanics (Pearson
Prentice Hall, Upper Saddle River, NJ, 2005).

[13] L. Schiff, Quantum Mechanics, International Series in Pure and
Applied Physics (McGraw-Hill, New York, 1955).

[14] E. Merzbacher, Quantum Mechanics (Wiley, New York, 1998).
[15] M. Belloni and R. Robinett, Phys. Rep. 540, 25 (2014).
[16] D. Gelbwaser-Klimovsky, A. Bylinskii, D. Gangloff, R. Islam,

A. Aspuru-Guzik, and V. Vuletic, Phys. Rev. Lett. 120, 170601
(2018).

[17] R. Uzdin, A. Levy, and R. Kosloff, Phys. Rev. X 5, 031044
(2015).

[18] J. Klatzow, J. N. Becker, P. M. Ledingham, C. Weinzetl, K. T.
Kaczmarek, D. J. Saunders, J. Nunn, I. A. Walmsley, R. Uzdin,
and E. Poem, Phys. Rev. Lett. 122, 110601 (2019).

[19] A. Levy and D. Gelbwaser-Klimovsky, Quantum features and
signatures of quantum thermal machines, in Thermodynam-
ics in the Quantum Regime: Fundamental Aspects and New
Directions, edited by F. Binder, L. A. Correa, C. Gogolin,
J. Anders, and G. Adesso (Springer International Publishing,
Cham, 2018), pp. 87–126.

[20] H. Li, J. Zou, J.-G. Li, B. Shao, and L.-A. Wu, Ann. Phys. (NY)
327, 2955 (2012).

[21] K.-H. Kim and S. W. Kim, J. Korean Phys. Soc. 61, 1187
(2012).

[22] C. Y. Cai, H. Dong, and C. P. Sun, Phys. Rev. E 85, 031114
(2012).

[23] P. Bracken, Centr. Eur. J. Phys. 12, 1 (2014).
[24] Z. Zhuang and S.-D. Liang, Phys. Rev. E 90, 052117 (2014).
[25] J. M. Diaz de la Cruz and M. A. Martin-Delgado, Entropy 18,

335 (2016).
[26] J. Bengtsson, M. N. Tengstrand, A. Wacker, P. Samuelsson,

M. Ueda, H. Linke, and S. M. Reimann, Phys. Rev. Lett. 120,
100601 (2018).

[27] J. M. Diaz de la Cruz and M. A. Martin-Delgado, Phys. Rev. A
89, 032327 (2014).

[28] H. J. Jeon and S. W. Kim, New J. Phys. 18, 043002 (2016).
[29] J. Jaramillo, M. Beau, and A. del Campo, New J. Phys. 18,

075019 (2016).
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