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We employ the sorted local transfer entropy (SLTE) to reconstruct the coupling strengths of Ising spin
networks with positive and negative couplings (Ji j), using only the time-series data of the spins. The SLTE
method is model-free in the sense that no knowledge of the underlying dynamics of the spin system is required
and is applicable to a broad class of systems. Contrary to the inference of coupling from pairwise transfer
entropy, our method can reliably distinguish spin pair interactions with positive and negative couplings. The
method is tested for the inverse Ising problem for different Ji j distributions and various spin dynamics, including
synchronous and asynchronous update Glauber dynamics and Kawasaki exchange dynamics. It is found that
the pairwise SLTE is proportional to the pairwise coupling strength to a good extent for all cases studied. In
addition, the reconstruction works well for both the equilibrium and nonequilibrium cases of the time-series
data. Comparison to other inverse Ising problem approaches using mean-field equations is also discussed.
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I. INTRODUCTION

Many systems of interest in physics, biology, and social
science are multicomponent, with the different components
interacting with each other. One of the ultimate goals in
bridging experimental data and theoretical understanding in
a multicomponent interacting complex system is trying to
answer the following question: “Which entities are interact-
ing with each other and what are the associated coupling
strengths?” An accurate solution to such a question can also
provide new insights and deep understanding on the fun-
damental mechanisms behind the complex phenomena. The
answers to these questions can provide significant insights
and understanding of the fundamental mechanism behind the
overall behavior of the systems. Lots of experimental data
have been measured for various complex networks of interest,
particularly in physical, biological, atmospheric, and social
sciences. Successful methods for uncovering knowledge from
data should be very general and can be widely applicable
to different areas, and thus are expected to give deep and
broad impacts. It has been suggested [1] that the structure of a
network controls its dynamics and thus information about the
network structure can be uncovered from their dynamics. The
problem of reconstructing networks from dynamics has be-
come a grand challenge in the field of network science and has
attracted much research interest (see, e.g., [2,3] for review).

Despite the vast amount of data, there remains a big chal-
lenge to utilize the experimental measurements to answer the
above questions and to obtain theoretical understanding of the
systems. There is so far no entirely satisfactory method for the
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inverse problem of uncovering the detail internode couplings
together with their strengths, sign, and directions accurately.
Ideally, one should aim for model-free methods, i.e., no prior
knowledge about the details of node dynamics and coupling
functional form is needed. For example, we do not need other
extra information such as nodal dynamics or the responses of
the systems upon perturbations as required in previous studies
[4–8]. Only data of the system dynamics, passively recorded
or observed, are sufficient for practical applications. Some
successful reconstructions have been achieved based on the
relation between the dynamical correlations of the time-series
data and the structure of a network under noises [9–13].

In another aspect, there has been recently reviving interests
on the traditional Ising model with pairwise coupling Ji j

between spins i and j in the context of the “inverse Ising
problem” [14–23], which aims at reconstructing the coupling
strength matrix Ji j solely from the measurement of the time-
series data of the spin dynamics. Most approaches on the
inverse Ising problem employ mean-field theories and by
computing the spin correlation functions [14–18,21] one can
get rather satisfactory results if the underlying spin dynamics
of the Ising model is known. On the other hand, reconstruction
based on information theoretical quantities, such as mutual
information or transfer entropy [24,25], are used less, al-
though it is known that transfer entropy can reveal important
information and signatures for the Ising model near phase
transitions [26–30].

Transfer entropy (TE) [24,25] and its extensions have
recently become more and more popular for the above task
and have been applied to various types of neuronal data, such
as from EEG, calcium imaging, and multi-electrode array
measurements [31,32]. Being based on information theory,
TE can be interpreted as the predictive information transfer
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between two time series. TE is a model-free measurement
and quantifies both linear and nonlinear interactions and
their directionality. However, due to its information-theoretic
nature, TE cannot distinguish between different types of in-
teractions, for example, whether a presynaptic neuron drives
a postsynaptic neuron via an excitatory or an inhibitory
synapse [33]. This distinction is crucial for the understanding
of the network dynamics and the exact interplay of excita-
tion and inhibition in neuronal networks plays an important
role for network bursts and synchronization [34–37]. High
information transfer between two spike trains is expected for
an underlying excitatory synapse between the neurons, but
even inhibitory synapses show significant information transfer
when observing sufficient spiking activity. In addition, TE
has a thermodynamic meaning [38,39], and can be applied to
extract useful information in social networks [40,41] and even
linguistics studies [42].

In this work, we propose a method complementary to the
TE measurement, which not only can measure the information
transfer between the nodes, but also determine whether the
coupling interactions are positive or negative. We achieve this
by introducing a new quantity, which is a linear combination
of the individual terms that sum up to the TE. To distinguish
these type of interactions we analyze the local transfer en-
tropies of each interaction and define the sorted local transfer
entropy (SLTE) [43] that can faithfully reveal the sign and
magnitude of the coupling interactions. The method does not
depend on the detailed knowledge of the dynamics of the
systems and is a technique to classify local TEs in such a way
that can to spell out the underlying interactions accurately.
Using various kinetic Ising models, we demonstrate that SLTE
can achieve the goal of reconstructing the sign and relative
coupling strengths in the inverse Ising problem for time-series
data taken from equilibrium or nonequilibrium conditions
without the knowledge of the underlying dynamical model.

II. TRANSFER ENTROPY AND SORTED LOCAL
TRANSFER ENTROPY

Transfer entropy from a process Y to another process X
is a measure that quantifies directional, nonlinear interactions
between the two corresponding time-series xn and yn, which
is the amount of uncertainty reduced in future values of X
by knowing the past values of Y given past values of X . It is
quantitatively defined as the difference of entropy rates (given
by the conditional Shannon entropy) as

TY →X = h2 − h1, where (1)

h1 = −
∑

xn+1,xn,yn

p(xn+1, xn, yn) log2 p(xn+1|xn, yn), (2)

h2 = −
∑

xn+1,xn,yn

p(xn+1, xn, yn) log2 p(xn+1|xn). (3)

TY →X can be written as the Kullback entropy [24] as

TY →X =
∑

xn+1,xn,yn

p(xn+1, xn, yn) log2

(
p(xn+1|xn, yn)

p(xn+1|xn)

)
, (4)

which can be interpreted as the information transfer from Y
to X . The TE defined in Eq. (4) measures the information

transfer that occurs at one time-step delay to model a first-
order Markov process, but it can be generalized to higher
orders by increasing the embedding lengths of the target and
history processes [25]. The local TE from y to x is defined
as [44] log2 ( p(xn+1|xn,yn )

p(xn+1|xn ) ) in Eq. (4).
There has been some research to infer the coupling

strengths for Ising models by evaluating the TE for pairwise
spins [45]. But due to the fact that TE is a nonnegative quantity
regardless of the ferromagnetic or antiferromagnetic nature of
the interactions, measurement of TE cannot reveal the sign
of coupling between the spin pairs. Furthermore, as will be
shown below, even when all couplings are positive, pairwise
TE will increase with the coupling strength nonlinearly which
renders the quantitative reconstruction of coupling strengths
less practical for application.

To distinguish the sign of the interaction from Y to X ,
we note that although the TE given by Eq. (4) is always
nonnegative, the local TE [44] in the sum can be positive or
negative, meaning that yn is “informative” or misinformative
to xn+1, respectively. The local TE in the sum in Eq. (4)
is positive if p(xn+1|xn, yn) > p(xn+1|xn) or p(xn+1, yn|xn) >

p(yn|xn)p(xn+1|xn); i.e., the two states xn+1 and yn occur to-
gether at a joint probability which is larger than the probability
under assumed independence, signifying that the history yn

is informative to the future xn+1. Similarly, if the history
yn is misinformative to the future xn+1, the term would be
negative. Thus to take into account of the nature of the
interaction from y to x, one can properly weight or sort
the local TE by its sign [43]. A similar concept of local
or pointwise mutual information can help to extract useful
information [46,47].

For the two-state Ising model, the time-series xn and yn take
values of 1 or −1 for up and down spins, respectively. For
the ferromagnetic and antiferromagnetic interactions between
two spins the corresponding local transfer entropies reverse
signs. In a ferromagnetic interaction, an up spin in a source
node is informative about an up spin in a target node, while
this would be misinformative for an antiferromagnetic interac-
tion. Similarly, observing opposite valued spins in the source
and target node is misinformative for a ferromagnetic interac-
tion, but informative for an antiferromagnetic interaction. The
strength of the ferromagnetic interaction is characterized not
only by how informative aligned spins between the nodes are,
but also by how misinformative the misaligned spins are, and
vice versa for the antiferromagnetic interaction. By applying
a positive multiplier to local transfer entropies from aligned
spins and a negative multiplier to local transfer entropies from
misaligned spins we have only positive contributions from
the local transfer entropy terms for ferromagnetic interactions
and only negative contributions from those terms for the
antiferromagnetic interactions. Weighting these terms by the
joint probabilities and summing over them, we get a quantity
that is positive for ferromagnetic interactions and negative
for antiferromagnetic interactions. Hence we define the sorted
local transfer entropy (SLTE) as

T sloc
Y →X =

∑
xn+1,xn,yn

xn+1yn p(xn+1, xn, yn) log2

(
p(xn+1|xn, yn)

p(xn+1|xn)

)
.

(5)
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FIG. 1. Reconstruction of Ising spin couplings with Glauber spin dynamics on a bidirectional weighted random network using TE and
SLTE. Dynamics are generated by a 105 MCS/spin transient period for equilibration and then time-series of length 105 is used for coupling
reconstruction. (a) Ti j (TE) and normalized T (nTE) for every node pair i j vs. the actual coupling Ji j . A quadratic fitting for the TE (solid
curve) is also shown. (b) T sloc

i j (SLTE) and normalized T sloc
i j (nSLTE) for every node pair i j vs. the actual coupling Ji j . The linear fits (solid

lines) are also shown. The correlation coefficient between nSLTE and J � 0.75. (c) Reconstructed Ji j vs. the actual ones using Eq. (8). The
dashed line is y = x.

SLTE can be computed directly from the time-series data of
yn and xn to deduce their pairwise interaction.

Since the magnitude of TE and SLTE would depend on the
temporal variations of the time-series, it would make sense to
normalize their values in some proper way. The entropy rate
reflects the activity of the system to some extent, and the target
entropy rate is the maximum possible transferred entropy,
therefore the SLTE and TE are normalized by the target
entropy rate to allow for a better comparison of situations
of different activities. Here we define the normalized SLTE
(nSLTE) from Y → X as the SLTE relative to the entropy rate
of X [31,48]

T sloc
Y →X

−∑
xn+1,xn

p(xn+1, xn) log2 p(xn+1|xn)
. (6)

TE can also be normalized (denoted by nTE) in a similar way.

III. ISING SPIN NETWORK RECONSTRUCTION
USING SLTE

We consider Ising spin networks consisting of N spins,
the dynamics of node i is given by the Ising spin si which
can take value 1 or −1, and nodes can interact via pairwise
interactions Ji j between spins i and j. In general, the ma-
trix J can be asymmetric and can take positive or negative
values. The conventional Ising model to describe equilibrium
states is given by the Hamiltonian H = −∑

i, j Ji jsis j , and
follows the Boltzmann distribution P(�s) ∝ exp[−H/(kBT )] at
equilibrium with temperature T , where kB is the Boltzmann
constant. Each spin is a node on a network whose edges are
indicated by nonzero values of Ji j . Random networks [49,50]
of N = 100 and connection probability p = 0.2 are used in
Monte Carlo simulations to test our results. Both directed
and undirected(bidirectional) random networks are consid-
ered. The Ji j couplings for the bidirectional random networks
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FIG. 2. Reconstruction of Ising spin couplings with asynchronous-update spin dynamics on a directed weighted random network using TE
and SLTE. Dynamics are generated by a 105 MCS/spin transient period for equilibration and then time-series of length 105 is used for coupling
reconstruction. (a) Jji vs. Ji j showing the asymmetric couplings in the directed network. (b) Ti j (TE) and normalized T (nTE) for every node
pair i j vs. the actual coupling Ji j . A quadratic fitting for the TE (solid curve) is also shown. (c) T sloc

i j (SLTE) and normalized T sloc
i j (nSLTE)

for every node pair i j vs. the actual coupling Ji j . The linear fits (solid lines) are also shown. The correlation coefficient between nSLTE and
J � 0.90. (d) Reconstructed Ji j vs. the actual ones using Eq. (10). The dashed line is y = x.

were drawn from a Gaussian distribution (mean = 1 and
variance = 2). For the directed network the couplings were
drawn from two Gaussian distributions with variance = 2
and means equal to 1 and −2, respectively. In all cases, a
significant fraction of both positive and negative couplings of
different magnitudes are generated to test the reconstructions.
There can be various types of dynamics that can approach
the equilibrium Boltzmann distribution as long as the detailed
balanced condition is satisfied. However, for general spin
dynamical models, the system will not achieve equilibrium,
and in some situations the system can reach a nonequilibrium
steady-state (NESS) exhibiting a non-Boltzmann steady-state
probability distribution, which is, in general, not easy to be
characterized. The goal of the inverse Ising network problem
is to infer Ji j from the time-series dynamics of the Ising spins
si(t ), i = 1, . . . , N , even if the underlying spin dynamical
model is not known. In this paper, we shall consider the
following different spin dynamics.

A. Glauber dynamics: Asynchronous update

The Ising-Glauber model [51] with asynchronous spin
update is described by the probability of the spin i in the next
time step to be si(t + 1) as

p[si(t + 1)|si(t )] = 1

1 + e−2βsi (t+1)hi (t )
;

hi ≡ Hi(t ) +
∑

j

Ji js j (t ), (7)

where β ≡ 1/(kBT ), Hi is the local external field which can
be time-dependent in general, and hi represents the total field
experienced by the spin i. Asynchronous dynamics refers to
the situation that one spin selected randomly is updated in a
MC step. For a symmetric J and time-independent external
field, the dynamics will converge to the equilibrium state
described by the Boltzmann distribution obeying a detailed
balance and the fluctuation-dissipation theorem (FDT). In this
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FIG. 3. Reconstruction of Ising spin couplings with synchronous update dynamics on a bidirectional weighted random network. Ji j are
drawn from the same Gaussian distribution as in Fig. 1. Dynamics are generated by a 105 MCS/spin transient period for equilibration and then
time-series of length 105 is used for coupling reconstruction. (a) Reconstructed Ji j vs. the actual ones using Eq. (8). (b) Reconstructed Ji j vs.
the actual ones using Eq. (10). (c) T sloc

i j (SLTE) and normalized T sloc
i j (nSLTE) for every node pair i j vs. the actual coupling Ji j . The linear fits

(solid lines) are also shown. The correlation coefficient between nSLTE and J � 0.96.

case, the symmetric Ji j can be reconstructed by computing the
equal-time spin correlation function via the FDT [14], one has

J = D − K0; Di j = δi j

1 − m2
i

, (8)

where mi ≡ 〈si〉 is the average local magnetization of spin i,
and the spin correlation functions are given by

(Kτ )i j = 〈(si(t + τ ) − mi )(s j (t ) − mj )〉. (9)

Figure 1 shows the pairwise TE and SLTE versus the actual
coupling strengths for the asynchronous update Glauber dy-
namics with positive and negative couplings on a bidirectional
random network computed from time-series after the system
has achieved equilibrium. As shown in Fig. 1(a), the pairwise
TE can be the same for positive and negative couplings
and hence cannot distinguish the sign of the interactions.
Furthermore, the variation of TE with the corresponding Ji j

is nonlinear even one considers only the absolute values of

the couplings. On the other hand, as shown in Fig. 1(b),
both the SLTE and nSLTE obey a proportional relation with
the corresponding actual values of Ji j , thus can faithfully
reveal the signs and relative magnitudes of the couplings. It
should be noted that such proportional relation is an empirical
finding, so far it is found to hold for the Ising systems
with various dynamical rules studied in the present study.
Furthermore, the nSLTE also has a comparable magnitude
with the dimensionless coupling βJ . In this equilibrium case,
one can employ the FDT result in Eq. (8) to give a rather
accurate reconstruction of Ji j , as shown in Fig. 1(c).

For the case of asymmetric J of the same link density
(p = 0.2) [see Fig. 2(a)], the system is nonequilibrium even if
there is no external field, but can achieve a steady-state which
is non-Boltzmann. In this case, J can be reconstructed by
computing the time-lag spin correlation functions from [17]

J = DK1K−1
0 . (10)
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FIG. 4. Reconstruction of Ising spin couplings with synchronous update dynamics on a directed weighted random network. Dynamics are
generated by a 105 MCS/spin transient period for equilibration and then time-series of length 105 is used for coupling reconstruction. (a) T sloc

i j

(SLTE) and normalized T sloc
i j (nSLTE) for every node pair i j vs. the actual coupling Ji j , under no external field. The linear fits (solid lines)

are also shown. The correlation coefficient between nSLTE and J � 0.96. (b) Reconstructed Ji j vs. the actual ones using Eq. (10). The linear
fitting (solid line) is also shown. (c) SLTE and nSLTE for every node pair i j vs. the actual coupling Ji j , in the presence of a nonuniform local
external field. The linear fits (solid lines) are also shown. The correlation coefficient between nSLTE and J � 0.97.

Figure 2 shows the pairwise TE and SLTE versus the actual
coupling strengths for the case of asymmetric Ji j using time-
series data after the system has reached the nonequilibrium
steady state. Again the pairwise TE shows a quadratic varia-
tion with the actual coupling strengths whereas the SLTE and
nSLTE show an approximate proportional relation with the Ji j

covering the entire range of positive and negative couplings
with a correlation coefficient ∼0.9. In addition, if one does
not known a priori the dynamics of the system and naively
using the FDT reconstruction formula (8) for equilibrium
time-series, it will give poor reconstruction for the Ji j . One
needs to use the proper reconstruction formula (10) to obtain
satisfactory results, as shown in Fig. 2(d).

B. Glauber dynamics: Synchronous update

In contrast to the case of updating each spin independently
and asynchronously, all the spins in the system are updated

simultaneously in the synchronous-update Glauber dynamics
according to the following probability:

p[�s(t + 1)|�s(t )] =
∏

i

1

1 + e−2βsi (t+1)hi (t )
. (11)

In this case, regardless whether J is symmetric or not, the
system will not satisfy a detailed balance but can reach a
nonequilibrium steady state. For the case of symmetric Ji j ,
reconstruction results using time-series data after the system
has reached the nonequilibrium steady state is shown in
Fig. 3. Again the pairwise TE shows a quadratic variation
with the actual coupling strengths (not shown) whereas the
SLTE shows a proportional relation with the Ji j [Fig. 3(c)]
with a correlation coefficient of ∼0.96. In this case, the
reconstruction of J can be derived from naive mean-field
theory and is given by Eq. (10) also [16]. Naively assuming
equilibrium states and applying reconstruction formula (8)
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FIG. 5. Reconstruction of Ising spin couplings with Kawasaki dynamics on a bidirectional weighted random network. (a) Reconstructed
Ji j vs. the actual ones using Eq. (8). Dynamics are generated by a 106 MCS/spin transient period for equilibration and then time-series of length
5×105 is used for coupling reconstruction. Panel (b) is similar to (a) with the same transient but followed by a time-series data four times the
length as in (a) (2×106) for the system to achieve equilibrium. The linear fit (solid line) is also shown. (c) Computed SLTE using time-series
data that has not fully achieved equilibrium. Dynamics are generated by a 105 MCS/spin transient period for equilibration and then followed
by a time-series of length 2×105 is used for coupling reconstruction. The linear fits (solid lines) are also shown. The linear fits (solid lines) are
also shown. The correlation coefficient between nSLTE and J � 0.83.

will give poor results [see Fig. 3(a)], one needs to use the
proper reconstruction formula (10) to reconstruct the coupling
correctly [see Fig. 3(b)], again a priori knowledge of the
dynamical model is essential. But using SLTE is model-free.

The case of asymmetric Ji j [with the same Ji j as in
Fig. 2(a)] is also studied here. Figure 4(a) shows a propor-
tional relation of SLTE with the couplings with a correla-
tion coefficient of 0.97. The reconstruction using Eq. (10)
is also shown in Fig. 4(b) for comparison. In addition, we
also investigate the performance of SLTE for asynchronous
update with asymmetric Ji j in the presence of a static nonuni-
form (zero-mean Gaussian distributed) local external field Hi.
Again reconstruction using Eq. (8) gives poor result and one
needs to use the proper reconstruction formula (10), which
gives a performance similar to that of the case of no external
field [Fig. 4(b)]. SLTE gives good reconstruction as displayed
in Fig. 4(c) showing that SLTE again is proportional to the
coupling strength.

C. Kawasaki spin exchange dynamics

In this case, the system obeys the global symmetry of
conservation of total magnetization and spins are updated with
the exchange of local interacting spin pairs. The probability of
the spin pairs is given by

p[si(t +1), s j (t +1)|si(t ), s j (t )]= 1

1 + e−2β[si (t+1)(hi (t )−h j (t )]
,

for si 
= s j . (12)

For symmetric J, the Kawasaki exchange dynamics obey
the detailed balance condition and equilibrium Boltzmann
distribution ill be achieved, but a non-equilibrium steady state
will be reached for asymmetric J. However, the approach to
the equilibrium or steady state is usually much slower due
to the exchange dynamics. Here time is measured in Monte
Carlo steps per spin (MCS/spin), one MCS/spin means that on
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FIG. 6. Reconstruction of Ising spin couplings with Kawasaki dynamics on a directed weighted random network. Dynamics are generated
by a 106 MCS/spin transient period for equilibration and followed by a time-series of length 2×106 is used for coupling reconstruction.
(a) Reconstructed Ji j vs. the actual ones using Eq. (10). The linear fitting (solid line) is also shown. (b) T sloc

i j (SLTE) and normalized T sloc
i j

(nSLTE) for every node pair i j vs. the actual coupling Ji j . The linear fittings (solid lines) are also shown. The correlation coefficient between
nSLTE and J � 0.84.

average each spin has attempted to update once. For symmet-
ric J, with the a priori knowledge that the system can reach
an equilibrium state, one can apply the FDT reconstruction
formula for J in Eq. (8). After the system has equilibrated
for some long (106 MCS/spin) time, spin time-series data are
used for reconstruction using Eq. (8). But the reconstruction
results are poor if an insufficient long time-series (5×105

MCS/spin) is used, as shown in Fig. 5(a) the reconstructed
Ji j is bimodal with peaks at negative values which are way
off from the known value of positive one. Very long time-
series data are needed (2×106 MCS/spin) for satisfactory
reconstruction, as shown in Fig. 5(b). This indicates that one
needs to be sure that the system is well equilibrated to use
the FDT reconstruction formula. On the other hand, the SLTE
method can give relatively satisfactory reconstruction even
when the time-series data used have not yet fully achieved
equilibrium. Figure 5(c) shows the pairwise SLTE versus
the actual coupling strengths for the case of symmetric Ji j

using relatively short time-series data well before the system
has equilibrated (105 MCS/spin transient followed by 2×105

time-series length for reconstruction). The proportionality of
SLTE to the couplings is again satisfied. On the other hand,
it should be noted that if the system is very far away from
equilibrium and the time-series obtained for the system to
approach to equilibrium is not sufficiently long, then SLTE
cannot produce satisfactory reconstruction for the couplings.
In the case if a long relaxation time-series is not available, but
repeated independent shorter observations can be obtained,
one could replace the time-average by ensemble average [52]
to carry out the SLTE reconstruction.

For asymmetric J, the system is nonequilibrium but can
achieve a steady state which is non-Boltzmann. In this case,
J can be reconstructed by Eq. (10) to a less satisfactory level
[see Fig. 6(a)] compared to the Glauber dynamics cases. On
the other hand, the pairwise SLTE is well described by the
proportionality to the Ji j as shown in Fig. 6(b).

IV. SUMMARY AND OUTLOOK

We demonstrated that the SLTE is an effective quantity
to accurately reveal the pairwise couplings in the inverse
Ising problem from time-series data of the spins, even when
the underlying dynamical model is not known. The pairwise
SLTE is well described by a proportionality relation to the
corresponding coupling in the positive and negative domains,
and thus making the extraction of the signs and relative cou-
pling strengths reliable. In addition, the SLTE reconstruction
performs well for equilibrium and nonequilibrium dynamical
data, as illustrated in different kinetic Ising models. Two-state
Ising dynamics are considered in this work; our method can
be easily generalized to multistate discrete dynamics such as
the Potts model. Furthermore, since TE calculations are also
applicable to continuous variables, one expects SLTE can also
be extended to such cases with an appropriate sorting kernel
function. Taking into account the confounding effects in a
network, we also anticipate that the sorting of conditional TE
will further improve coupling strength reconstruction.

It should be noted that our method is not really changing
the measure, but simply presenting a different summary of
the local TE results that may be useful in circumstances
aligning with excitatory or inhibitory couplings. Since no
a priori knowledge for the details of the underlying dynamics
is needed for the SLTE reconstruction, the method would have
broad applications in various complex interacting systems.
The general advantages of the SLTE method is (i) model-free
and applicable in many different situations, (ii) works in situ-
ations where models do not or there is no known model, (iii)
more data efficient in some situations. One direction in appli-
cations is to extract synaptic interactions in spiking neuronal
data, not only one can obtain information about whether the
synaptic connection is excitatory or inhibitory, one can infer
also whether the neurons are excitatory or an inhibitory [43].
Real-time extraction of the nature and the strengths of the
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synaptic coupling can help in designing feedback stimulation
on the neuronal system for specific tasks or enhance learn-
ing schemes. Another application is on the gene-expression
network time-series data to infer which gene is activating or
suppressing the others in high throughput experiments.
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