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We investigate an intermittent stochastic process in which the diffusive motion with time-dependent diffusion
coefficient D(t ) ∼ tα−1 with α > 0 (scaled Brownian motion) is stochastically reset to its initial position, and
starts anew. In the present work we discuss the situation in which the memory on the value of the diffusion
coefficient at a resetting time is erased, so that the whole process is a fully renewal one. The situation when
the resetting of the coordinate does not affect the diffusion coefficient’s time dependence is considered in the
other work of this series [A. S. Bodrova et al., Phys. Rev. E 100, 012119 (2019)]. We show that the properties
of the probability densities in such processes (erasing or retaining the memory on the diffusion coefficient) are
vastly different. In addition we discuss the first-passage properties of the scaled Brownian motion with renewal
resetting and consider the dependence of the efficiency of search on the parameters of the process.
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I. INTRODUCTION

Resetting represents a class of stochastic processes in
which a random motion is from time to time terminated and
restarted from given initial conditions. The random motion
under stochastic resetting arises as the interplay of two distinct
random processes: the resetting process, a point process on
the time axis, and the particle’s motion between the resetting
events, which we will call the displacement process.

The present work belongs to a series of two works in
which we consider random processes arising from the reset-
ting of a scaled Brownian motion (SBM) to its initial posi-
tion. Scaled Brownian motion is the diffusion process with
explicitly time-dependent diffusion coefficient D(t ) ∼ tα−1.
Therefore when discussing resetting of the scaled Brownian
motion two distinct situations can be considered. The first
one corresponds to the case when after the resetting at time
tr , the SBM process starts anew, i.e., with D(t ) ∼ (t − tr )α−1,
so that all motions within the epochs between two subsequent
resetting events can be considered as statistical copies of each
other. The overall process is then a renewal one. The second
one is pertinent to the case when resetting of the coordinate
does not affect the explicit time dependence of the diffusion
coefficient. This corresponds to retaining of the memory
on the instant of time when the SBM started, and motions
within the epochs between two subsequent resetting events
are statistically different. The difference between the first,
renewal, and the second, nonrenewal, situation (full vs partial
resetting) is of importance for all displacement processes with
nonstationary increments and was stated, e.g., in [1], where a
continuous-time random walk (CTRW) model under renewal
resetting was discussed. However, we are not aware of any
work in which the two situations have been compared for
the same displacement process to stress and quantify the

differences between them. Considering SBM delivers a
unique opportunity to make such a comparison: the simplicity
of the displacement process allows for detailed analytical dis-
cussion of the properties of the probability density functions
(PDFs) of SBM under resetting in both situations.

There are several reasons to discuss the problems of the
fully renewal and nonrenewal SBM-resetting process in two
separate papers. First, the two situations require slightly
different mathematical approaches, and second, since the
renewal situation is much simpler, a larger program of in-
vestigations may be performed for this case. Moreover, the
renewal situations are the ones typically considered in other
processes, so that the results can be immediately compared
to such. Notably, the renewal nature of the process allows for
a very simple discussion of its first-passage properties [2], a
problem which is not considered in the parallel publication
dealing with the nonrenewal case [3]. We note that a very
general approach to deal with the resetting problem in a
renewal setting was given very recently in [4]. The authors
systematically studied the effect of Poissonian and power-law
resetting on an underlying process which, in the absence of
resetting, displays anomalous diffusion properties, 〈x2(t )〉 ∝
tα , 0 < α < 2. In the present work we consider a broader
domain of parameters for a particular model of transport
process, and show additional interesting regimes that appear
in the domains not discussed in [4].

The interest in the first-passage properties of stochastic
processes under resetting was motivated by the problems of
optimal search [5]. Since searching for a target at an unknown
location may go in a completely wrong direction, it might
be useful to return to the initial point, and to start from the
very beginning. This behavior can be modeled by a stochastic
exploration process, which is interrupted by random resettings
to the initial position. Examples of such processes are found
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in many fields such as computer science [6], biochemistry [7],
and biology [8–11]. In computer science random walks with
stochastic restarts represent a useful strategy to optimize
search algorithms in hard computational problems [6]. In
biochemistry, resetting, connected with the departure of an
enzyme from a substrate, may increase the rate of product
formation [7]. In biology, gene transcription by RNA poly-
merases can be viewed as a diffusion process with stochastic
resetting [8].

One of the main characteristics of the efficiency of a
search process is the mean first-passage time (MFPT): the
time at which the particle hits the target for the first time on
average [12,13]. Early work concentrated on a searcher per-
forming one-dimensional Brownian motion with Poissonian
resetting [14–16]. While the MFPT to a target for a diffusing
particle in the absence of resetting diverges, in the presence
of resetting it turns finite, and there exists an optimal rate of
resetting that minimizes the MFPT. The discussion has been
extended to two and higher dimensions in [17,18]. While for
ordinary Brownian motion the optimal resetting rate depends
only on the distance x0 between the target and the origin, and
on the diffusion coefficient D of the particle, in the case of
active particles it may depend on finer details of motion not
comprised by the effective diffusion coefficient [19]. Another
search process is the one in which an individual searcher has
a random, finite lifetime and who, when it expires, is replaced
by a new one starting at the origin [20]. Usually, one considers
situations when resetting to the initial position takes place
instantaneously and the next motion epoch follows immedi-
ately. This model does not closely model, e.g., the motion of
foraging animals, where introducing refractory periods after
return may provide a better description. Such reset-and-wait
models were considered in [21,22].

References [23,24] discuss the MFPT for the case of Lévy
flights with discrete time and Poissonian resetting, respec-
tively, and obtain the parameter values minimizing the MFPT
for several cases including random distribution of targets.
Other types of the waiting-time distributions for resetting
events have been studied in [25–28]. It has been shown
that the resetting at a constant pace is the most effective
strategy [2,18,25,28]. However, physical constraints on the
restart process (e.g., unavoidable stochastic fluctuations in
biological systems) make implementation of this optimal pro-
tocol inviable [29]. Ordinary Brownian motion with power-
law waiting-time densities for resetting events has been inves-
tigated in [30]. It has been shown that there exists a certain
power-law exponent minimizing the MFPT for a given target
position.

In the present work we investigate particles performing
scaled Brownian motion (SBM) [31–33], a stochastic process
with a time-dependent diffusion coefficient, between the re-
setting events. We calculate the mean-squared displacement
(MSD), the probability density function (PDF) of this process,
and the MFPT to a given target. In the other paper of this
series [3] we have considered the nonrenewal process when
the diffusion coefficient remains unaffected by the resetting
events. In the present work we concentrate on the renewal
situation, where the diffusion coefficient is also reset, and the
displacement process is rejuvenated under resetting so that
the whole process is a renewal one. For this process a larger

program of investigation than in [3] can be performed. The
plan of the paper is as follows. In Sec. II we give a brief
overview of the properties of SBM. In Sec. III we introduce
the main quantities used in the resetting theory, provide gen-
eral analytic expressions for MSD and PDF, and describe the
algorithm of numerical simulations. In Sec. IV we calculate
MSD and PDF for Poissonian resetting, and in Sec. V the
MFPT. In Secs. VI and VII we discuss power-law resetting
for 0 < β < 1 and β > 1, correspondingly, and in Sec. VIII
we derive the first-passage time for power-law resetting. We
give our conclusions in Sec. IX.

II. SCALED BROWNIAN MOTION

As already stated in the Introduction, scaled Brownian
motion [31] is the diffusion process with explicitly time-
dependent diffusion coefficient D(t ) ∼ tα−1, in which the
mean-squared displacement grows as

〈x2(t )〉 = 2Kαtα (1)

with Kα being the generalized diffusion coefficient. For α = 1
the process is identical to normal, Fickian diffusion; for α > 1
it is super- and for 0 < α < 1 subdiffusive. We define SBM in
terms of the stochastic process

dx(t )

dt
=

√
2D(t )η(t ), (2)

with Gaussian noise η(t ) possessing zero mean 〈η(t )〉 = 0,
and the correlation function

〈η(t1)η(t2)〉 = δ(t1 − t2). (3)

The time-diffusion coefficient has the following form:

D(t ) = αKαtα−1. (4)

The probability density function (PDF) of displacements of
particles performing free SBM starting at time t ′ is Gaussian,

p0(x, t − t ′) = 1√
4πKα (t − t ′)α

exp

(
− x2

4Kα (t − t ′)α

)
. (5)

III. SBM WITH STOCHASTIC RESETTING:
GENERAL EXPRESSIONS

Let us assume that the particle starts its motion at the origin
and returns there at resetting events. The simplest and most
studied case corresponds to exponentially distributed waiting
times between resets,

ψ (t ) = re−rt . (6)

We also consider the power-law distribution of the waiting
times

ψ (t ) = β/τ0

(1 + t/τ0)1+β
, (7)

where τ0 is a constant. The probability that no resetting
events occur between 0 and t (the survival probability) can
be expressed as

	(t ) = 1 −
∫ t

0
ψ (t ′)dt ′. (8)

012120-2



SCALED BROWNIAN MOTION WITH RENEWAL RESETTING PHYSICAL REVIEW E 100, 012120 (2019)

For exponential resetting this is given by

	(t ) = e−rt (9)

and for the power-law resetting by

	(t ) = (1 + t/τ0)−β. (10)

The rate of resetting events

κ (t ) =
∞∑

n=1

ψn(t ), (11)

where ψn(t ) is the probability density of the time of the nth
resetting event. These densities satisfy the recursion relation

ψn(t ) =
∫ t

0
ψn−1(t ′)ψ (t − t ′)dt ′. (12)

In the Laplace domain we then get

ψ̃n(s) = ψ̃n−1(s)ψ̃ (s) = ψ̃n(s) (13)

and

κ̃ (s) =
∞∑

n=1

ψ̃n(s) = ψ̃ (s)

1 − ψ̃ (s)
. (14)

The case of the exponential waiting-time distribution corre-
sponds to the resetting events constituting a Poisson process
on the line characterized by a constant rate, or intensity, r, so
that

κ (t ) = r. (15)

For the case of the power-law resetting the distinct cases 0 <

β < 1, 1 < β < 2, and β > 2 should be considered. For β >

2 both the first and the second moments of the waiting-time
PDF do exist: ∫ ∞

0
tψ (t )dt = τ0

β − 1
, (16)

∫ ∞

0
t2ψ (t )dt = 2τ 2

0

(β − 1)(β − 2)
. (17)

For 1 < β < 2 the second moment does not exist while the
first moment does. For β < 1 both the first and the second
moments diverge.

In the Laplace domain

ψ̃ (s) = β

τ0

∫ ∞

0
dte−ts

(
1 + t

τ0

)−1−β

. (18)

Performing the change of the variables y = s(t + τ0) and
integrating by parts we get

ψ̃ (s) = 1 − esτ0 (sτ0)β
∫ ∞

sτ0

dy e−yy−β. (19)

For s → 0 and 0 < β < 1 the integration yields

ψ̃ (s) = 1 − �(1 − β )(sτ0)β + · · · . (20)

For 1 < β < 2 the asymptotic result for s → 0 reads

esτ0

∫ ∞

sτ0

dy e−yy1−β → �(2 − β ), (21)

and we get

ψ̃ (s) = 1 − sτ0

β − 1
+ (sτ0)β�(2 − β )

β − 1
+ · · · , (22)

while for β > 2 we get

ψ̃ (s) = 1 − sτ0

β − 1
+ (sτ0)2

(β − 1)(β − 2)
+ · · · . (23)

Introducing these expressions for ψ̃ (s) into Eq. (14) and
performing the inverse Laplace transform we get the forms
of κ (t ). Thus, for power-law resetting with 0 < β < 1,

κ (t ) = tβ−1τ
−β

0

�(β )�(1 − β )
. (24)

For power-law resetting with β > 1 the rate of resetting events
attains a constant value,

κ (t ) = κ = β − 1

τ0
. (25)

The probability to find the particle at location x at time t
can be expressed in the following way:

p(x, t ) = 	(t )p0(x, t ) +
∫ t

0
dt ′κ (t ′)	(t − t ′)p0(x, t − t ′).

(26)

The first term on the right-hand side corresponds to trajecto-
ries with no resets, and the second one accounts for the cases
in which the last reset took place at time t ′.

At long times t → ∞ the first term may be safely neglected
and the PDF is given only by the second term in Eq. (26):

p(x, t ) 

∫ t

0
dt ′κ (t ′)	(t − t ′)p0(x, t − t ′). (27)

Multiplying Eq. (26) by x2 and performing the integration
with respect to x, we get the equation for the MSD:

〈x2(t )〉 = 2Kαtα	(t ) + 2Kα

∫ t

0
dt ′κ (t ′)	(t − t ′)(t − t ′)α.

(28)
At long times t → ∞ the first term may be neglected, and we
obtain for the MSD

〈x2(t )〉 
 2Kα

∫ t

0
dt ′κ (t ′)	(t − t ′)(t − t ′)α. (29)

Below we will investigate the behavior of the PDF, Eq. (26),
and of the MSD, Eq. (28), for exponential and power-law
waiting-time PDFs in the resetting process. Moreover, we
will study the first-passage properties of the corresponding
processes to some point x0 on a line.

Note that the PDF and the MSD of the process depend only
on the Gaussian property of the displacement process at a sin-
gle time, and therefore will be the same for all (Markovian or
non-Markovian) Gaussian processes with the same 〈x2(t )〉 in
free motion, e.g., for the fractional Brownian motion [34], pro-
vided resetting erases memory of the displacement process,
and the particle’s displacements between the two subsequent
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resetting events can be considered as statistical copies of each
other.

To investigate the first-passage time we use the approach
put forward in [2]. There, using the renewal property of the
whole process, one derives the expression for the PDF of
hitting the single target under resetting,

ρ(t ) = 	(t )φ(t ) +
∫ t

0
ψ (t ′)�(t ′)	(t − t ′)φ(t − t ′)dt ′

+
∫ t

0
dt ′ψ (t ′)�(t ′)

∫ t−t ′

0
dt ′′ψ (t ′′)�(t ′′)

×	(t − t ′ − t ′′)φ(t − t ′ − t ′′) + · · · , (30)

where the first term is the probability density of hitting the
target in the first successful run that was not reset until
the hitting time, the second term describes the situation in
which the first run was not successful and was terminated by
resetting at time t ′, while the second run is successful, etc.
Here φ(t )dt is the probability that the target is hit in the time
interval between t and t + dt , and was never hit before, and
�(t ) = 1 − ∫ t

0 φ(t ′)dt ′ is the survival probability of a target in
a single run. The cumulative distribution function for hitting
in an uninterrupted run will be denoted by F (t ) = ∫ t

0 φ(t ′)dt ′.
Denoting K (t ) = 	(t )φ(t ) and R(t ) = ψ (t )�(t ), and turning
to the Laplace domain, we get

ρ̃(s) = K̃ (s)

1 − R̃(s)
(31)

with K̃ (s) being the Laplace transform of K (t ), and R̃(s) the
Laplace transform of R(t ). The Laplace transform P̃(s) of the
survival probability P(t ) = 1 − ∫ t

0 ρ(t ′)dt ′ under resetting is
then given by

P̃(s) = 1

s
− 1

s

K̃ (s)

1 − R̃(s)
= X̃ (s)

1 − R̃(s)
(32)

with X̃ (s) = s−1[1 − R̃(s) − K̃ (s)]. The mean first-passage
time τ = ∫ ∞

0 P(t )dt under resetting follows then in the
form [2]

τ = X0

1 − R0
(33)

with

X0 = X̃ (0) =
∫ ∞

0
dt �(t )	(t ) (34)

and

R0 = R̃(0) =
∫ ∞

0
dt �(t )ψ (t ). (35)

Another approach can be used for calculation of the
MFPT [28]:

τ = 〈min(T, Tr )〉
Pr(T < Tr )

, (36)

where T is a random duration of a single run, Tr is the random
time of restart, and Pr(T < Tr ) is the probability that T < Tr .
It can be shown that this equation is equivalent to Eq. (33)
in the following way (see Supplemental Material of Ref. [2]).
The probability that either the reset will take place or the target

will be hit is 1 − 	(t )�(t ), and the numerators of Eqs. (33)
and (36) are equal:

〈min(T, Tr )〉 =
∫ ∞

0
t

d

dt
[1 − 	(t )�(t )]dt

=
∫ ∞

0
�(t )	(t )dt = X̃0. (37)

The denominators are also equal according to

1 − R̃0 =
∫ ∞

0
[1 − �(t )]ψ (t )dt =

∫ ∞

0
F (t )

d	(t )

dt
dt

=
∫ ∞

0
	(t )

dF (t )

dt
dt =

∫ ∞

0
	(t )φ(t )dt, (38)

which is nothing else than the probability that T < Tr . Here
F (t ) = 1 − �(t ) is the total hitting probability.

Within this work we will compare analytical results with
numerical simulations. In the renewal resetting the whole
process starts anew at the resetting event, and the memory on
its previous course is erased. Therefore the simulation of the
process up to the last resetting event is not necessary to get the
MSD and the PDF of the particle’s positions. The event-driven
simulations for MSD and for PDF are performed as follows.
For a given sequence of the output times t we simulate the
sequence of resetting events, find the time of the last resetting
event t ′ < t , and set x(t ′) = 0. Then the position of the particle
at time t is distributed according to a Gaussian with zero
mean and variance 〈x2(t )〉 = 2Kα (t − t ′)α . The corresponding
Gaussian can be obtained from a standard normal distribution
generated using the Box-Muller transform. The results are
averaged over N = 104 to 106 independent runs.

In order to calculate the first-passage time we apply the
direct simulation. The time axis is discretized with the step
dt = ti+1 − ti, and the time of the first resetting T1 is generated
according to the waiting-time density ψ (t ). Then the particle’s
motion is simulated, and, if the target was not hit up to Tn,
the coordinate is reset to x = 0, a new resetting time T2 is
generated, and the simulation repeated, etc. The particle’s
motion between the resetting events is modeled by a finite-
difference analog of the Langevin equation,

xi+1 = xi + ξi

√
2αKα (ti − Tn)α−1dt (39)

(for Tn < ti < Tn+1). Here xi = x(ti ) is the coordinate of the
particle at the time ti, and ξi is the random number distributed
according to a standard normal distribution generated using
the Box-Muller transform. The simulation stops when the
particle’s coordinate exceeds x0 for the first time. The first
hitting time is then averaged over N = 104 to 105 realizations.
The value of αKα is set to unity in all our simulations. In simu-
lations corresponding to power-law waiting-time distributions
we set τ0 = 1.

IV. MSD AND MFPT FOR POISSONIAN RESETTING

A. Mean-squared displacement

The MSD for SBM with exponential resetting can be
obtained by inserting Eqs. (9) and (15) into Eq. (28), and
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FIG. 1. Mean-squared displacement for power-law and Poisso-
nian resetting with r = 1 and for power-law resetting with α = 0.5
as obtained in N = 104 realizations. Results of simulation are shown
by thick colored lines and the analytical asymptotics by thin black
solid lines [Eq. (44) for exponential resetting, Eq. (67) for power-law
resetting with β = 0.5, Eq. (91) for β = 1.3, Eq. (93) for β = 2.5
and 10].

reads

〈x2(t )〉 = 2Kαtαe−rt + 2Kα

rα
γ (α + 1, rt ) (40)

with γ (a, z) being the lower incomplete Gamma function,

γ (a, z) =
∫ z

0
dx e−xxa−1. (41)

Expanding the incomplete Gamma function for z → ∞,

γ (a, z) 
 �(a) − za−1e−z − a − 1

z
za−1e−z, (42)

we obtain for the MSD

〈x2(t )〉 
 2Kα

rα
[�(α + 1) − α(rt )α−1e−rt ]. (43)

It rapidly tends to the steady state:

〈x2(t )〉 = 2Kα

rα
�(α + 1). (44)

In Fig. 1 we show the analytical result, Eq. (44), together with
the results of direct numerical simulation (blue line), and get
an excellent agreement. Figure 1 gives the overview of all
MSD behaviors discussed in the present paper: Other lines in
Fig. 1 show the results for the MSD in the cases of power-law
resetting considered in Secs. VI and VII. The figure will be
referred to several times throughout the text.

For α = 1 we recall the ordinary Brownian motion be-
tween the resetting events and get at long times the stationary
value of MSD

〈x2(t )〉 = 2K1

r
. (45)

B. Probability density function

The probability density function for Poissonian resetting
may be obtained by inserting Eqs. (5), (9), and (15) into

FIG. 2. PDF for SBM with α = 0.5 and with Poissonian reset-
ting at times t = 0.3, 1, 10, 100, 300 showing the convergence to a
steady state. The theoretical prediction is shown by the thin black
solid line; see text for details. Parameters: N = 105, r = 1.

Eq. (27), which for long times yields

p(x, t ) 
 r
∫ t

0
dt ′e−r(t−t ′) 1√

4πKα (t − t ′)α

× exp

(
− x2

4Kα (t − t ′)α

)
. (46)

Introducing a new variable τ = t − t ′ we rewrite the integral
as

p(x, t ) 
 r√
4πKα

∫ t

0
dτ exp [−ϕ(τ )]τ− α

2 (47)

with the function ϕ(τ ) = rτ + x2

4Kατα , which attains a simple
quadratic minimum at

τmin =
(

αx2

4Kαr

) 1
α+1

. (48)

For 0 � τmin � t the standard Laplace method can be used:

p(x, t ) 
 r√
4πKατα

min

exp[−ϕ(τmin)]

×
∫ ∞

−∞
exp

[
−1

2
ϕ′′(τmin)(τ − τmin)2

]
dτ, (49)

provided ϕ′′(τmin) is large enough. Both conditions corre-
spond to the intermediate asymptotic behavior in x. The final
result for this case corresponds to a stationary state and reads

p(x) 
 r
√

2√
α(α + 1)

(
α

4Kαr

) 1
α+1

|x| 1−α
α+1

× exp

[
−

(
x2rα

4Kα

) 1
α+1 (

α
1

α+1 + α− α
α+1

)]
. (50)

Figure 2 presents the results of numerical simulation for
α = 0.5. The theoretical curve (thin black line) corresponds
to the exponential term of Eq. (50) with the pre-exponential
factor replaced by the actual value of p(x) for x = 0 calculated
from Eq. (46).
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FIG. 3. The mean first-passage time τ versus the resetting rate r for different α values. The target positions are x0 = 1 (a) and x0 = 5 (b).
Results of simulations are shown by circles and the analytical results are represented by the lines according to Eq. (59).

For α = 1, the PDF behaves as that for ordinary Brownian
motion with exponential resetting; namely, it is a two-sided
exponential (Laplace) distribution as obtained in [14,15]

p(x) = 1

2

√
r

K1
exp

(
−

√
r

K1
|x|

)
. (51)

V. MFPT FOR POISSONIAN RESETTING

Now let us calculate the mean time needed for the particle
that starts at x = 0 to hit a target at position x0 �= 0. The
hitting-time probability in a single run of the SBM is given
by a change of variables in the Lévy-Smirnov distribution and
reads

φ(t ) = αx0√
4πKα

exp

(
− x2

0

4Kαtα

)
t−1− α

2 . (52)

The survival probability of a target in a single run may be
obtained via the integration of the hitting-time probability
over t ,

�(t ) = 1 −
∫ t

0
φ(t ′)dt ′ = erf

(
x0

2
√

Kαtα

)
. (53)

Taking into account that for exponential resetting ψ (t ) =
r	(t ) as given by Eqs. (6) and (9), one gets R0 = rX0, and
the MFPT as given by Eq. (33) can be represented as

τ = X0

1 − rX0
. (54)

The expression for X0 follows by inserting Eq. (6), Eq. (9),
and Eq. (53) into Eq. (34):

X0 = 2√
π

∫ ∞

0
dte−rt

∫ x0
2
√

Kα tα

0
da e−a2

. (55)

This expression can be rewritten by changing the order of
integrations

X0 = 2√
π

∫ ∞

0
da e−a2

∫ (
x2
0

4Kαa2 )1/α

0
e−rt dt, (56)

after which the inner integral can be evaluated explicitly:

X0 = 1

r
− 2

r
√

π

∫ ∞

0
da exp

[
−a2 − r

(
x2

0

4Kαa2

) 1
α

]
. (57)

The integral can be estimated by using the Laplace method,
which leads to

X0 
 1

r

{
1 −

√
2α

α + 1

×exp

[
−(

α
1

1+α + α− α
1+α

)
r

α
α+1

(
x2

0

4Kα

) 1
α+1

]}
. (58)

Inserting this into Eq. (54), we arrive at the final expression
for the mean first-passage time,

τ 
 1

r

{√
α + 1

2α
exp

[
r

α
α+1

(
x2

0

4Kα

) 1
α+1 (

α
1

1+α + α− α
1+α

)]−1

}
.

(59)

For ordinary Brownian diffusion (α = 1) we get the known
expression [14], which is now exact:

τ = 1

r
[exp(|x0|

√
r/Kα ) − 1]. (60)

The MFPT given by Eq. (59) for different parameter values
is shown in Fig. 3. At very low rates r → 0 corresponding
to free scaled Brownian motion, without resetting the MFPT
tends to infinity. At r → ∞ the MFPT also tends to infinity,
because the particle does not have enough time to locate the
target between the resetting events. Therefore there exists an
optimal rate r∗ that minimizes the MFPT. Let us first consider
the situation in which the target is located relatively close
to the initial position of the particle (x0 = 1), Fig. 3(a). In
this case the superdiffusive search process is more effective
(i.e., leads to shorter MFPT) at relatively small rates r � 0.2,
while at larger rates the target will be found faster under
subdiffusive motion. If the distance between the target and ini-
tial position of particle increases (x0 = 5), the superdiffusion
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FIG. 4. The optimal resetting rate r∗ [obtained as a numerical solution of Eq. (61)] versus the target position x0 for α = 0.7, 0.8, 0.9 (a) and
versus α for x0 = 1, 1.5, 2 (b).

becomes more favorable for a wider range of r [Fig. 3(b)].
This resembles search processes with Lev́y flights in which
large jumps are preferable when the target is located far from
the initial position and smaller jumps are preferable when the
target is closer to the origin [35].

Minimizing τ [Eq. (59)] with respect to r we get the
equation for the optimal resetting rate r∗,

1 −
√

2α

α + 1
exp(−Br∗c) = Bcr∗c (61)

with

c = α

α + 1
(62)

and

B =
(

x2
0

4Kα

) 1
α+1 (

α
1

1+α + α− α
1+α

)
, (63)

which can be solved numerically. Figure 4 shows that the
optimal resetting rate r∗ decreases with increase of both
the distance x0 between target and initial position (a) and the
exponent α (b). The monotonic decrease of r∗ as a function x0

parallels the case of Lev́y flights [23] but does not show the
discontinuity observed in this last case.

VI. MSD AND PDF WITH POWER-LAW RESETTING,
0 < β < 1

A. Mean-squared displacement

Substituting Eqs. (10) and (24) into Eq. (29) we obtain

〈x2(t )〉= 2Kατ
−β

0

�(β )�(1−β )

∫ t

0
dt ′t ′β−1(t − t ′)α

(
1+ t − t ′

τ0

)−β

.

(64)

Assuming t � τ0 we can neglect unity in the last bracket.
Changing to a new integration variable τ = t ′/t we get

〈x2(t )〉 = 2Kα

�(β )�(1 − β )
tα

∫ 1

0
dττβ−1(1 − τ )α−β, (65)

so that the integral reduces to a Beta function, and the whole
expression reads

〈x2(t )〉 = 2Kα

�(β )�(1 − β )
B(β, α − β + 1)tα. (66)

Expressing the Beta function in terms of Gamma functions we
arrive at the final result,

〈x2(t )〉 = 2Kα�(α − β + 1)

�(α + 1)�(1 − β )
tα. (67)

The time dependence of MSD remains the same as for the case
of free SBM, only the prefactor is altered. This result is plotted
in Fig. 1 and is again in excellent agreement with simulation
results given by the green line.

For α = 1 the MSD scales linearly with time,

〈x2(t )〉 = 2K1(1 − β )t . (68)

B. Probability density function

The PDF p(x, t ) for the case considered shows differ-
ent behavior for small, intermediate, and large values of x.
Especially interesting is the case β > 1 − α/2, when, for t
long enough, the PDF develops a pronounced intermediate
asymptotic scaling domain.

The PDF is obtained by inserting Eqs. (5), (10), and (24)
into Eq. (27):

p(x, t ) = τ
−β

0

�(β )�(1−β )

1√
4πKα

∫ t

0
dt ′t ′β−1

(
1+ t − t ′

τ0

)−β

× (t − t ′)−α/2 exp

(
− x2

4Kα (t − t ′)α

)
. (69)

To obtain the far tail of the PDF, i.e., its behavior for |x| �√
4Kαtα , we change the variable of integration to y = (1 −

t ′/t )−α:

p(x, t ) = 1

α�(β )�(1 − β )
√

4πKαtα

∫ ∞

1
dy y− 1

α
− 1

2

× (1 − y− 1
α )β−1

(
τ0

t
+ y− 1

α

)−β

exp

(
− x2y

4Kαtα

)
.

(70)
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For x2 � 4Kαtα the exponential function is decaying very
fast, so that the main contribution to the integral stems
from the vicinity of the lower integration bound, where we
take y = 1 + δ and approximate to leading order y−1/α−1/2 

1, (1 − y−1/α )β−1 
 (δ/α)β−1, and (τ0/t + y−1/α )

−β 
 (1 +
τ0/t )−β 
 1 assuming t � τ0. We get

p(x, t ) 
 1

α�(β )�(1 − β )
√

4πKαtα
exp

(
− x2

4Kαtα

)

×α1−β

∫ ∞

0
dδ δβ−1 exp

(
− x2δ

4Kαtα

)

= α−β

�(1 − β )
√

4πKαtα

(
4Kαtα

x2

)β

exp

(
− x2

4Kαtα

)
.

(71)

Thus, the behavior of the distribution for x2 � 4Kαtα is
universally Gaussian, up to a power-law correction.

Now we turn to investigation of the PDF’s behavior at
small and intermediate |x|. Changing the variable of integra-
tion to a = 1 − t ′/t we rewrite Eq. (69) as

p(x, t ) = 1

�(β )�(1 − β )
√

4πKαtα

∫ 1

0
da(1 − a)β−1

× a−α/2

(
τ0

t
+ a

)−β

exp

(
− x2

4Kαtαaα

)
, (72)

which is the main equation to be analyzed below. The behav-
ior of the distribution for small and intermediate x strongly
depends on the relation between β and α.

Let us first consider the limit x → 0. In this case the
exponential in Eq. (72) tends to unity. For t � τ0 the term
τ0/t in the last bracket in Eq. (72) may be neglected provided
the integral stays convergent under such omission, which
is the case for β < 1 − α/2. For β > 1 − α/2 this term
cannot be omitted, since it provides the necessary regular-
ization. As we proceed to show, the two cases correspond to
vastly different behaviors. In the first case, 0 < β < 1 − α/2,
omitting the corresponding term, we get

p(0, t ) 
 1

�(β )�(1−β )
√

4πKαtα

∫ 1

0
da(1− a)β−1a−α/2−β,

(73)

so that

p(0, t ) 
 1

�(β )�(1 − β )
√

4πKαtα
B(−α/2 − β + 1; β ).

(74)

Expressing the Beta function in terms of � functions we get
an alternative form,

p(0, t ) = �(1 − β − α/2)√
4πKαtα�(1 − α/2)�(1 − β )

. (75)

For α = 1 we obtain, taking into account �(1/2) = √
π ,

p(0, t ) = �
(

1
2 − β

)
√

4π2K1t�(1 − β )
= �(1/2 − β )�(β )√

4πK1t

sin(πβ )

π3/2
,

(76)

where, in the last expression, Euler’s reflection formula
�(1 − β )�(β ) = π

sin πβ
was used. This last expression coin-

cides with the result obtained in [30] for β < 1/2.
For β > 1 − α/2 the integral Eq. (73) diverges at x = 0,

and the term τ0/t cannot be omitted. The expression for the
PDF for x = 0 reads

p(0, t ) = 1

�(β )�(1 − β )
√

4πKαtα

×
∫ 1

0
da(1 − a)β−1a−α/2(a + τ0/t )−β. (77)

The integral can be expressed via a hypergeometric function
(see Eq. (2.2.6.15) of [36]):∫ 1

0
da(1 − a)β−1a−α/2(q + a)−β

= q−βB
(

1 − α

2
, β

)
2F1

(
1 − α

2
, β, 1 − α

2
+ β,−1

q

)
,

with q = τ0/t . For t � τ0 the argument z = − 1
q = −t/τ0 of

the hypergeometric function is large and tends to −∞ in
the course of time, so that arg(βz) = π , and the asymptotic
behavior of this function is given by Eq. (15.7.3) of Ref. [37].
The second term in this expansion contains the exponential eβz

whose argument is negative and large, so that the whole con-
tribution can be neglected. Therefore the final approximation
to lowest order reads

2F1

(
1 − α

2
, β, 1 − α

2
+ β,− t

τ0

)


 �
(
1 − α

2 + β
)

�
(
1 − α

2

) (
βt

τ0

)α/2−1

.

Inserting this approximation into Eq. (77) and expressing the
Beta function in terms of Gamma functions we get

p(0, t ) 
 �
(
1 − α

2 + β
)

�(β )�(1 − β )
√

4πKατα
0

(
t

τ0

)β−1

. (78)

In both cases the PDF does not diverge for x → 0. Now
let us consider intermediate values of |x| � √

4Kαtα . For
β < 1 − α/2 the integral in Eq. (72) converges even in the
absence of the exponential term, and this term is close to unity
in most of the integration domain except for the vicinity of the
lower bound of integration. Therefore the dependence on x is
weak, and the PDF at small x has a flat top, where its value is
given by Eq. (75). This behavior is well seen in Fig. 5 (dashed
curve).

For β > 1 − α/2, when the integral would diverge at the
lower limit if the regularizing exponential were absent, a new,
interesting, intermediate regime arises. Close to this lower
limit we can approximate the first bracket in the integral in
Eq. (72) by unity, and change the variable of integration to
ξ = x2/4Kαtαaα to obtain

p(x, t ) 
 (4Kα )
β−1
α

α�(β )�(1 − β )
√

π
tβ−1|x|−1− 2β

α
+ 2

α

×
∫ ∞

x2
4Kα tα

ξ
β−1
α

− 1
2 e−ξ dξ, (79)
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FIG. 5. PDF for SBM with power-law resetting with 0 < β < 1.
The dashed green line corresponds to the case β < 1 − α/2 and
shows a flat top of the PDF crossing over to a practically Gaussian
behavior, Eq. (71), at large x. Two other cases correspond to β > 1 −
α/2 and show the emerging intermediate asymptotic behavior, where

p(x, t ) ∼ tβ−1|x|−1− 2β
α + 2

α according to Eq. (81) for α = 1.5 (red
dotted line) and for α = 3 (gray solid line). The analytical predictions
for the slopes in intermediate asymptotic domains, Eq. (80), are
shown with thin black straight lines.

where the integral now represents an upper incomplete
Gamma function, which for the intermediate asymptotic
domain x2 � 4Kαtα can be approximated by a constant
�(− 1+β

α
− 1

2 ), so that

p(x, t ) 
 (4Kα )
β−1
α �

(− 1+β

α
− 1

2

)
α�(β )�(1 − β )

√
π

tβ−1|x|−1− 2β

α
+ 2

α . (80)

This intermediate asymptotics merges with the top of the
distribution given by Eq. (78) at |x| ∼ √

4Kατα
0 , and therefore

stretches over the domain
√

4Kατα
0 � |x| � √

4Kαtα , which
at large times gets very large. Omitting all prefactors we get

p(x, t ) ∝ tβ−1|x|−1− 2β

α
+ 2

α , (81)

which can be put into a scaling form p(x, t ) = t−γ f (|x|/tγ )
with γ = α/2, and f (z) = z

2(1−β )
α

−1.
This intermediate asymptotics is seen at long times (t =

1000) in two further curves depicted in Fig. 5: for α = 0.5
and β = 0.9, where it is very narrow, and for α = 3 and β =
0.5, where it stretches over the whole x domain depicted. For
α = 1, 1

2 < β < 1, this expression turns to

p(x, t ) ∼ tβ−1|x|1−2β, (82)

which is again in agreement with [30].

VII. MSD AND PDF WITH POWER-LAW
RESETTING, β > 1

A. Mean-squared displacement

Plugging Eqs. (10) and (25) into Eq. (29), we get

〈x2(t )〉 = 2Kατα
0 (β − 1)

∫ t/τ0

0
dτ τα (1 + τ )−β. (83)

The integral may be presented in terms of the hypergeometric
function ∫ t/τ0

0
dτ τα (1 + τ )−β

= (t/τ0)1+α

1 + α
2F1

(
1 + α, β, 2 + α,− t

τ0

)
. (84)

To get the power-law asymptotics of this integral we use
the Pfaff transformations changing the function with the last
argument equal to z into a function whose last argument is
z/(z − 1). There are two variants of such transformations for
t/τ0 → ∞ [37],

2F1

(
1 + α, β, 2 + α,− t

τ0

)

=
(

1 + t

τ0

)−β

2F1

(
β, 1, 2 + α,

t

t + τ0

)
, (85)

2F1

(
1 + α, β, 2 + α,− t

τ0

)

=
(

1+ t

τ0

)−1−α

2 F1

(
1+ α, 2 + α − β, 2 + α,

t

t+ τ0

)
,

(86)

which, as we proceed to show, are useful in different do-
mains of parameters. For t → ∞ the last argument of the
hypergeometric functions on the right-hand sides of Eqs. (85)
and (86) tends to unity, and the corresponding asymptotic
values of these functions can be evaluated by applying Gauss’s
theorem:

2F1(a, b, c, 1) = �(c)�(c − a − b)

�(c − a)�(c − b)
, (87)

valid for

Re(c) > Re(a + b). (88)

Using the transformation Eq. (85) and Eq. (87) we get, for
β < α + 1,

2F1(β, 1, 2 + α, 1) = 1 + α

1 + α − β
, (89)

and using Eq. (86) and Eq. (87) for β > α + 1, we obtain

2F1(1+ α, 2 + α − β, 2 + α, 1) = �(2 + α)�(β − α −1)

�(β )
.

(90)

Using the corresponding asymptotic forms in Eq. (84), and
substituting Eq. (84) into Eq. (83), one gets Eq. (91) below for
β < α + 1 and Eq. (93) for β > α + 1. Thus for β < α + 1 in
the long-time limit t � τ0 the MSD follows

〈x2(t )〉 = 2Kατ
β−1
0 (β − 1)

α − β + 1
tα+1−β . (91)

The result is presented in Fig. 1 as a gray line. In the case
of ordinary Brownian motion α = 1 and β < 2 the motion
appears to be subdiffusive:

〈x2(t )〉 = 2K1τ
β−1
0 t2−β β − 1

2 − β
. (92)
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For β > α + 1 the MSD stagnates:

〈x2(t )〉 =
(

2Kατα
0 (β − 1)

α + 1

)(
�(2 + α)�(β − α − 1)

�(β )

)
.

(93)

In the case of ordinary Brownian motion, α = 1, the MSD
stagnates and attains the value

〈x2(t )〉 = 2K1τ0

β − 2
. (94)

The corresponding numerical results are presented in Fig. 1
with red (β = 2.5) and orange (β = 10) lines, respectively.

B. Probability density function

The probability density function for β > 1 may be ob-
tained by inserting Eqs. (5), (10), and (25) into Eq. (27):

p(x, t ) 
 β − 1

τ0

1√
4πKα

∫ t

0
dt ′

(
1 + t − t ′

τ0

)−β

(t − t ′)−α/2

× exp

(
− x2

4Kα (t − t ′)α

)
. (95)

We note that assuming the rate of events constant is possible
only for t � τ0, and therefore all the results below are valid
only for t � τ0, under which condition also the proper nor-
malization is guaranteed. This implies that if p(x, t ) possesses
singularities, these must be integrable. Putting x = 0 one
readily infers that for α < 2 the integral converges, so that
p(x, t ) is finite at the origin and develops a flat top, and
moreover p(0, t ) tends to a finite limit for t → ∞. On the
other hand, for α > 2 the PDF at the origin diverges.

Changing to the dimensionless variable of integration z =
x2

4Kα (t−t ′ )α one gets

p(x, t ) 
 β − 1

τ0α
√

4πKα

(
x2

4Kα

)− 1
2 + 1

α

×
∫ ∞

x2
4Kα tα

[
1 + 1

τ0

(
x2

4Kα

) 1
α

z− 1
α

]−β

z− 1
2 − 1

α e−zdz.

(96)

Since for large z the integrand is strongly suppressed by the
decaying exponential, the unity in square brackets can be
safely neglected for x2 � 4Kατα

0 , and the integral can be
approximated by

p(x, t ) 
 (β − 1)τβ−1
0

α
√

4πKα

(
x2

4Kα

)− 1
2 + 1

α
− β

α

×
∫ ∞

x2
4Kα tα

dz e−zz− 1
2 − 1

α
+ β

α , (97)

so that

p(x, t ) 
 (β − 1)τβ−1
0

α
√

4πKα

(
x2

4Kα

)− 1
2 + 1

α
− β

α

×�

(
1

2
+ β

α
− 1

α
,

x2

4Kαtα

)
. (98)

FIG. 6. PDF for SBM with power-law resetting for t = 300 and
1000 showing the steady state. The black dashed line corresponds to
fitting with p(x, t ) 
 x−3 [Eq. (100)]. Parameters: N = 106, α = 0.5,
β = 1.5.

Equation (96) also allows for determining the type of
singularity at the origin for α > 2. For x2 � 4Kατα

0 we can
neglect the second term in the square brackets in Eq. (96),

p(x, t ) = β − 1

τ0α
√

4πKα

(
x2

4Kα

)− 1
2 + 1

α
∫ ∞

x2
4Kα tα

z− 1
2 − 1

α e−zdz,

(99)

and then take the limit x → 0 in the lower bound of in-
tegration, so that the integral converges to a Gamma func-
tion �(1/2 − 1/α) of a non-negative argument. Therefore for
α > 2 one gets p(x, t ) ∼ |x|2/α−1 showing an integrable
singularity.

Let us return to our Eq. (98) and discuss the behavior of
the PDF in the intermediate asymptotic regime

√
4Kατα

0 �
x � √

4Kαtα , which, for t large, stretches over the whole
relevant domain of x. We note that for small values of the
second argument y → ∞ the incomplete Gamma function
�(a, y) tends to �(a) while for large values of y it possesses
the asymptotics �(a, y) 
 ya−1e−y. Therefore at long times
tα � x2/(4Kα ) the PDF, Eq. (98), for x fixed tends to the
steady state

p(x, t ) ∼ |x|−1−2β/α+2/α. (100)

The results of numerical simulation of the PDF (Fig. 6)
confirm this finding. The scaling p(x, t ) 
 x−3 (for β = 1.5,
α = 0.5) nicely fits the obtained results at large values of
x. For α = 1 the PDF scales as p(x, t ) ∼ x1−2β , as obtained
in [30].

It is interesting to note that the PDF in its bulk tends to
the steady state at long time for the whole range of β > 1,
while the MSD stagnates only for β > 1 + α but grows in the
course of time when 1 < β < 1 + α, see Eqs. (91) and (93),
which fact stresses the absence of the overall scaling. To
explain this phenomenon we return to Eq. (98) and note that
for x � √

4Kαtα the power law as given by Eq. (100) has
a Gaussian cutoff (due to the asymptotics of the incomplete
Gamma function discussed above). In the case when the
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second moment of the approximate PDF in the center as given
by Eq. (100) converges,

∫ ∞
−∞ x2 p(x, t )dx < ∞, i.e., for β >

1 + α, this cutoff does not play any role provided the central
part is broad enough, i.e., for long times. If the corresponding
integral diverges, the second moment is governed by the
position of the cutoff at x ∼ √

4Kαtα , and behaves exactly as
predicted by Eq. (91).

VIII. MEAN FIRST-PASSAGE TIME UNDER
POWER-LAW RESETTING

The MFPT for resetting with the power-law waiting-time
distribution can be obtained in full analogy to the case
of the exponential resetting. In order to calculate the first-
passage time for the power-law resetting we use Eq. (33)
with Eqs. (34) and (35), with survival probability of the tar-
get, Eq. (53), the waiting-time distribution between resetting
events, Eq. (7), and the resetting survival probability, Eq. (10).
The expression for X0 reads

X0 = 2√
π

∫ ∞

0
dt

(
1 + t

τ0

)−β ∫ x0
2
√

Kα tα

0
da e−a2

. (101)

By changing the order of integrations we arrive at the expres-
sion

X0 = 2√
π

∫ ∞

0
da e−a2

∫ (
x2
0

4Kαa2 )
1
α

0

(
1 + t

τ0

)−β

dt . (102)

Now the inner integration may be performed explicitly to yield
for the numerator in Eq. (33)

X0 = 2τ0√
π (1 − β )

∫ ∞

0
da e−a2

[
1 +

(
A

a2

) 1
α

]1−β

− τ0

1 − β

(103)

with

A = 1

τ0

(
x2

0

4Kα

) 1
α

. (104)

On the other hand, the denominator in Eq. (33) reads

1 − R0 = 2√
π

∫ ∞

0
da e−a2

[
1 +

(
A

a2

) 1
α

]−β

. (105)

Changing the variables of integration in both expressions to
y = a2, we get

X0 = τ0√
π (1− β )

∫ ∞

0
dy y− 1

2

[
1+

(
A

y

) 1
α

]1−β

e−y − τ0

1 − β
,

(106)

1 − R0 = 1√
π

∫ ∞

0
dy y− 1

2 e−y

[
1 +

(
A

y

) 1
α

]−β

. (107)

Let us evaluate Eq. (107). The integral can be roughly esti-
mated by splitting the integration domain into two parts (at

FIG. 7. Mean FPT as function of β for x0 = 10. The results of
numerical simulation are depicted by circles. The analytical results,
Eq. (109), are given by lines.

the point A) and neglecting subleading terms:∫ ∞

0
dy y− 1

2 e−y
(

1 + Ay− 1
a

)−β



∫ A

0
dy e−yA−βy

β

a − 1
2 +

∫ ∞

A
dy y− 1

2 e−y. (108)

In the first integral we have neglected unity compared to Ay− 1
a

and in the second one we neglect Ay− 1
a compared to 1. Both

integrals are now incomplete Gamma functions. X0 can be
calculated analogously. The final result reads

τ 

(

τ0

β − 1

)(√
πerf (

√
A) − A1−βγ

(
A,

β−1
α

+ 1
2

)
A−βγ

(
A,

β

α
+ 1

2

) + √
πerfc(

√
A)

)
.

(109)

For A = 1
τ0

( x2
0

4Kα
)

1
α → ∞ corresponding to the target located

far from origin the MFPT tends to

τ =
√

πτ
1−β

0

(β − 1)�
(

β

α
+ 1

2

)(
x2

0

4Kα

) β

α

. (110)

The results of numerical simulations together with the
predictions of Eq. (109) are shown in Fig. 7. One can see that
for distant targets (x0 = 10) the search becomes more efficient
in the case of superdiffusion in a large domain of β.

IX. CONCLUSIONS

In the present work we study analytically and numeri-
cally the properties of scaled Brownian motion with time-
dependent diffusion coefficient D(t ) ∼ tα−1 interrupted by
random resetting to the origin. The resetting process is a
renewal one with the PDF of waiting times between the
renewal events being either exponential or a power law with
ψ (t ) ∼ t−1−β . In the present work we concentrate on the
situation in which the diffusion coefficient is also reset and
the displacement process is rejuvenated, so that the whole
process is a renewal one. Erasing the memory in the transport
process under resetting events is of large importance for the
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TABLE I. MSD and PDF for the renewal power-law resetting.

0 < β < 1 − α/2 1 − α/2 < β < 1 1 < β < 1 + α β > 1 + α

MSD ∼tα ∼tα ∼tα+1−β Stagnates
PDF Flat top, Gaussian tail ∼tβ−1|x|−1−2β/α+2/α ∼|x|−1−2β/α+2/α ∼|x|−1−2β/α+2/α

overall behavior, making its dynamics different from the case
in which the memory in the transport process is retained (i.e.,
the diffusion coefficient is not reset), as discussed in the other
work of this series [3].

The main results of the present work are as follows: For
exponential resetting and power-law resetting with β > 1 + α

the MSD at long times stagnates. For exponential resetting
this fact was already proved for a general class of anomalous
diffusion processes [4]. For β < 1 the time dependence of the
MSD remains the same as in the case of free scaled Brownian
motion, albeit with different prefactors. In the intermediate
domain 1 < β < 1 + α we obtain 〈x2〉 ∼ t1+α−β , so that the
behavior of the MSD is defined by the interplay of the
parameters α and β.

In the case of the exponential resetting the PDF tends
to a steady state with stretched or squeezed exponential tail
p(x, t ) 
 exp(−γ |x| 2

α+1 ). For the power-law resetting with
β > 1 the PDF also attains a time-independent form, now
p(x, t ) ∼ x−1− 2β

α
+ 2

α . It is interesting to note that for β > 1 + α

both the MSD and the PDF tend to the stationary state, while
for 1 < β < 1 + α only the PDF in the bulk is stationary
but the MSD grows continuously with time. For β < 1 the
behavior of the PDF depends on the relation between the
exponents β and α. For β > 1 − α/2 the x dependence of
the PDF for

√
4Kατα

0 � |x| � √
4Kαtα is the same as in the

previous case, but now the time dependence also appears:
p(x, t ) ∼ tβ−1|x|−1− 2β

α
+ 2

α . For long times this intermediate
domain covers practically the whole bulk of the distribution.
For β < 1 − α/2 the PDF in the center of the distribution is
flat, with a Gaussian tail at x � √

4Kαtα . We present the MSD
and PDF in the form of the Table I. The results for the time
dependence of the MSD for power-law resetting with β < 1
coincide with those of Ref. [4].

The overall renewal nature of the whole process allowed
us also to calculate the mean first-passage time to a target.
This MFPT is investigated as a function of parameters of
the model for the corresponding cases of Poissonian and
power-law resetting. As is generally the case, resetting makes
the search of the target much more effective. There always
exists an optimal resetting strategy minimizing the MFPT. The
subdiffusive search is favorable at large resetting rates and for
remote targets. The superdiffusion is more efficient at small
resetting rates and for target locations close to the starting
point.

The results for the renewal resetting scheme for SBM
should be confronted with the ones for the situation in
which the transport process is not rejuvenated under resetting,
and the whole process is nonrenewal, as discussed in detail
in the other work of this series [3]. The behavior observed
in this process significantly differs from the results discussed
above. Here the MSD in the case of exponential resetting does
not stagnate for α �= 1 and shows the behavior 〈x2〉 ∼ tα−1.
The time dependence of the MSD for power-law resetting is
summarized in Table II. Thus for slowly decaying waiting-
time PDFs with β < 1 this MSD follows 〈x2〉 ∼ tα , like in
the free SBM, while for β > 1 the growth gets slower, and
for rapidly decaying PDFs with β > 2 the time dependence
of the MSD is the same as in the exponential case, namely
〈x2〉 ∼ tα−1. This implies that for subdiffusive SBM with
α < 1 the particle gets localized at the origin.

In contrast with the renewal case, the PDF of the particle’s
position for nonrenewal resetting with exponential waiting
time always shows a simple two-sided exponential (Laplace)
shape and is nonstationary (cf. with stationary stretched or
squeezed exponential forms discussed above). In the case of
the power-law resetting time PDF with very slow decay (β <

1/2) the PDF of positions does not show any universal scaling
in the body and possesses Gaussian tails. In all other cases it
tends to universal forms that are different for 1/2 < β < 1 and
for β > 1. These forms are however different from the ones
obtained in the renewal case. The main physical consequence
of our discussion is that it shows that erasing or retaining the
memory in transport process is crucial for the features of the
overall dynamics.

Our results have several implications going beyond the
standard resetting scheme and displacement process as rep-
resented by SBM. We note that the PDF of the random
process under renewal resetting depends only on the PDF of
displacements of the free displacement process within a single
renewal epoch. Moreover, the MSD in such a process depends
only on the MSD in a displacement process, and not on other
properties of this process, such as its PDF or correlations
between the increments.

These statements mean that under the fully renewal setup,
the results for the PDF for any Gaussian displacement process
will be the same as for the SBM. Moreover, the correspond-
ing formulas can be applied to increments of any Gaussian
process with stationary increments sampled at random times
following a renewal process. Physically, we here consider our

TABLE II. MSD and PDF for the nonrenewal power-law resetting.

0 < β < 1/2 1/2 < β < 1 1 < β < 2 β > 2

MSD ∼tα ∼tα ∼tα+1−β ∼tα−1

PDF Flat top, Gaussian tail ∼tα(β−1)|x|1−2β ∼t (1−β )(1−α)|x|1−2β ∼t (1−β )(1−α)|x|1−2β
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resetting not as a physical return to the origin but as declaring
the actual particle’s position at the end of a renewal epoch
a new origin. As an example, one can consider increments
of a fractional Brownian motion [31], a non-Markovian pro-
cess with stationary increments with nontrivial memory. If
this dependence is 〈[x(t + �t ) − x(t )]2〉 ∼ �tα , the PDF of
displacements and the MSD in the time intervals defined by
the sampling times with power-law distribution of periods
between them will follow from Table I.

We moreover note that in the subdiffusive case the SBM
can be considered as a mean-field (Gaussian) approximation
for the CTRW model [33] with a power-law waiting-time
probability density function, which, like the SBM, is a process
with nonstationary increments. In SBM this nonstationarity
is modeled via the explicit time dependence of the diffusion
coefficient, while the CTRW, being of the renewal class,
lacks explicit time dependencies of its parameters. On the

other hand, SBM is a Markovian process, while CTRW is
a non-Markovian (semi-Markovian) one. Nevertheless, aging
properties of both processes are very similar, and so should
be the behaviors of the MSD under two types of resetting.
The probability density functions of the processes differ,
however.

The analogies above cannot be generalized to the first-
hitting times, which depend on other properties of the motion
in a single renewal epoch (multipoint probability densities),
rather than the single-time PDF.
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