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Nonrenewal resetting of scaled Brownian motion
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We investigate an intermittent stochastic process in which diffusive motion with a time-dependent diffusion
coefficient, D(t ) ∼ tα−1, α > 0 (scaled Brownian motion), is stochastically reset to its initial position and starts
anew. The resetting follows a renewal process with either an exponential or a power-law distribution of the
waiting times between successive renewals. The resetting events, however, do not affect the time dependence of
the diffusion coefficient, so that the whole process appears to be a nonrenewal one. We discuss the mean squared
displacement of a particle and the probability density function of its positions in this process. We show that scaled
Brownian motion with resetting demonstrates rich behavior whose properties essentially depend on the interplay
of the parameters of the resetting process and the particle’s displacement infree motion. The motion of particles
can remain almost unaffected by resetting but can also get slowed down or even be completely suppressed.
Especially interesting are the nonstationary situations in which the mean squared displacement stagnates but the
distribution of positions does not tend to any steady state. This behavior is compared to the situation [discussed
in the companion paper; A. S. Bodrova et al., Phys. Rev. E 100, 012120 (2019)] in which the memory of the
value of the diffusion coefficient at a resetting time is erased, so that the whole process is a fully renewal one.
We show that the properties of the probability densities in such processes (erasing or retaining the memory on
the diffusion coefficient) are vastly different.
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I. INTRODUCTION

Resetting represents a class of stochastic processes in
which a random motion is from time to time terminated
and restarted from given initial conditions. The instant of
restarting can depend on the state of the process (e.g., it may
be restarted under level crossing, as in many neuronal models
[1]) or may be independent of this. The latter class of pro-
cesses (motion under stochastic resetting) is what we consider
here. One of the first studies of processes with resetting was
devoted to a discrete-time stochastic multiplicative model [2].

The random motion under stochastic resetting arises as the
interplay of two distinct random processes: the resetting pro-
cess, a point process on the real line representing the time axis;
and the particle’s motion between resetting events, which we
call the displacement process. The first work in the direction
we follow in the present paper concentrated on the case where
the displacement process is an ordinary Brownian motion
[3], i.e., a Markovian process with stationary increments.
The same is true for Lévy flights considered in [4] and [5],
where, differently from Brownian motion, the trajectories of
the free displacement process are discontinuous. Starting from
the one-dimensional Brownian motion of single particles with
resetting to the initial position [3,6], the process was further
generalized to two and more dimensions [7] and to motion in a
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bounded domain with reflecting [8] and adsorbing [9] bound-
aries and in an external potential [10,11]. Also, cases with
several choices of resetting position [12–14], with nonstatic
restart points [15], and with several interacting Brownian
particles with resetting [16] were discussed. Resetting has
been investigated in the context of reaction diffusion with
stochastic decay rates [17] and branching processes [18,19].
Large deviations and phase transitions for Markov processes
under resetting were considered in Ref. [20].

Stochastic resetting of a diffusion process fundamentally
changes its properties due to competition between the ten-
dency toward diffusive spreading and repeated returns to the
initial state. The ordinary normal diffusion process interrupted
at a constant rate by resetting to the initial position [3]
generates a nonequilibrium stationary state (NESS). However,
the limitation to a constant resetting rate severely restricts
the applicability to memoryless resetting processes. The more
general case of gamma and Weibull distributions of waiting
times between resetting events was discussed in [21]. Reset-
ting with a position-dependent resetting rate [12] and with a
time-dependent resetting rate [22] and resetting with a power-
law distribution of waiting times between resetting events
[23] have also been considered. Resetting-induced NESS has
also been studied in many-body systems such as coagulation-
diffusion processes [24].

Another important direction of work is connected with
investigations on non-Markovian processes with resetting.
Thus, Ref. [25] discusses resetting of a particle to a position
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chosen from its trajectory in the past according to some
memory kernel. Another displacement process with memory
considered corresponds to a continuous-time random walk
(CTRW) with or without drift [26–29].

In the present paper we consider scaled Brownian motion
(SBM) with stochastic resetting. SBM is a paradigmatic Gaus-
sian process governed by the overdamped Langevin equation
with a diffusion coefficient which scales as a power law in
time,

dx(t )

dt
=

√
2D(t )η(t ), (1)

where D(t ) � tα−1 with α > 0. Here η(t ) represents white
Gaussian noise with zero mean 〈η(t )〉 = 0 and covariance
〈η(t1)η(t2)〉 = δ(t1 − t2). Setting

D(t ) = αKαtα−1, (2)

one gets the mean squared displacement (MSD),

〈x2(t )〉 = 2Kαtα. (3)

For 0 < α < 1 the motion is subdiffusive, and for α > 1
one speaks about superdiffusion [30–37]. The case α = 2
corresponds to ballistic spread, and cases with α > 2 are
termed superballistic or hyperdiffusive. In the limiting case
α = 0 the diffusion process is ultraslow with logarithmic time
dependence of the MSD [38]. We note that the underdamped
Langevin equation with a time-dependent diffusion coefficient
has been studied in [39] and [40].

SBM as a model for anomalous diffusion was first intro-
duced by Batchelor to model turbulent dispersion [41], where
the particles’ spread is described by Richardson’s law [42]
with the exponent α = 3. Interestingly enough, the alternative
models were Lévy flights (introduced long before the name
was coined; see Sec. 24.4 of Ref. [43]) and Lévy walks [44].

SBM was used to describe fluorescence recovery after
photobleaching in various settings [45], as well as anoma-
lous diffusion in various biophysical contexts including brain
matter [46,47]. A time-dependent diffusion coefficient may
be observed in systems with a time-dependent temperature,
such as melting snow [48,49] or free cooling granular gases
[50–52]. A granular gas of viscoelastic particles represents
an illuminating example of a many-particle system where the
self-diffusion follows subdiffusive SBM with α = 1/6; for a
granular gas of particles colliding with a constant restitution
coefficient SBM with α = 0 has been observed [53].

The very term scaled Brownian motion was introduced
in Ref. [54], where the authors compare the properties of
SBM and fractional Brownian motion (FBM). Both processes
are Gaussian random processes with the same single-time
probability density functions (PDFs) but are intrinsically dif-
ferent in many other respects. Thus, SBM is a Markovian
process with nonstationary increments, whereas FBM is non-
Markovian but possesses stationary increments (which always
show regimes; see [54]). In contrast to FBM, SBM ex-
hibits discordance between its ensemble and its time-averaged
MSDs, which is a sign of ergodicity breaking [30]. The
nonergodicity of SBM does not, however, go hand in hand
with the strong difference between its different realizations:
its heterogeneity (ergodicity-breaking) parameter tends to 0
for long trajectories [55].

In the subdiffusive case SBM can be considered a mean-
field approximation for the CTRW model [56] with a
power-law waiting-time PDF, which also has nonstationary
increments. However, in SBM this nonstationarity is modeled
via the explicit time dependence of the diffusion coefficient,
while the CTRW, being of the renewal class, lacks explicit
time dependences of its parameters. On the other hand, SBM
is a Markovian process, while CTRW is a non-Markovian
(semi-Markovian) one. Nevertheless, the aging properties of
both processes are very similar.

Therefore, just like in the CTRW, two situations can be
discussed: the dynamics of the underlying process is rejuve-
nated after resetting or is not influenced by the resetting of
the coordinate. In the CTRW the first assumption would mean
that a new waiting period starts immediately after the resetting
event; see [28] for a discussion of the corresponding physical
assumptions. In the second situation the waiting period started
before the resetting event is not interrupted by the resetting.
Reference [28] concentrated on the first situation, correspond-
ing to the renewal property of the whole process.

In SBM the first assumption corresponds to the situation
where the diffusion coefficient also resets to its initial value,
while another situation corresponds to the case where only
the position of the particle is altered by the resetting events
and the diffusion coefficient remains unaffected. The two
situations are quite different in their behavior. In the present
work we concentrate the nonrenewal situation while the fully
renewal one, is considered in the companion paper [57]. We
analytically derive the MSD and PDF for the cases of expo-
nential and power-law resetting and compare our predictions
with the results of numerical simulations.

We proceed as follows. In Sec. II we define the main
quantities describing the behavior of the system with resetting
and describe the details of numerical simulation. In Secs. III
and IV we give the analytic results for SBM with exponential
and power-law resetting, respectively, and compare them with
the numerical simulations. Finally, we give our conclusions in
Sec. V.

II. STOCHASTIC RESETTING

Let us consider a particle returning to the initial position
x = 0 at random times. We denote by ψ (t ) the probability
density function of waiting times between two consecutive
resetting events. In the present work we concentrate on two
cases: the first one is when this PDF is exponential (which
corresponds to a Poissonian resetting process), ψ (t ) ∼ e−rt ;
in the second one it follows a power law, ψ (t ) ∼ t−1−β . The
survival probability �(t ) gives the probability that no resetting
event occurs between 0 and t ,

�(t ) = 1 −
∫ t

0
ψ (t ′)dt ′ =

∫ ∞

t
ψ (t ′)dt ′. (4)

Sometimes, especially for the case of a power-law PDF, it
is convenient to switch between the time and the Laplace
domains. The Laplace transform of the resetting PDF is

ψ̃ (s) =
∫ ∞

0
ψ (t ) exp(−ts)dt . (5)
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The Laplace transform of the survival probability can be
expressed via ψ̃ (s) as

�̃(s) = 1 − ψ̃ (s)

s
. (6)

The probability density ψn(t ) that the nth resetting event
happens at time t satisfies the renewal equation [31]

ψn(t ) =
∫ t

0
ψn−1(t ′)ψ (t − t ′)dt ′, (7)

and the sum of all ψn(t ) gives the rate of resetting events at
time t :

κ (t ) =
∞∑

n=1

ψn(t ). (8)

Its Laplace transform yields

κ̃ (s) =
∞∑

n=1

ψ̃n(s) = ψ̃ (s)

1 − ψ̃ (s)
. (9)

The probability of finding the particle at location x at time t
(PDF) is

p(x, t ) = �(t )p0(x, t, 0) +
∫ t

0
dt ′κ (t ′)�(t − t ′)p0(x, t, t ′).

(10)

Here the first term accounts for the realizations where no
resetting took place up to the observation time t . The weight
of such realizations in the ensemble of all realizations is given
by �(t ). The second term accounts for the case where the last
resetting event before the observation occurs at time t ′ [the
probability of which is κ (t ′)dt ′], no resetting occurs between
t ′ and t , and the particle moves freely between these two
instants in time. The first term may be safely neglected at long
times t → ∞, and the PDF of the particle’s positions at such
long times is

p(x, t ) �
∫ t

0
dt ′κ (t ′)�(t − t ′)p0(x, t, t ′). (11)

Between t ′ and t the particle performs free SBM with the PDF
given by

p0(x, t, t ′) =
√

1

4πKα (tα − t ′α )
exp

(
− x2

4Kα (tα − t ′α )

)
.

(12)

Multiplying Eq. (10) by x2 and performing integration over
x, we get the equation for the MSD of particles:

〈x2(t )〉 = 2Kαtα�(t ) + 2Kα

∫ t

0
dt ′κ (t ′)�(t − t ′)(tα − t ′α ).

(13)

At long times t → ∞ the first term may be neglected and we
obtain for the MSD

〈x2(t )〉 � 2Kα

∫ t

0
dt ′κ (t ′)�(t − t ′)(tα − t ′α ). (14)

The MSD may or may not be determined by the form of
the PDF in the bulk and has to be calculated separately: A
very peculiar situation corresponding to such a case, where

the MSD stagnates but the bulk of the distribution shrinks,
appears for power-law waiting-time distributions with 1 <

β < 2.
In what follows we obtain the PDF, Eq. (10), and the MSD,

Eq. (13), for exponential and power-law resetting waiting-
time densities for long times analytically and compare them to
the results of numerical simulations. The event-driven simula-
tions are performed as follows. For a given sequence of output
times t we simulate the sequence of resetting events, find the
time of the last resetting event t ′ < t , and set x(t ) = 0. Then
the position of the particle at time t is distributed according to
a Gaussian with zero mean and variance, 〈x2(t )〉 = 2Kα (tα −
t ′α ). The corresponding Gaussian can be obtained from a
standard normal distribution generated using the Box-Muller
transform. The results are averaged over N = 104 to 106

independent runs. In all our simulations Kα is chosen in such
a way that αKα = 1.

III. SCALED BROWNIAN MOTION WITH
EXPONENTIAL RESETTING

The simplest and most studied case corresponds to expo-
nentially distributed waiting times between resets:

ψ (t ) = re−rt . (15)

In this case the resets occur at a constant rate r. The survival
probability, according to Eq. (4), follows

�(t ) = e−rt . (16)

The rate at which resetting events follow is constant:

κ (t ) = r. (17)

This means that the resetting events occur with the same
probability at any given interval dt of time.

A. Mean-squared displacement

The MSD for SBM with exponential resetting can be
obtained by inserting Eqs. (16) and (17) into Eq. (13),

〈x2(t )〉 = 2Kαtα − 2Kαrt1+αe−rt M(α + 1, α + 2, rt )

α + 1
, (18)

where M(a, b, z) is the Kummer function defined as [58]

M(a, b, z) = 
(b)


(a)
(b − a)

∫ 1

0
dtezt t a−1(1 − t )b−a−1, (19)

with 
(z) being the gamma function. Expanding the Kummer
function M(α + 1, α + 2, rt ) for rt 	 1 [58],

M(α + 1, α + 2, rt ) = (α + 1)
ert

rt

[
1 + O

(
1

rt

)]
, (20)

we get the power-law dependence for the MSD at long times,

〈x2(t )〉 � 2αKα

r
tα−1. (21)

The exponent in the time dependence of MSD is always
smaller by 1 than in the case of free diffusive motion without
resetting. In this way, resetting affects SBM in a similar way
as putting the particle performing SBM into a confining har-
monic potential [59] or in fractional Brownian motion in the
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FIG. 1. The MSD for SBM with exponential resetting: theoreti-
cal results, Eq. (21) (thin solid black lines) and computer simulations
(thick colored lines) obtained for α = 0.5, 1, 1.5, 3, and 4.

fully renewal case [60]. For α = 1, we reproduce the result for
standard Brownian motion with exponential resetting, namely,

〈x2(t )〉 = 2K1

r
. (22)

For ballistic motion between resetting events, α = 2, the
motion with resetting shows the MSD behavior akin to nor-
mal diffusion. Superdiffusive SBM with 1 < α < 2 becomes
subdiffusive in the presence of resetting. The most interesting
case corresponds to subdiffusive SBM, 0 < α < 1, where the
MSD decays to 0 following a power law. This means that
due to slowing-down of the motion over the course of time
the particle is unable to get far away from the initial point
between the resetting events and tends to remain in the vicinity
of the origin.

The analytical result for the MSD in the case of ex-
ponential resetting, Eq. (21), has been compared with the
numerical simulations, showing full agreement. In Fig. 1
we present the MSD for different values of α. The thick
colored lines correspond to the numerical results; the thin
solid lines correspond to asymptotics as given by Eq. (21). The
light-gray line corresponds to initially superdiffusive motion
with exponent α = 4, which again turns to superdiffusion,
but with the lower-power exponent α − 1 = 3. For α = 3
initially superdiffusive motion turns into ballistic motion with
exponent α − 1 = 2 (magenta line in Fig. 1). For α = 1.5
initially superdiffusive motion turns into subdiffusion with
α − 1 = 0.5 in the presence of resetting (green line). In the
case of ordinary diffusion with α = 1 the MSD stagnates, as
predicted in [3] (blue line). Initially subdiffusive motion with
α = 0.5 becomes trapped in the vicinity of the origin: the
MSD tends to 0 as tγ with γ = α − 1 = −0.5 (orange line).

B. Probability density function

Let us now obtain the asymptotic form of the PDF for
SBM with exponential resetting valid in the long-time limit
for tα+1 	 x2/(Kαr). Equation (11), together with Eqs. (12),

(16), and (17), results in

p(x, t ) � r
∫ t

0
dt ′ exp

(
− x2

4Kα (tα − t ′α )

)
exp(−r(t − t ′))√

4πKα (tα − t ′α )
.

(23)

Using the new variable ζ = 1 − t ′/t we rewrite Eq. (23) as

p(x, t ) � rt
∫ 1

0
dζ

eϕ(ζ )

√
4πKαtα (1 − (1 − ζ )α )

, (24)

where

ϕ(ζ ) = −rtζ − x2

4Kαtα (1 − (1 − ζ )α )
. (25)

The major contribution to the integral, Eq. (24), comes from
a small interval in the vicinity of ζmax, where ϕ(ζ ) attains its
maximum, which is given by the solution of ϕ′(ζmax) = 0. For
x fixed and t large this maximum shifts closer and closer to 0,
so that the approximation

1 − (1 − ζmax)α ≈ αζmax (26)

holds, and ζmax can be estimated as

ζmax �
√

x2

4αKαrtα+1
. (27)

The integral, Eq. (24), can then be evaluated using the stan-
dard Laplace method (i.e., expanding the argument of the
exponential up to second order), thus giving

p(x, t ) � rt√
4πKαtααζmax

eϕ(ζmax )
∫ ∞

−∞
dζe− 1

2 (ζ−ζmax )2|ϕ′′(ζmax )|

= rteϕ(ζmax )

√
2Kαtααζmax|ϕ′′(ζmax)| , (28)

with ϕ′′(ζmax) being the second derivative of ϕ at its maxi-
mum. Performing calculations we get

p(x, t ) � 1

2

√
r

αKα

t
1−α

2 exp

(
−

√
r

αKα

|x|t 1−α
2

)
. (29)

This distribution is evidently non-Gaussian and time depen-
dent and has a cusp at x = 0. For α = 1, corresponding to
ordinary Brownian motion, Eq. (29) tends to stationary steady
state, obtained in [3]. In Fig. 2 we plot the PDF for initially
subdiffusive SBM (α = 0.5) under Poissonian resetting at
different times. At short times t < 1/r the width of the PDF
is increasing, then it starts to decrease, collapsing, finally, to a
vary narrow function. The initially subdiffusive motion leads
over the course of time to trapping at the origin, as already
seen from the behavior of its MSD, which at long times tends
to 0 as tγ with γ = α − 1 = −0.5 (orange line in Fig. 1).
In Fig. 3 the PDF for initially superdiffusive SBM (α = 3)
with Poissonian resetting is presented at different times, t = 2,
10, 100, and 1000. Here the distribution broadens rapidly
and at longer times approaches the scaling form, as given by
Eq. (29).
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FIG. 2. The PDF for subdiffusive SBM (α = 0.5) with Poisso-
nian resetting for t = 0.3, 1, 10, and 100 (blue, magenta, green, and
orange lines, respectively). The width of the PDF first is increasing
and then starts to decrease. At the very short time t = 0.003 the PDF
is Gaussian (light-blue line), reproducing the PDF of free SBM (thin
dashed black line). At long times the PDF is described by Eq. (29)
(thin solid black line).

IV. SCALED BROWNIAN MOTION WITH
POWER-LAW RESETTING

Let us consider the case where the time between successive
resets is distributed according to the power law

ψ (t ) = β/τ0

(1 + t/τ0)1+β
, β > 0, (30)

with τ0 assumed to be constant, and is set to unity in simu-
lations. The survival probability, according to Eq. (4), reads

�(t ) = (1 + t/τ0)−β. (31)

FIG. 3. The PDF for superdiffusive SBM (α = 3) with Poisso-
nian resetting as obtained in numerical simulations for t = 2, 10,
100, and 1000 (thick colored lines) and the prediction of the scaling
form, Eq. (29).

For β > 2 both the first and the second moments of the
distribution function of waiting times do exist:∫ ∞

0
tψ (t )dt = τ0

β − 1
, (32)∫ ∞

0
t2ψ (t )dt = 2τ 2

0

(β − 1)(β − 2)
. (33)

For 1 < β < 2 the second moment does not exist while the
first moment does. For β < 1 both the first and the second
moments diverge. As we see below the parameter β has a
crucial impact on the behavior of the system.

In the Laplace domain

ψ̃ (s) = β

τ0

∫ ∞

0
dte−ts

(
1 + t

τ0

)−1−β

. (34)

Performing a change of the variables y = s(t + τ0) and inte-
grating by parts we get

ψ̃ (s) = 1 − esτ0 (sτ0)β
∫ ∞

sτ0

dye−yy−β. (35)

For s → 0 and 0 < β < 1 the integration yields

ψ̃ (s) = 1 − 
(1 − β )(sτ0)β + . . . . (36)

For 1 < β < 2 the asymptotic result for s → 0 reads

esτ0

∫ ∞

sτ0

dye−yy1−β → 
(2 − β ), (37)

and we get

ψ̃ (s) = 1 − sτ0

β − 1
+ (sτ0)β
(2 − β )

β − 1
+ . . . , (38)

while for β > 2 we get

ψ̃ (s) = 1 − sτ0

β − 1
+ (sτ0)2

(β − 1)(β − 2)
+ . . . , (39)

with 0 < β < 1, 1 < β < 2, and β > 2.

A. 0 < β < 1

1. Mean squared displacement

In order to calculate the MSD we use Eq. (14). The rate of
the resetting events κ (t ) is given by Eq. (36) and Eq. (9),

κ̃ (s) � 1


(1 − β )τβ

0 sβ
, (40)

so that

κ (t ) � τ
−β

0


(β )
(1 − β )
tβ−1 . (41)

Unlike the case of exponential resetting, the rate of resetting
events decays with time. The MSD for power-law resetting
with 0 < β < 1 can be obtained by inserting Eq. (41) into
Eq. (14),

〈x2(t )〉 � 2Kαtα

(
1 − 1

αB(α, β )

)
, (42)

with B(α, β ) = ∫ 1
0 dttα−1(1 − t )β−1 = 
(α)
(β )


(α+β ) being the beta

function. We note that (1 − 1
αB(α,β ) ) < 1 so that the MSD
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FIG. 4. The MSD for SBM with power-law resetting, α = 0.5.
This figure is referred to several times in the text. Thick colored lines
correspond to numerical simulations. Thin solid black lines represent
analytical results. For β = 0.5 Eq. (42) is used, for β = 1.4, 1.5, and
1.6 Eq. (58) is used, and for β = 2.5 Eq. (66) is used.

described by Eq. (42) differs from the MSD for a particle
performing free diffusive SBM, Eq. (3), only by the prefactor:
〈x2(t )〉 � 2K∗

α tα with K∗
α < Kα . The comparison between an-

alytical and numerical results for power-law resetting is given
in Fig. 4. Thick colored lines correspond to the numerical
results, and dashed lines to the theory, showing the nice
agreement in the asymptotic domain. Initially subdiffusive
motion with α = 0.5 remains subdiffusive: 〈x2〉 ∼ tα (green
line corresponding to β = 0.5 in Fig. 4). Figure 4 gives an
overview of all MSD behaviors under power-law resetting
discussed in the present paper: Other lines in Fig. 4 show the
results for the MSD for larger values of β as discussed below.

For α = 1 expression (42) yields the normal diffusion
regime with a different prefactor,

〈x2(t )〉 � 2K1(1 − β )t . (43)

2. Probability density function

In order to calculate the PDF we consider the Fourier
transform of Eq. (11):

p̂(k, t ) �
∫ t

0
dt ′κ (t ′)�(t − t ′) exp(−k2Kα (tα − t ′α )). (44)

For small k2 (which correspond to large |x| in the far tail of
the distribution), Kαk2tα 
 1, one separates the exponentials
containing t and t ′ and changes the variable of integration to
τ = t ′/t :

p̂(k, t ) � exp(−Kαk2tα )


(β )
(1 − β )

∫ 1

0
dττβ−1(1 − τ )−β

× exp(Kαk2tατα ). (45)

The exponential in the integrand can then be approximated by
unity, and the integration yields a constant value B(β, 1 − β ),
so that

p̂(k, t ) � exp(−Kαk2tα ). (46)

The inverse Fourier transform gives the Gaussian behavior of
the PDF in its far tail,

p(x, t ) � 1√
4πKαtα

exp

(
− x2

4Kαtα

)
. (47)

This far-tail behavior is universal for power-law resetting.
For Kαk2tα 	 1 (which corresponds to x in the bulk of

the distribution) one does not separate the exponentials and
uses the approximation τα � 1 − α(1 − τ ). Introducing a
new variable ξ = 1 − τ we find

p̂(k, t ) � 1


(β )
(1 − β )

∫ 1

0
dξξ−β (1 − ξ )β−1e−αKαk2tαξ .

(48)

The upper limit of integration can then be shifted to infinity
(since the argument of the exponential is very large and
negative), and the inverse Fourier transform of this expression
can be performed. The result for x2 
 Kαtα thus reads

p(x, t ) � 1


(1 − β )

1√
4παKαtα

× exp

(
− x2

4αKαtα

)
U

(
β, β + 1

2
,

x2

4αKαtα

)
. (49)

Here U (a, b, z) is the Tricomi confluent hypergeometric func-
tion [58]

U (a, b, z) = 1


(a)

∫ ∞

0
dte−zt t a−1(1 + t )b−a−1. (50)

Using the expansion of U (a, b, z) for z 
 1 [58], we get the
following asymptotics for Eq. (49):

p(x, t ) � 1√
4αKαtαπ2

sin (πβ )
(1/2 − β )
(β ),

0 � β < 1/2, (51)

p(x, t ) � 
(β − 1/2)

(4αKαtα )1−β

sin (πβ )

π3/2|x|2β−1 ,

1/2 < β � 1. (52)

This change in the behavior can be anticipated from the
form of the integral defining the Tricomi function, Eq. (50),
since for β > 1/2 the integral diverges at the upper limit
for z = 0, while for β < 1/2 it converges at the upper limit
also without the regularizing exponential depending on x,
so that the distribution at small x develops a flat top. The
transition involving logarithmic corrections is not captured by
the asymptotic expansions.

For α = 1 the PDF behaves as that for ordinary Brownian
motion with power-law resetting with 0 < β < 1 [23].

In Fig. 5 we show the results of numerical simulations for
β = 0.25 at shorter times, which is indeed well fitted with
the Gaussian function, Eq. (47). At variance with the case of
subdiffusive SBM with exponential resetting, the width of the
probability distribution increases.

In Fig. 6 the numerical results for the PDF for SBM
with power-law resetting, β = 0.75 > 1/2, is shown. With
rescaled variables p(x, t )

√
4αKαtα versus x/

√
4αKαtα the

distribution functions at different times collapse and show
nice agreement with the analytical solution, Eq. (52).

012119-6
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FIG. 5. The PDF for SBM with power-law resetting, β = 0.25,
α = 0.5, at times t = 0.1, 1, 10, and 100. Thin solid black lines show
the Gaussians exp (−x2/4Kαtα )/

√
4πKαtα , Eq. (47).

B. 1 < β < 2

1. Mean squared displacement

The calculation leading to the MSD is similar to the case
for 0 < β < 1. We again use Eq. (14), but with a constant rate
of resetting:

κ (t ) � κ = β − 1

τ0
. (53)

Plugging Eq. (53) into Eq. (14) results in

〈x2(t )〉 � 2Kα (β − 1)

τ0

[∫ t

0
dt ′�(t − t ′)tα

−
∫ t

0
dt ′�(t − t ′)t ′α

]
, (54)

with �(t ) given by Eq. (31). The integration in the first
term is straightforward. The second term has the form of a

FIG. 6. The PDF for SBM with power-law resetting, β = 0.75,
α = 0.5, at long times. The thin solid black line represents Eq. (52).

convolution, and the integral can be evaluated in the Laplace
domain using

�̃(s) � τ0

β − 1
− 
(2 − β )sβ−1τ

β

0

β − 1
, (55)

as follows from Eq. (38) and Eq. (6), so that

L
{∫ t

0
dt ′�(t − t ′)t ′α

}

� 
(α + 1)

sα+1

(
τ0

β − 1
− 
(2 − β )sβ−1τ

β

0

β − 1

)
. (56)

By taking the inverse Laplace transform of Eq. (56), we obtain

∫ t

0
dt ′�(t − t ′)t ′α

� τ0

β − 1

(
tα − 
(2 − β )
(1 + α)t1−β+ατ

β−1
0


(α − β + 2)

)
. (57)

The final result reads

〈x2(t )〉 � 2Kαt1+α−βτ
β−1
0 (αB(α, 2 − β ) − 1). (58)

The system with 1 < β < 2 demonstrates very rich behavior.
The exponent of the time dependence of the MSD decreases
by the amount β − 1 compared to the free motion. This
amount changes from 0 for β = 1 to 1 for β = 2. For β <

1 + α the MSD increases with time, and in the opposite case,
β > 1 + α, it decays at long times, in which case the particles
are unable to move far away from the origin. In the case of
superdiffusion the motion of particles either remains superdif-
fusive, tends to ordinary diffusion, or becomes subdiffusive. In
the case of subdiffusion the motion can either slow down or
become suppressed. For β = 1 + α the MSD stagnates. This
is, however, a very intriguing situation since, as we proceed to
show, the stagnation of the MSD does not imply the existence
of a NESS.

A comparison between numerical and analytical results for
this case is also presented in Fig. 4. For 1 + α > β the system
remains subdiffusive but with a lower exponent (gray line
corresponding to β = 1.4 in Fig. 4); for β = 1 + α the MSD
stagnates as depicted in Fig. 4 (blue line corresponding to
β = 1.5 in Fig. 4). For 1 + α < β the MSD tends to 0 (orange
line corresponding to β = 1.6 in Fig. 4). As the particle cannot
move away from the origin, resetting events can drastically
affect β = 1 + α, leading to trapping.

In the case of ordinary Brownian motion with resetting the
particle performs subdiffusive motion

〈x2(t )〉 � 2K1τ
β−1
0 t2−β β − 1

2 − β
. (59)

This expression can be directly obtained from Eq. (58) by
taking α = 1.
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2. Probability density function

Inserting the expressions for κ , Eq. (53), and �(t ),
Eq. (31), into Eq. (11) we get, in the time domain,

p(x, t ) � β − 1

τ0

1√
4πKα

∫ t

0
dt ′

(
1 + t − t ′

τ0

)−β 1√
tα − t ′α

× exp

(
− x2

4Kα (tα − t ′α )

)
. (60)

Now we assume that t 	 τ0 and change the variable of
integration to y � (1 − (t ′/t )α )−1:

p(x, t ) � t1−β− α
2 τ

β

0

α

∫ ∞

1
dyy− 1

2 − 1
α (y−1)

1
α
−1

(
1−

(
1− 1

y

) 1
α

)−β

× exp

(
− x2y

4Kαtα

)
. (61)

For intermediate values of x (i.e., in the core of the PDF
but not very close to its mode) the integral is dominated by
large values of y, where we can make the approximations

(y − 1)
1
α
−1 ≈ y

1
α
−1 and (1 − (1 − 1

y )
1
α )

−β

≈ αβyβ . The ex-
pression is now simplified to

p(x, t ) � t1−β− α
2 αβ−1τ

β

0

∫ ∞

1
dyyβ− 3

2 exp

(
− x2y

4Kαtα

)
. (62)

The lower bound of integration may be safely shifted to 0, so
that

p(x, t ) � αβ−1τ
β

0 (4Kα )β− 1
2 


(
β − 1

2

)
t (β−1)(α−1)x1−2β.

(63)

Omitting the prefactors we get

p(x, t ) ∼ x1−2βt (1−β )(1−α). (64)

The distribution can be put into a scaling form, p(x, t ) =
t−γ f (x/tγ ) with f (z) = z1−2β , so that γ = (α − 1)/2. This
scaling form is shown in Fig. 7. For ordinary Brownian motion
with power-law resetting and β > 1 the steady state p(x, t ) ∼
x1−2β is recovered [23].

Now we return to a balanced situation, β = 1 + α, when
the MSD stagnates and see that the bulk of the distribution
remains time dependent: the stagnation of the MSD is due to
the compensation effect between the narrowing central peak
and the growing tail, which is a quite peculiar situation, in no
way representing a NESS.

At long times for parameter values β = 1.25, α = 0.5 the
PDF indeed follows the scaling predicted by Eq. (64) and has
the asymptotic p(x) � x−3/2 as shown in Fig. 7.

FIG. 7. The PDF for SBM with power-law resetting, β = 1.25,
α = 0.5, rescaled according to Eq. (64). Shown is p(x)t (β−1)(1−α) as
a function of x for x > 0. The thin black line has the slope −3/2 as
follows from Eq. (64).

C. β > 2

1. Mean squared displacement

The MSD can be obtained similarly to that in the previous
case, 1 < β < 2. Inserting Eq. (39) into Eq. (6), we get for the
Laplace transform of the survival probability

�̃(s) � τ0

β − 1
− sτ 2

0

(β − 1)(β − 2)
. (65)

Now we can calculate the MSD using Eq. (54). The final form
of the MSD reads

〈x2(t )〉 � 2αKατ0

β − 2
tα−1. (66)

This behavior resembles the MSD for Poissonian resetting
[Eq. (21)]. Note that the exponent of the time dependence of
the MSD, Eq. (66), ceases to depend on the exponent β of
the waiting-time distribution; the dependence on β remains
only in the prefactor. Nice agreement with the numerical
simulation, shown as the magenta line corresponding to β =
2.5 in Fig. 4, is observed.

In the case of ordinary Brownian motion (α = 1) the MSD
stagnates:

〈x2(t )〉 � 2K1τ0

β − 2
. (67)

2. Probability density function

The asymptotics for the PDF has the same form, Eq. (64),
as for 1 < β < 2.

TABLE I. Asymptotic behavior of the MSD and of the PDF in the intermediate domain of x for power-law resetting.

0 < β < 1/2 1/2 < β < 1 1 < β < 2 β > 2

MSD ∼tα ∼tα ∼tα+1−β ∼tα−1

PDF Flat top, Gaussian tail ∼tα(β−1)|x|1−2β ∼t (1−β )(1−α)|x|1−2β ∼t (1−β )(1−α)|x|1−2β
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TABLE II. The MSD and PDF for renewal power-law resetting.

0 < β < 1 − α/2 1 − α/2 < β < 1 1 < β < 1 + α β > 1 + α

MSD ∼tα ∼tα ∼tα+1−β Stagnates
PDF Flat top, Gaussian tail ∼tβ−1|x|−1−2β/α+2/α ∼|x|−1−2β/α+2/α ∼|x|−1−2β/α+2/α

V. CONCLUSIONS

In the present work we have discussed the MSD and
the PDF for particles performing scaled Brownian motion
with a time-dependent diffusion coefficient D(t ) ∼ tα−1 un-
der resetting in a nonrenewal case, where the position of a
particle is returned to the origin upon resetting, while the
diffusion coefficient (changing with time) remains unaffected
by the resetting events. The distribution of waiting times
between two successive resetting events either is exponential,
ψ (t ) ∼ e−rt , or follows a power law, ψ (t ) ∼ t−1−β . To the
best of our knowledge, this is the first exhaustive study of
a stochastic process which is not rejuvenated at a resetting
event.

For β < 1 the power-law exponent of the MSD is not
affected by resetting, 〈x2〉 � tα , but only changes the pref-
actor. For 1 < β < 2 the MSD scales as 〈x2〉 � t1+α−β , and
the behavior of the system is determined by the interplay
of the exponents α and β, so that the particle’s motion is
either slowed down compared to free SBM or completely sup-
pressed. Interestingly enough, the compensated case where
the MSD stagnates does not correspond to a stationary state,
since the PDF still changes with time.

The cases of Poissonian resetting and of power-law reset-
ting with β > 2 show strong similarities in the behavior of
the MSD: in both cases it scales as 〈x2〉 � tα−1. This means
that such resetting always decreases the exponent of the MSD
by unity, so that for α > 2 the initially superdiffusive motion
remains superdiffusive, for 1 < α < 2 superdiffusion tends to
subdiffusion, and subdiffusive motion with α < 1 becomes
completely suppressed: the particles get trapped in the vicinity
of the starting point.

Since SBM for 0 < α < 1 shows the same aging properties
of the MSD as the CTRW, the very same behavior can be
anticipated for resetting of the CTRW provided the resetting
events do not rejuvenate the waiting times.

The PDF of the particle’s position for nonrenewal reset-
ting with an exponential waiting-time PDF is nonstationary
but always shows a simple two-sided exponential (Laplace)
shape. In the case of power-law resetting of a waiting-time
PDF with very slow decay (β < 1/2) the PDF of positions
does not show any universal scaling in the body and possesses
Gaussian tails. In all other cases it tends to universal forms
which differ in their time-dependent prefactor for 1/2 < β <

1 and for β > 1. The behavior of the MSD and of the PDF in
the bulk is reported in Table I.

These results should be compared with those for the situa-
tion where the transport process is rejuvenated under resetting,
and the whole process is a renewal one, as discussed in
detail in the companion paper [57]. The behavior observed
in this renewal process significantly differs from the results
discussed above. Here the behavior of the MSD is as follows:
For exponential resetting and power-law resetting with β >

1 + α the MSD at long times stagnates. For β < 1 the time
dependence of the MSD remains the same as in the case of
free scaled Brownian motion, albeit with different prefactors.
In the intermediate domain 1 < β < 1 + α we obtain 〈x2〉 ∼
t1+α−β , so that the behavior of the MSD is defined by the
interplay of the parameters α and β.

Turning to the behavior of the PDF we state that in the
case of exponential resetting the PDF tends to a steady
state with a stretched or squeezed exponential tail p(x, t ) �
exp (−γ |x| 2

α+1 ). For power-law resetting with β > 1 the
PDF also attains a time-independent form, now p(x, t ) ∼
x−1− 2β

α
+ 2

α . We note that for β > 1 + α both the MSD and
the PDF tend to a stationary state, while for 1 < β < 1 + α

only the PDF in the bulk is stationary and the MSD increases
continuously with time. For β < 1 the behavior of the PDF
depends on the relation between the exponents β and α. For
β > 1 − α/2 the x dependence of the PDF for

√
4Kατα

0 

|x| 
 √

4Kαtα is the same as in the previous case, but now
time dependence also appears: p(x, t ) ∼ tβ−1|x|−1− 2β

α
+ 2

α . For
long times this intermediate domain covers practically the
whole bulk of the distribution. For β < 1 − α/2 the PDF
in the center of the distribution is flat, with a Gaussian tail
at x 	 √

4Kαtα . The results for the MSD and the PDF are
reported in Table II.

Comparison of the results for renewal and nonrenewal vari-
ants of the same process shows that erasing or retaining the
memory in the transport process is crucial for the features of
the overall dynamics, which is the main physical consequence
observed in the present work. To the best of our knowledge,
SBM is the only process for which such a comparison has
been performed.

ACKNOWLEDGMENTS

A.V.C. is indebted to D. Boyer for fruitful discussions
which initiated this work and acknowledges the financial
support from the Deutsche Forschungsgemeinschaft within
Project ME1535/6-1.

[1] W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single
Neurons, Populations, Plasticity (Cambridge University Press,
Cambridge, UK, 2002).

[2] S. C. Manrubia and D. H. Zanette, Phys. Rev. E 59, 4945 (1999).

[3] M. R. Evans and S. N. Majumdar, Phys. Rev. Lett. 106, 160601
(2011).
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