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Topological extension of the isomorph theory based on the Shannon entropy
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Isomorph theory is one of the promising theories for understanding the quasiuniversal relationship between
thermodynamic, dynamic, and structural characteristics. Based on the hidden scale invariance of the inverse
power law potentials, it rationalizes the excess entropy scaling law of dynamic properties. This work aims to
show that this basic idea of isomorph theory can be extended by examining the microstructural features of the
system. Using the topological framework in conjunction with the entropy calculation algorithm, we demonstrate
that Voronoi entropy, a measure of the topological diversity of single atoms, provides a scaling law for the
transport properties of soft-sphere fluids, which is comparable to the frequently used excess entropy scaling. By
examining the relationship between the Voronoi entropy and the solidlike fraction of simple fluids, we suggest
that the Frenkel line, a rigid-nonrigid crossover line, be a topological isomorphic line at which the scaling relation
qualitatively changes.
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I. INTRODUCTION

The dynamic behavior of particles in liquids and high-
pressure supercritical fluids is largely influenced by the rel-
ative local configurations of their neighbors. This strong
particle-particle correlation implies that the thermodynamic,
dynamic, and structural characteristics of dense fluids are
intimately linked with each other. Hence, it is no wonder that
a considerable number of studies were devoted to developing
the theory of the liquid state [1,2]. One of the wonderful
aspects of the liquid state theory is its simplicity based on the
hard-sphere paradigm [3]. The hard-sphere paradigm assumes
that the repulsive part of interatomic interaction dominates
the behavior of the liquid state. Based on the hard-sphere
paradigm, the perturbation theory [4,5] has been advanced
to understand the thermodynamic behavior of dense fluid
systems based on the pair correlation function and the hard-
sphere potential as a reference system [6].

Liquid state theory has also been used to relate the ther-
modynamic properties to transport properties. Rosenfeld [7]
and Dzugutov [8] proposed the scaling relation that connects
the thermodynamic excess entropy (Sexc) and the scaled trans-
port properties of dense fluids. Rosenfeld discovered that the
scaled diffusivities of simple liquids modeled with different
interatomic potentials collapse to a single line as a function
of the thermodynamic excess entropy. Based on these scaling
laws, the two-body excess entropy (S2), which can be directly
obtained based on the pair correlation function, has been
frequently used when scaling the dynamic properties based
on the structural characteristics. The scaling relation provided
by S2 was fairly good for simple fluid models [9] although the
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contribution of S2 to the total excess entropy varies depending
on thermodynamic conditions [10–14].

In a more recent approach, Dyre and his coworkers pro-
posed the isomorph theory to understand the relationship
between thermodynamic, dynamic, and structural character-
istics of simple fluid systems in an integrated manner. In the
isomorph theory, the two state points are defined to be isomor-
phic if one can find pairs of scaled configurations that have the
same canonical probability [15]. Let two configurations RA

and RB [Ri ≡ (r1
i , r2

i , . . . , rN
i )] sampled from two thermody-

namic state points (ρA, TA) and (ρB, TB), respectively, have the
same reduced densities, i.e., ρ

1/3
A RA = ρ

1/3
B RB. The two state

points are isomorphic if one has

exp

(
−U (RA)

kTA

)
= CAB exp

(
−U (RB)

kTB

)
, (1)

where CAB is a configuration-independent constant. Gnan et al.
have shown that the condition of having a good isomorph is
equivalent to having a strong correlation between fluctuations
of virial and potential energy, which they term a Roskilde-
simple (R-simple) liquid [16]. The R-simple liquid is defined
as fluid models in which the virial potential-energy correlation
(R) is higher than 0.9. Here, the correlation coefficient R is
defined as

R = 〈�W �U 〉√
〈(�W )2〉〈(�U )2〉

, (2)

where W is the virial (W = pV − NkBT ), U is the potential
energy, and �A is a deviation (�A = 〈A〉 − A). Schrøder and
Dyre demonstrated that the following conditional proposition
for two systems A and B is exact when the correlation coeffi-
cient R is unity [17]:

ρ
1/3
A RA = ρ

1/3
B RB ⇒ Sexc(RA) = Sexc(RB). (3)
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In Eq. (3), ρi and Sexc(Ri ) are the bulk density and the
excess entropy of the system i. When two systems satisfy
the antecedent, they are regarded as being isomorphic to each
other. Schrøder and Dyre showed that Newton’s second law of
motion in reduced units is invariant for the isomorphic states:

ρ
1/3
A RA = ρ

1/3
B RB ⇒ F̃A = F̃B, (4)

where F̃ is the dimensionless force vector (F̃ ≡ ρ−1/3F/kBT ).
This result explains why the excess entropy scaling law holds
for simple fluids. In subsequent articles, they successfully
showed that the isomorph theory works as a good approxima-
tion to different types of potentials [18] including Lennard-
Jones (LJ) [19], Yukawa [20], and exponential pair potentials
[21]. Some known exceptions that do not follow the isomorph
theory and the excess entropy scaling law are the potentials
with thermodynamic anomalies [22].

Despite this success of the isomorph theory, it should be
noted that a direct connection between the structural definition
of isomorphic states and the dynamics scaling was not given
yet. Unlike crystalline systems, it is extremely difficult to
discover two liquid configurations that exactly satisfy the
antecedent of Eq. (3). A pair correlation function, g(r), has
been frequently used as an indicator of the antecedent, but
the details of the local configuration cannot be inferred from
the pair correlation function. Moreover, the two-body excess
entropy directly calculated from the pair correlation function
cannot work as a robust parameter because its proportion
varies depending on thermodynamic conditions [10–14].

We note that the antecedent of Eq. (3) can be reformulated
from the atomistic point of view. The scale invariance hypoth-
esized in Eq. (3) can be expressed as follows. Let ξ

j
i be a

position vector of the neighbor atom j relative to the atom
i (ξ j

i = r j − ri), and �i ≡ (ξ 1
i , ξ 2

i , ξ 3
i , . . .) a set of position

vectors. Then, two local configurations of particles a and b are
isomorphic to each other if the following condition is satisfied:

ρ
1/3
a,l �a = ρ

1/3
b,l �b ⇒ Sexc(RA) = Sexc(RB), (5)

where ρi,l is the local density of the atom i, and �i contains all
particles of the system except the particle i. This microscopic
definition itself does not provide any advantages over the
macroscopic description, but this point of view can extend
the definition of the isomorphic states in conjunction with
the notion of the Gibbs entropy, which states that the system
entropy is given by a distribution on the microstates (S =
−kB

∑
pi ln pi, where pi is the probability of the microstate

i). In a similar vein, if a relative configuration (ρ1/3
i,l �i) is

regarded as a microstate, we can hypothesize that two configu-
rations will have the same excess entropy if their distributions
of the relative configurations are the same.

This viewpoint is related to our works on dense supercriti-
cal fluids. We have characterized the local structure of an atom
with respect to the topological type of its Voronoi polyhedron
to develop a theory of structure-dynamics relationship [23]
and a notion of quasiuniversality among simple fluids [24].
In this work, we validate the idea of Eq. (5) by defining the
microstate of an atom as the topological type of its Voronoi
polyhedron [25] and estimating the excess entropy from the
diversity of this topological type in the given thermodynamic
condition, where the local density ρi,l in Eq. (5) is given as the

inverse volume of the Voronoi polyhedron. Then, the classical
notion of the equivalence of the Shannon entropy and the
thermodynamic entropy is exploited to define Voronoi entropy
based on the topological types observed in the system. By
comparing the scaling results of the repulsive n − 6 models
obtained from the thermodynamic excess entropy and the
Shannon entropy, we not only demonstrate that the Voronoi
entropy works as a good measure to scale the dynamic prop-
erties, but also test the equivalence of the Shannon excess
entropy and the thermodynamic excess entropy. Lastly, we
show that the Frenkel line, a rigid-nonrigid transition line that
can be understood with respect to the percolation of rigid
microstates [23,26], can be regarded as a limit of applicability
of the exponential scaling relation.

II. METHODS

A. Molecular dynamics simulations

We perform the NVT simulations [27] of the soft-sphere
fluids of which the interatomic potentials are modeled with
the repulsive n − 6 potential. The repulsive n − 6 potential is
given as follows:

φ(r) =
{

φM (r) − φM (rcut ), r � rcut,

0, r � rcut.
(6)

Here, φM (r) is the Mie n − 6 potential, which is given as
follows:

φM (r) =
[

n

n − 6

](n

6

)n/(n−6)
ε

[(σ

r

)n
−

(σ

r

)6
]
. (7)

The potential is shifted and truncated at rcut = (n/6)1/(n−6)σ .
The size parameter σ of argon is used for all potentials
(σ = 3.405 Å). The energy parameter ε is changed so that
the coefficient Cnε becomes equal to that of the LJ potential
(Cnε = 4εAr), where εAr is the energy parameter of argon
(εAr/kB = 119.8 K). The simulation temperatures are T =
318.29, 636.57, 954.86, 1273.1, and 1591.4 K. The repulsive
exponents are n = 8–24. For all simulations, the time step is
2 fs. To obtain the trajectories for calculating the Shannon
entropy, and the thermodynamic and transport properties, the
systems are equilibrated for 100 000 steps. The details of the
production run are given in the following subsections.

B. Evaluation of the virial potential-energy correlation

The virial potential-energy correlation is evaluated for
all thermodynamic conditions as follows. In the production
run (5 000 000 steps), the instantaneous virial (W ) and the
potential energy (U ) are collected every ten steps. Then, the
correlation coefficients R are evaluated using Eq. (2). The
correlation coefficients R are always higher than 0.98 at all
conditions [28]. Hence, all repulsive n − 6 fluids dealt with in
this work are R-simple.

C. Topological framework for local structure analysis

The topological framework for local structure analysis
proposed by Lazar et al. [25] describes the arrangement
of neighbors surrounding a central particle via the Voronoi
tessellation, the partitioning of space into regions, each of
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which consists of all points closer to a given particle than to
any other. The topology of a Voronoi cell can be described
by enumerating the number of edges of each of its faces. Al-
though this description provides more information than a mere
count of faces, it does not completely describe how a particle’s
neighbors are arranged relative to the central particle and to
one another. A more refined description of the Voronoi cell,
and thereby of the arrangement of neighbors, is provided by
the isomorphism class of its edge graph [25], which identifies
two Voronoi cells as the same if pairs of faces are adjacent
in one Voronoi cell and if and only if corresponding faces
in the other are also adjacent. This connectivity information
can be encoded as a series of integers called the Weinberg
vector [29], which is obtained from a graph-tracing algorithm
initially developed to check whether two planar graphs are
isomorphic [30]. Hence, the Weinberg vector can be viewed
as a “name” of the topological type of a Voronoi cell. We use
the VOROTOP library [31] to gather the statistical data of the
topological types discovered in the configurations.

D. Characterization of the Frenkel line

Rosenfeld et al. [7] noted that there are two regions in
which the dependencies of transport properties on the ther-
modynamic excess entropy are qualitatively different [32]. In
the low-density (low excess entropy) region, the diffusivity
shows a power-law dependence. When the density is high, it
shows an exponential dependence on the excess entropy in
the high-density region. This qualitative change of dynamics
can also be observed in Monte Carlo simulations. Nezhad and
Deiters [33] recently discovered that the excess entropy is an
approximately linear function of the reciprocal mean Monte
Carlo displacement parameter at high density. Provided that
the Monte Carlo displacement parameter is proportional to
the diffusivity, this finding indicates that the collective particle
dynamics changes depending on the bulk density of a system.

This qualitative change of the transport properties could
be related to the Frenkel line proposed by Brazhkin et al.
[34]. They proposed that the Frenkel line of the hard-sphere
fluid corresponds to the crossover density at which the trans-
port properties show a qualitatively different dependence on
the bulk density [35]. In recent work, we demonstrated that
this conjecture is quite reasonable based on the topological
framework [23] and the two-phase thermodynamics (2PT)
model [26]. In addition, we recently found that the perco-
lation behavior of solidlike structures of different repulsive
n − 6 fluids collapses to a single line when the fraction of
solidlike molecules (	solid) is used as an order parameter
[24]. Hence, we validate this idea that the Frenkel line may
be a good candidate to demarcate the fluid region depending
on the behavior of the transport properties as proposed by
Rosenfeld et al.

To locate the dynamic crossover conditions, we use the
topological classification method proposed in our earlier
works [23,24]. In this method, the topological types of two
dynamic limits of the fluid phase including the ideal gas and
the maximally random jammed state are used to classify a
molecule as either gaslike (diffusive) or solidlike (oscillatory).
If a topological type of an atom discovered in a configuration
has a higher likelihood of being observed in ideal gas, it is

classified as gaslike. Otherwise, it is classified as solidlike.
A weighted mean-field approximation is then applied to this
initial classification result to remove the influence of fluc-
tuation. From the finite-size scaling analysis on percolation
behaviors, we showed that the Frenkel line can be defined as
the thermodynamic states in which the fraction of solidlike
molecules (	solid) reaches the percolation threshold, 	solid =
0.1159 ± 0.0081 [23]. In this work, we apply the same pro-
cedure and the percolation criterion to determine the Frenkel
line of the soft-sphere fluids.

E. Reformulation of the isomorph definition
based on information theory

The limitation of the hypothesis provided in Eq. (5) is
that the definitions of ρi,l and �i are incomplete. As a first
approximation, we introduce the topological framework pro-
posed by Lazar et al. [25]. In the topological framework, the
connectivity information of an atom with its nearest neighbors
is understood based on the topological type of the Voronoi
polyhedron. Since this topological information is invariant
under the multiplication of coordinates by a constant, e.g.,
R̃i = ρ

1/3
i Ri, the reduced coordinates of the nearest atoms

surrounding two atoms are the same if the topological types
of their Voronoi cells are identical. Hence, Eq. (5) is approxi-
mated as

v
−1/3
a,l �′

a = v
−1/3
b,l �′

b, (8)

where vi,l is the volume of the Voronoi polyhedron of the
particle i and �′

i is a set of the relative coordinate vectors of
the nearest neighbors of which the Voronoi polyhedron share a
face with that of the central particle i. Since the forces exerted
on the central atom by the nearest neighbors usually account
for the majority of the total force, we expect that two atoms
would have similar dynamic characteristics if the topological
types of their Voronoi cells are identical to each other.

It is noteworthy that a similar extension of the isomorphism
was proposed by Malins, Eggers, and Royall [36]. They used
the topological classification method proposed by Williams
[37] to identify the bicapped square antiprism, which is a
locally favored structure in glass formers.

F. Voronoi entropy

The diversity of the categorical distributions can be mea-
sured using the Shannon entropy [38–40]. The Shannon en-
tropy (H) is obtained as

H = −
∑

i

pi ln pi, (9)

where pi is the probability of finding a topological type i in
the system. The term Voronoi entropy was used by Peng, Li,
and Wang [41] by applying Eq. (9) to the distribution of the
Voronoi types, which were classified based on their Voronoi
indices. It was also defined as the Shannon entropy of the
distribution of the Voronoi types based on the number of edges
[42]. On the other hand, we classify Voronoi cells based on the
Weinberg vectors, a more refined descriptor than the Voronoi
indices, following the philosophy of the isomorph theory.
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When the probability that an event i occurs (pi) is known
for all events, we can directly measure the Shannon entropy
of a system. In real-world problems, however, there are two
bottlenecks to applying Eq. (9) directly. First, pi is only
estimated based on observation of the limited samples drawn
from a population. The Shannon entropy calculated based
on this limited observation can be heavily biased by rare
events. For systems in which the number of events is infi-
nite (unbounded), therefore, the Shannon entropy is exactly
calculated only when infinite data are available or an exact
mathematical expression for all the pi’s is given. For an ideal
gas, the number of topological types is infinite since the point
particles can be randomly distributed in a system. Second,
Eq. (9) ignores the correlation between events. For an ideal
gas, this hypothesis holds since no interatomic interaction
exists among the particles. That is, the topological type of an
atom has little effect on how a neighbor atom is surrounded by
its neighbors in the low-density regime. On the other hand, the
probability of finding a topological type is largely influenced
by the topological types of its neighbors in the crystalline
state.

Several algorithms have been proposed to resolve the prob-
lem of infinite sample size by estimating the upper bound of
the Shannon entropy (Ĥ) with an unknown or infinite number
of samples [43–45]. This work uses the estimator named
UNSEEN designed by Valiant and Valiant [45]. This algorithm
uses a fingerprint of a finite data set (observed samples), a
histogram of a histogram, to construct a plausible histogram
of which the entropy and other properties are similar to those
of a larger population by estimating the “unseen” portion of
the histogram. Two linear programming (LP) procedures are
used to obtain this likely underlying histogram. The first LP
algorithm finds the plausible histograms as follows. Since the
finite data we obtained are the sampled ones from the un-
bounded population, the probability of drawing a topological
type i exactly k times during n independent trials follows the
binomial distribution B(n, pi ), which can be approximated as
a Poisson distribution [P(npi, i)]. Hence, the first LP algo-
rithm calculates the expected ith fingerprint entry and yields
plausible histograms of which the fingerprints are the same as
the expected fingerprint. The second LP algorithm selects the
simplest distribution among the candidates based on Occam’s
razor. To validate the algorithm, we first apply the UNSEEN

estimator to ideal gas systems and compare Ĥ to H. We
then build the following procedure to estimate the Voronoi
entropy of a system based on the ideal gas results (see the
Results and Discussion for the details). First, we perform five
independent simulations for each condition and obtain 500
trajectories from each simulation. The number of molecules
is 2000. Second, we randomly select 300 trajectories of 2500
configurations eight times and apply the UNSEEN algorithm
to each set of the trajectories. The estimated entropy data are
averaged to obtain Ĥ.

Note that this algorithm does not reflect the spatial corre-
lation between neighbors. Several measures have been sug-
gested to reflect the spatial association [46] to the Shannon
entropy, but no algorithm has been proposed to consider both
aspects. Later, we will see how this spatial correlation affects
the results.

G. Thermodynamic excess entropy

The integration method of Deiters and Hoheisel [47] is
used to calculate the thermodynamic excess entropy. In this
method, the excess Gibbs free energy per particle (Gexc) is
calculated as

Gexc

kBT
=

∫ ρ

0

Z − 1

ρ
dρ + Z − 1, (10)

where Z is the compressibility factor (Z ≡ pV/RT ). The
Deiters-Hoheisel method constructs a function Z (ρ) by fitting
the compressibility factors obtained from a series of NVT
simulations with a smoothing spline curve. (Z − 1)/ρ at the
zero density converges to the second virial coefficient B2,
which is computed as

B2 = lim
ρ→0

Z − 1

ρ
= −2π

∫ ∞

0
(e−φ(r)/kBT − 1)r2dr, (11)

where φ(r) is the interatomic potential. The equilibrium
pressure and internal energy data are averaged every step
during the production run (5 000 000 steps). The number
of molecules is 2000. Then, we use the trapezoidal rule to
integrate the smoothing spline fitting function to evaluate the
excess Gibbs energy per particle. The excess entropy is then
obtained as

Sexc = Hexc − Gexc

kBT
, (12)

where Hexc is the excess enthalpy per particle, which is defined
as Hexc = H − Hig. The ideal gas enthalpy (Hig) is given as
Hig = (5/2)kBT .

H. Calculation of transport properties

The transport properties of the soft-sphere fluids are com-
puted as follows. The diffusivity is estimated based on the
vibrational density of states � defined as [48]

�(ν) = 2

kBT

N∑
j=1

3∑
k=1

mjψ
k
j (ν), (13)

where ψk
j (ν) is the spectral density of atom j in the k direction

and mj is the mass of atom j. The spectral density is the square
of the Fourier transform of the velocity,

ψk
j (ν) = lim

τ→∞

∣∣∣∣
∫ τ

−τ

vk
j (t )e−i2πνt dt

∣∣∣∣
2

. (14)

Here, vk
j (t ) is the kth component of the velocity vector of

the jth atom at time t . The diffusivity (D) of a system is
then obtained from the intensity of �(ν) at zero frequency
as follows:

D = �(0)kBT

12mN
. (15)

Note that decomposition of the spectral density into hard-
sphere and harmonic oscillator contributions leads to another
definition of the Frenkel line [26].
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The shear viscosity of a system is estimated by integrating
the Green-Kubo integral [49,50],

η = V

kBT

∫ ∞

0
〈Pαβ (t )Pαβ (0)〉dt, (16)

where Pαβ (t ) (α, β = x, y, and z) are the off-diagonal ele-
ments of the pressure tensor, which is given as

Pαβ =
N∑

j=1

mjv
α
j v

β
j

V
+

∑N ′
j rα

j f β
j

V
. (17)

Here, rα
j is the αth component of the position vector r of the

jth atom and f β
j is the βth component of the force vector f

exerted on the jth atom.
Unfortunately, calculating η using the Green-Kubo integral

is difficult due to the low signal-to-noise ratio; the stress
autocorrelation function given in Eq. (16) does not smoothly
converge to zero. Hence, we combine the methods proposed
by Nevins [51] and Zhang [52] as follows. We perform ten
independent NVT simulations with different initial configura-
tions and initial velocities for each thermodynamic condition.
The time step is equal to the equilibration run (2 fs), and
the simulation duration is 2 ns. The stress autocorrelation
functions obtained from independent simulations are averaged
and truncated at the cutoff time (tcut) at which the absolute
magnitude of the stress autocorrelation function decreases
under its initial value by a factor of 10−3. Then, a two-term
exponential function is fitted to the truncated stress autocorre-
lation function. The viscosity is calculated by integrating the
fitted stress autocorrelation function.

III. RESULTS AND DISCUSSION

A. Voronoi entropy of the ideal gas

We first estimate the Voronoi entropy of an ideal gas to
determine the number of samples and trials for the soft-sphere
models. Figure 1 compares Ĥ and H of the ideal gas. The
ideal gas configurations are generated by distributing N =
2000 points in a cubic box randomly. As shown in Fig. 1(a),
Hig slowly increases as the sampled number of configura-
tions (molecules) increases. When the sample size (Ns) is
larger than 30 000 000, Hig does not vary significantly. On
the contrary, the Voronoi entropy estimated from the UNSEEN

becomes similar to Ĥig ∼ 14.00 when the sample size is larger
than 1 000 000 [Fig. 1(b)]. The order of the magnitude of the
sample size to obtain Ĥig similar to Hig agrees with that pro-
posed by Valiant and Valiant [30 000 000/ ln(30 000 000) ∼
O(106)]. Since the population of the topological types of the
ideal gas system is larger than those of any other system,
O(102) trajectories of N = 2000 molecules are enough to
estimate the Voronoi entropy at all thermodynamic conditions
studied in this work. The estimated Voronoi entropy of the
ideal gas (Ĥig ∼ 14.04) can be used to define the Voronoi
excess entropy, which is given as Ĥexc ≡ Ĥ − Ĥig.

B. Voronoi entropy of repulsive n − 6 fluids

Figure 2 shows Ĥ of the fluids modeled with the repulsive
8 − 6 potential and 16 − 6 potential. Ĥ slowly decreases in
the low-density region, but |dĤ/dρ| increases as the density

FIG. 1. Shannon entropy of ideal gas system estimated from
(a) the observed probabilities (H) and (b) the UNSEEN algorithm (Ĥ).
H does not vary significantly (H ∼ 14.04) when the sample size (Ns)
is larger than 430 000 000, whereas Ĥ becomes close to 14.00 when
Ns is larger than 5 000 000.

increases; it shows the power-law dependence on the density
[Eq. (18)],

Ĥ = aρb + c, (18)

where a, b, and c are fitting parameters. The power-law
equations fitted to different isotherms converge to Ĥ ∼ 14.0
as the density decreases, which agrees with the Voronoi
entropy of an ideal gas. The power-law equation indicates
that the Voronoi entropy of a system decreases as the density
approaches the freezing density. The decrease of the Voronoi
entropy can be understood based on the free volume theory
[23,33]. As the system density increases, the distances be-
tween neighbor atoms surrounding the central atom become
shorter. When they are so close that they hinder each others’
diffusive motions, the number of ways to place neighbors
around a central atom without an increase of the potential
energy decreases. As a result, the Voronoi entropy drastically
decreases when the bulk density is high. A large discrepancy
between H and Ĥ in the low-density region reflects this
phenomenon. Since the set of possible topological types is
extremely large and cannot be sufficiently sampled in low-
density systems, H of the low-density fluid is much lower than
Ĥ, whereas that of the high-density fluid is similar to Ĥ.

Figure 3 shows 	solid of the repulsive 8 − 6 fluids (for
the definition of 	solid, see Sec. II D). As shown in our
earlier works [23,24], it starts to steeply increase near the
dynamic crossover densities and reaches unity near the freez-
ing densities at constant temperatures. The dependence of
	solid on the bulk density is well expressed by the sigmoidal
function for all conditions based on the theory of fluid
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FIG. 2. Dependence of Ĥ on the bulk density (ρ). (a) n = 8 and
(b) n = 16. It shows a power-law dependence on the bulk density.
The Ĥ, the upper bound of the Voronoi entropy, is calculated from
the UNSEEN algorithm.

polyamorphism [53],

	solid = 1

1 + a exp(bρ)
. (19)

Both the Voronoi entropy and the fraction of solidlike
molecules at different isotherms become close to each other
when the repulsive exponent increases. They become close to
each other and ultimately collapse to a single line when the
repulsive exponent (n) is infinite [24].

Since both Voronoi entropy and the fraction of solidlike
molecules are defined from the topological types of the
Voronoi cells, it can be expected that both parameters are
deeply related. Figure 4 shows that a one-to-one correspon-
dence relation exists between Ĥ and 	solid. This one-to-one
correspondence relation has two implications. First, it sub-
stantiates that the topological framework captures the isomor-
phism observed along the freezing line. Since 	solid reaches
unity at the freezing densities, Ĥ becomes approximately
Ĥ ∼ 9.0 along the freezing line. Second, the Voronoi entropy
is a linear function of 	solid over the interval of 10 � Ĥ � 12.
Considering that the Frenkel line is an iso-	solid line (	solid =
0.1159) [23], this result implies that the Frenkel line can be
related to the qualitatively different regimes of the collective
particle dynamics as we expected. This expectation is further
discussed in the next section.

C. Isomorph theory based on the Voronoi entropy

We test the validity of the Rosenfeld scaling law for
repulsive n − 6 fluids. Figure 5 shows that the Rosenfeld
diffusivity (D̃) and viscosity (η̃) of all simple fluids modeled

FIG. 3. Dependence of the solidlike fraction (	solid) on the bulk
density (ρ). For the definition of the solidlike and gaslike states, see
Sec. II D. (a) n = 8 and (b) n = 16. It shows a sigmoidal dependence
on the bulk density for all temperatures and repulsive exponents.

with the repulsive n − 6 potential collapse to single lines as
the isomorph theory for R-simple fluids predicts. They are
defined as

D̃ = Dρ1/3

(
m

kBT

)1/2

, η̃ = ηρ−2/3

(
m

kBT

)−1/2

. (20)

Both collapsing lines show a similar dependence on −Sexc

observed by previous works [7,9,11,13]. The D̃ curve steeply
decreases as −Sexc increases to a certain extent. It shows
an exponential dependence on −Sexc when Sexc decreases. η̃

shows more complex dependence on −Sexc. It decreases to its

FIG. 4. A relation between the Voronoi entropy (Ĥ) and the
fraction of solidlike molecules (	solid). Ĥ has a one-to-one cor-
respondence with 	solid. This correspondence relation enables us
to redefine the Frenkel line as a set of isomorphic states, which
demarcate the fluid region into the nonrigid and the rigid regions.
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FIG. 5. Thermodynamic excess entropy scaling of (a) diffusivity
(D̃) and (b) shear viscosity (η̃). For all repulsive n − 6 fluids, the
Rosenfeld diffusivity and shear viscosity collapse to single lines.

minimum in the middle-density region, and increases as −Sexc

increases.
Figure 6 shows the dependence of D̃ and η̃ on the Voronoi

entropy. Similarly to the thermodynamic excess entropy, they
collapse to their own single lines to a good approximation.
In addition, the shapes of the collapsing lines are similar to
those obtained when −Sexc/kB is used to scale the transport
properties. Simultaneously, they substantiate that the Frenkel
line is a set of isomorphic states (Ĥ ∼ 12.0) in which the
collective particle dynamics qualitatively changes. When Ĥ
is greater than the topological crossover diversity, D̃ shows
a power-law dependence on Ĥ. As the density increases, Ĥ
drastically decreases and exponential decay of D̃ is observed.
η̃ also shows an exponential dependence on −Ĥ when Ĥ
is lower than the topological crossover diversity. All these
results support that the Frenkel line, a rigid-nonrigid transition
line, is a good candidate that demarcates the fluid region
considering the collective particle dynamics.

Meanwhile, it should be noted that the scaling results from
Ĥ show a slight but systematic discrepancy compared to those
from −Sexc. For the same repulsive n − 6 models, both D̃ and
η̃ curves from different temperatures agree with each other.
In contrast, the extent of the data collapse is low for different
repulsive exponents compared to the thermodynamic excess
entropy scaling result.

Figure 7 shows the parity plot of −Sexc and −Ĥexc. As
the repulsive exponent increases, the slope of −Ĥexc(−Sexc)
decreases. This small discrepancy between slopes of differ-
ent models occurs because the algorithm ignores the mutual
dependence between the topological types of neighbors. At
the same thermodynamic excess entropy, the bulk density of
a system increases as the repulsive exponent (n) decreases.

FIG. 6. Voronoi entropy scaling of (a) diffusivity (D̃) and
(b) shear viscosity (η̃) of fluids modeled with repulsive n − 6 po-
tentials. The dotted lines denote the dynamic crossover Voronoi
entropies (Ĥ = Ĥcr), which are estimated based on the 	solid-Ĥ
curve.

Bearing in mind that the cutoff radius increases as n decreases,
the spatial correlation between neighbors will be high when n
is low.

Despite these limitations, −Sexc and −Ĥexc have a linear
relation, and the intersects of the fitted equations are close to
zero (Table I). This linearity indicates that the influence of the
spatial correlation is little compared to the total entropy con-
tribution. Hence, we can see that the classical idea about the
equivalence of the Shannon entropy and the thermodynamic
entropy holds [54].

FIG. 7. A linear relation between the thermodynamic excess
entropy and the Voronoi excess entropy. Although all models show
a linear relationship, Ĥexc(Sexc) curves of repulsive n − 6 fluids are
not consistent with each other. This discrepancy is brought about by
ignoring the spatial correlation between neighbors.
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TABLE I. Fitting parameters for the linear relation between
the thermodynamic excess entropy and the Voronoi excess entropy
(−Ĥexc = −pSexc/kB + q). Regardless of the repulsive exponents,
the coefficients of determination (R2) are higher than 0.99, and the
intersects (q) are close to zero.

n Slope Intersect R2

8 1.479 −0.013 0.996
12 1.438 −0.043 0.996
16 1.392 −0.051 0.994
20 1.337 −0.038 0.996
24 1.286 −0.009 0.996

IV. CONCLUSION

This work demonstrates that the isomorph theory can
be extended to the molecular level in conjunction with the
topological framework and the information theory. In this
framework, two systems are regarded as being isomorphic if
their topological diversities (Voronoi entropies) are equal. The
Voronoi entropy of the Bernoulli distribution, in which the
number of categories is infinite, can be estimated based on the
fingerprint of the distribution. Similarly to the thermodynamic
excess entropy, the Voronoi entropy can work as a scaling

parameter to collapse the transport properties of soft-sphere
fluids. The Voronoi entropy scaling results are satisfactory
but also show slight but noteworthy deviations compared to
the thermodynamic excess entropy scaling. These systematic
deviations come from the limit of the proposed method: it
ignores the entropic contribution of the particles that are not
nearest neighbors but influence the net force exerted on the
central particle. Lastly, a qualitatively different dependence
of the transport properties on the Ĥ and Sexc can be under-
stood based on the rigid-nonrigid dynamic crossover across
the Frenkel line. Since the isomorph theory is quasiuniver-
sal for various types of potentials, it would be interesting
to understand the quasiuniversal characteristics of broader
classes of fluid models based on the topological framework
in conjunction with the information theory.
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