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Dynamics of the critical Casimir force for a conserved order parameter after a critical quench
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Fluctuation-induced forces occur generically when long-range correlations (e.g., in fluids) are confined by
external bodies. In classical systems, such correlations require specific conditions, e.g., a medium close to a
critical point. On the other hand, long-range correlations appear more commonly in certain nonequilibrium
systems with conservation laws. Consequently, a variety of nonequilibrium fluctuation phenomena, including
fluctuation-induced forces, have been discovered and explored recently. Here we address a long-standing
problem of nonequilibrium critical Casimir forces emerging after a quench to the critical point in a confined fluid
with order-parameter-conserving dynamics and non-symmetry-breaking boundary conditions. The interplay of
inherent (critical) fluctuations and dynamical nonlocal effects (due to density conservation) gives rise to striking
features, including correlation functions and forces exhibiting oscillatory time dependences. Complex transient
regimes arise, depending on initial conditions and the geometry of the confinement. Our findings pave the way
for exploring a wealth of nonequilibrium processes in critical fluids (e.g., fluctuation-mediated self-assembly or
aggregation). In certain regimes, our results are applicable to active matter.
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I. INTRODUCTION

Quenching a classical fluid or spin system from a ho-
mogeneous initial state into the multiphase region (T < Tc)
induces nucleation of or spinodal decomposition into distinct
phases [1]. The subsequent dynamics of the domain evolution
(i.e., coarsening and Ostwald ripening) has been extensively
studied (see, e.g., Refs. [2,3] for reviews). A quench to the
critical temperature Tc is instead characterized not by the
growth of well-ordered domains, but by a growing correlation
length ξ (t ) ∝ t1/z, where t is time and z is the dynamic critical
exponent of the system. The growth of ξ reflects the fact that
equilibrium evolves from smaller towards larger spatial scales.

On a coarse-grained level, the quench dynamics of a
simple fluid is, in its most general form, described by the
hydrodynamic equations of the so-called model H [1,4]. A
simplified description, which retains the conserved nature of
the order parameter (OP) but neglects heat and momentum
transport, is provided by model B [4], which in other contexts
is also known as the Cahn-Hilliard [5,6] or Mullins-Herring
equation [7]. For a one-component fluid, the OP φ is defined
by φ ∝ n − nc, where n is the actual number density and
nc is its critical value, while for a binary liquid mixture
φ ∝ cA − cA,c, where cA is the concentration of species A
and cA,c is its critical value. Quenches of fluidlike systems
to critical or supercritical temperatures have been studied
previously for various dynamical models [3,8–14] and partic-
ularly extensively in the context of interfacial roughening (see
Refs. [15,16] and references therein). However, these studies
considered mostly the behavior of correlation functions. Here
we focus instead on the dynamics of the (nonequilibrium)
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critical Casimir force (CCF) as the confined system relaxes
towards equilibrium after the quench.

In considering postquench dynamics, it is important to
distinguish distinct sources of long-range correlations. On the
one hand, systems may exhibit inherent correlations, e.g.,
in the vicinity of critical points. On the other hand, it is
well recognized that driving certain systems out of equilib-
rium in the presence of conservation laws (e.g., conserved
particle number, momentum, etc.) can give rise to purely
nonequilibrium correlations [17,18] which vanish in thermal
equilibrium.

In turn, the confinement of long-range correlations (ir-
respective of their source) by external objects (e.g., plates)
generally gives rise to fluctuation-induced forces [19]. In
classical equilibrium systems, the prototypical example is the
well-established notion of an equilibrium CCF [20–23], which
arises due to confinement of long-range correlations in near-
critical fluid media. Regarding nonequilibrium situations, the
aforementioned conservation laws and the associated long-
range correlations have been demonstrated to give rise to
purely nonequilibrium Casimir-like forces in a variety of
settings, including hydrodynamic systems with density gra-
dients [24] or temperature gradients [25–27], sheared systems
[28,29], far-from-critical fluids undergoing quenches of their
temperature or activity [30,31] as well as shear flow [32], and
stochastically driven systems [33].

Fluctuation-induced forces in (far-from-critical) hydrody-
namic systems have been shown to be vanishingly small
in thermal equilibrium [34]. It thus is interesting to con-
sider the interplay of quench dynamics and inherent corre-
lations, which has been studied in the setting of nonequilib-
rium time-dependent generalizations of the CCF (see, e.g.,
Refs. [35–38]). We emphasize that these studies considered
model A dynamics, for which the order parameter is not
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conserved. For conserved dynamics, solving the full problem
in the presence of surfaces becomes significantly more dif-
ficult; thus far, discussions of the quench dynamics for non-
symmetry-breaking boundary conditions (BCs) are limited
to semi-infinite geometries [39,40]. In Ref. [41], the noise-
free dynamics of the CCF after a quench of a fluid film
in the presence of surface adsorption has been investigated
within mean-field theory. We also note that particular care
must be taken in applying field-theoretic stress tensors when
computing forces out of equilibrium [37,38,41,42].

In the present study, we consider an instantaneous quench
of a confined fluid to the critical point for non-symmetry-
breaking BCs within model B, which describes the relaxation
of a conserved OP under the influence of thermal noise. In
order to facilitate an analytical study we focus on the Gaussian
limit. The Gaussian limit correctly describes the universal
features of a critical fluid within the Ising universality class in
d > 4 spatial dimensions. It furthermore provides the leading
contribution to the actual critical behavior in d < 4 dimen-
sions within a systematic expansion of the full theory around
d = 4 [43,44]. We emphasize that the model considered here
is also applicable to the macroscopic description of active
matter in certain parameter regimes [45,46], and thus is of
timely relevance.

The paper is organized as follows. Section II describes
the system and model under consideration. Next, postquench
correlation functions are computed in the bulk (Sec. III) and in
confinement with Neumann and periodic boundary conditions
(Sec. IV). In Sec. V we compute critical Casimir forces for
film and cuboidal box geometries. Finally, a summary and
outlook are provided in Sec. VI.

II. SYSTEM AND MODEL

A. Quench protocol, geometry, and OP conservation

Initially, the fluid resides in a homogeneous high-
temperature (i.e., far-from-critical) phase and the OP is taken
to have a vanishing mean value and short-range correlations,
characterized by the strength vkBT of their variance:

〈φ(r, t = 0)〉 = 0,

〈φ(r, t = 0)φ(r′, t = 0)〉 = vkBT δ(r − r′). (2.1)

For generic v > 0 these are called thermal initial conditions
(ICs). For theoretical purposes, it is useful to study also the
extreme limit of vanishing initial variance

〈φ(r, t = 0)〉 = 0, 〈φ(r, t = 0)φ(r′, t = 0)〉 = 0, (2.2)

which are called flat ICs. At time t = 0, the system is instan-
taneously quenched to a near-critical reduced temperature

◦
τ ≡ T − Tc

Tc
> 0. (2.3)

It proceeds to evolve towards thermal equilibrium, which is
reached in the late-time limit t → ∞. We emphasize that
the initial conditions (2.1) and (2.2) are nonequilibrium
initial conditions with respect to the postquench dynamics [in
particular, in Eq. (2.1) T is the postquench temperature]. In a
generic fluid, flat ICs can only be realized at zero temperature.
In this case, a quench would correspond to an instantaneous
heating.

FIG. 1. Geometry under consideration. The fluid is a slab of
thickness L in the z direction. It is confined by two parallel surfaces
of area A = Ld−1

‖ lying in the transverse planes at z = 0 and z = L,
respectively, and the vector r‖ has d − 1 components. We generally
consider d spatial dimensions. The shaded surfaces carry periodic
or Neumann BCs, while the remaining (lateral) surfaces of the box
exhibit periodic BCs. The limit A → ∞ corresponds to a thin film.

We consider a d-dimensional cuboid box geometry with
volume V = LA. It is characterized by an aspect ratio

� ≡ L

L‖
= L

A1/(d−1)
, (2.4)

where L and L‖ denote the transverse and the lateral extension
of the system, respectively, and A = Ld−1

‖ is the transverse
area (see Fig. 1). An extreme case, facilitating analytical
calculations, is the thin film limit � → 0. At the system
boundaries at z = 0 and z = L, we impose either periodic or
Neumann BCs, the latter being given by ∂zφ(r, t )|z∈{0,L} = 0.
In the lateral directions, we generally apply periodic BCs.
These BCs ensure that the total OP inside the box,

�(t ) ≡
∫

V
dd r φ(r, t ) = const, (2.5)

is conserved in time. While Eq. (2.1) implies �(t ) = 0, and
thus 〈φ(r, t )〉 = 0 for all t , we will occasionally treat the
general case� = const, restricting it to zero where necessary.

B. General scaling considerations

We first discuss the expected scaling behavior of the
OP correlation function, focusing on equal-time correlations,
which are the most relevant case for the present study. More
general considerations can be found in Refs. [3,13]. Here and
in the following, the physical time is denoted by t̃ , which
is to be distinguished from a rescaled time t introduced in
Eq. (2.22) below. At late times after the quench, the influence
of the initial condition [Eq. (2.1)] diminishes. In fact, it
can be shown that, at the corresponding fixed point of the
renormalization group flow, which determines the universal
behavior [3,47], the correlation strength vanishes, i.e., v = 0
[see Eq. (2.1)]. In this scaling regime, the equal-time OP
correlation function C(r, r′, t̃ ) ≡ 〈φ(r, t̃ )φ(r′, t̃ )〉 fulfills the
finite-size scaling relation [35,48]

C(r, r′, t̃ ,
◦
τ ,L, v = 0)

= cb

(
L

ξ
(0)
+

)2−d−η
C

(((
r
L
,

r′

L
,

(
L

ξ
(0)
+

)−z t̃

t̃(0)
+
,

(
L

ξ
(0)
+

)1/ν ◦
τ , �

)))
,

(2.6)
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with a dimensionless scaling function C. Here the nonuni-
versal amplitude ξ (0)

+ , which carries the dimension of length,
is defined in terms of the critical behavior of the bulk
correlation length ξ above Tc, i.e., ξ (

◦
τ → 0+) = ξ (0)

+
◦
τ −ν ;

the nonuniversal amplitude t̃(0)
+ describes the critical diver-

gence of the characteristic relaxation time t̃R = t̃(0)
+

◦
τ −νz =

t̃(0)
+ (ξ/ξ (0)

+ )z of the system; η and ν are standard bulk crit-
ical exponents; the quantity cb is a nonuniversal correla-
tion function amplitude (see Ref. [35] for explicit values).

With these expressions the scaling function in Eq. (2.6)
takes the form C(r/L, r′/L, (L/ξ )−zt̃/t̃R, (L/ξ )1/ν, �). Within
model B, the dynamic critical exponent z fulfills the relation
[4,49]

z = 4 − η. (2.7)

In a uniform bulk system, the associated bulk correlation
function Cb is isotropic and thus depends only on r ≡ |r|. The
bulk analog of Eq. (2.6) is given by [49]

Cb(r, t̃ ,
◦
τ , v = 0) = cb

(
r

ξ
(0)
+

)2−d−η
Cb

⎛
⎝
⎛
⎝
⎛
⎝(

r

ξ
(0)
+

)−z
t̃

t̃(0)
+
,

(
r

ξ
(0)
+

)1/ν
◦
τ

⎞
⎠
⎞
⎠
⎞
⎠, (2.8)

where Cb is normalized such that cb is the same amplitude as for the confined case above. At early times, the influence of a
nonzero initial OP variance v �= 0 is not negligible; instead one expects the scaling behavior of the bulk correlation function (see
also Ref. [10])

Cb(r, t̃ ,
◦
τ ,L, v) = v

cb

(ξ (0)
+ )2

(
r

ξ
(0)
+

)−d−η
C0

⎛
⎝
⎛
⎝
⎛
⎝(

r

ξ
(0)
+

)−z
t̃

t̃(0)
+
,

(
r

ξ
(0)
+

)1/ν
◦
τ

⎞
⎠
⎞
⎠
⎞
⎠ + cb

(
r

ξ
(0)
+

)2−d−η
Cb

⎛
⎝
⎛
⎝
⎛
⎝(

r

ξ
(0)
+

)−z
t̃

t̃(0)
+
,

(
r

ξ
(0)
+

)1/ν
◦
τ

⎞
⎠
⎞
⎠
⎞
⎠,

(2.9)

with a further scaling function C0. Note that v has the dimension [v] ∼ [L]2 [3]. The prefactors of C0 are motivated by an
explicit calculation [see Eq. (3.18) below]. In passing, we remark that the scaling properties expressed in Eqs. (2.6) and (2.8)
can be conveniently summarized in terms of the homogeneity relation [48,50]

C(r, r′, t̃,
◦
τ , �,L, v = 0) = cbb2−d−ηĈ

(
r

ξ
(0)
+

b−1,
r′

ξ
(0)
+

b−1,
t̃

t̃(0)
+

b−z,
◦
τ b1/ν, �,

L

ξ
(0)
+

b−1, v = 0

)
, (2.10)

where b is an arbitrary scaling factor and Ĉ is a dimensionless function. The existence of the latter follows on dimensional
grounds upon expressing all dimensional quantities in terms of the fundamental nonuniversal bulk amplitudes ξ (0)

+ and t̃(0)
+ and

the amplitude φ(0)
t of the bulk OP (cb is a function of these; see Ref. [35]).

The (thermally averaged) CCF 〈K〉 can be defined as the difference between the pressure of the fluid in the film 〈P f 〉 and in
the surrounding bulk medium 〈Pb〉,1

〈K〉 = 〈P f 〉 − 〈Pb〉. (2.11)

In thermal equilibrium, the averaged film pressure 〈P f 〉 can be obtained from the derivative of the film free energy F f via
〈P f 〉 = −dF f /dL. Alternatively, the film pressure can be obtained by evaluating a stress tensor at the boundaries (see, e.g.,
Refs. [22,51] and references therein). Based on the notion of a generalized force [38], the stress tensor approach can be naturally
extended to nonequilibrium situations [30,31,41,42]. The present study follows this approach (see Sec. V). Both in and out of
equilibrium, the bulk pressure can be obtained from a scaling limit

〈Pb〉 = lim
L→∞

〈P f 〉, (2.12)

which is taken by keeping the relevant thermodynamic control parameters fixed (see Refs. [41,51,52] for further details
concerning ensemble differences). The thermally averaged dynamical CCF 〈K〉, in units of kBT , is expected to exhibit the
following scaling behavior:

〈K(t̃ ,
◦
τ , �,L, v)〉 = L−d

⎡
⎣L−2v�0

⎛
⎝
⎛
⎝
⎛
⎝(

L

ξ
(0)
+

)−z
t̃

t̃(0)
+
,

(
L

ξ
(0)
+

)1/ν
◦
τ , �

⎞
⎠
⎞
⎠
⎞
⎠ +�

⎛
⎝
⎛
⎝
⎛
⎝(

L

ξ
(0)
+

)−z
t̃

t̃(0)
+
,

(
L

ξ
(0)
+

)1/ν
◦
τ , �

⎞
⎠
⎞
⎠
⎞
⎠

⎤
⎦. (2.13)

1We explicitly indicate the thermal average 〈· · · 〉 because Eq. (2.11) can be formulated also for the instantaneous CCF K and the pressures
P f ,b.
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Since the effect of initial conditions gives rise to purely tran-
sient behaviors, the scaling function�0(θ = (L/ξ )−zt̃/t̃R, x =
(L/ξ )1/ν, �) vanishes for θ → 0 and θ → ∞. In contrast,
the approach to equilibrium correlations is characterized by
�(θ → ∞, x, �), which ultimately attains a nonzero value
corresponding to the equilibrium CCF. The scaling factor
L−2−d in front of v�0 follows from dimensional considera-
tions [compare Eq. (2.9)]. Note that, at fixed arguments of the
scaling functions �0 and �, the influence of the thermal IC
(v �= 0) becomes negligible for large L.

C. Dynamical model

Model B describes the conserved dynamics of an OP field
φ(r, t̃ ) evolving according to

∂t̃φ = γ∇2μ(φ) + η̄, (2.14)

where γ represents a mobility coefficient with dimension
[γ ] = [L4/t̃], which, within the Gaussian approximation, can
be expressed as2

γ = (ξ (0)
+ )z

t̃(0)
+

, z = 4, (2.15)

in terms of the amplitudes introduced in Sec. II B. Further-
more,

μ(φ) ≡ δFb(τ, g; [φ])

δφ
(2.16)

represents the bulk chemical potential obtained from the bare
bulk free-energy functional

Fb(τ, g; [φ]) ≡
∫

V
dd r Hb(φ(r),∇φ(r), τ, g), (2.17)

which plays the role of a Hamiltonian. We take the bulk
Hamiltonian density Hb to be of the Landau-Ginzburg form,
i.e.,

Hb(φ,∇φ, τ, g) = 1

2
(∇φ)2 + τ

2
φ2 + g

4!
φ4. (2.18)

In the present study we restrict ourselves to linear dynamics,
i.e., a Gaussian form of Hb, and thus henceforth the quartic
coupling constant is set to g = 0. The coupling constant τ in
Eq. (2.18), henceforth also called temperature parameter, can
be expressed as [51]

τ = (ξ (0)
+ )−2 ◦

τ (2.19)

in terms of the reduced temperature introduced in Eq. (2.3).
In Eq. (2.14), η̄ represents a Gaussian white noise cor-
related as 〈η̄(r, t̃ )η̄(r′, t̃ ′)〉 = −2kBT γ∇2δ(r − r′)δ(t̃ − t̃ ′)
with 〈η̄(r, t̃ )〉 = 0, which ensures that, in equilibrium, the OP
is distributed according to [49]

Peq(τ, g; [φ]) ∼ e−Fb(τ,g;[φ])/kBT . (2.20)

Equation (2.14) can be written as a continuity equation ∂t̃φ =
−∇ · J, where the current

J ≡ −γ∇μ(φ) + N (2.21)

2Equation (2.15) follows analogously to model A, which has been
discussed in Ref. [35].

comprises a deterministic and a stochastic contribution, with
∇ · N = η̄, such that 〈Nα (r, t̃ )Nβ (r′, t̃ ′)〉 = 2kBT γ δ(r −
r′)δ(t̃ − t̃ ′)δαβ . As stated in the Introduction, we consider
systems having either a thin film or a cuboid box geometry
and we impose periodic or Neumann BCs [see Eq. (2.25)
below] at the confining surfaces at z = 0,L. Importantly,
while Neumann BCs automatically eliminate fluxes across the
individual surfaces, i.e., Jz = γ [∂3

z φ(z) − τ∂zφ(z)] + Nz = 0
for z = 0 and z = L, the total OP is in fact also conserved with
periodic BCs, because the net flux out of the system is zero.

In order to simplify the notation, we remove the temper-
ature kBT from the description by defining a new OP field
φ/(kBT )1/2. Moreover, we introduce a rescaled time

t = γ t̃, (2.22)

having dimension [t] ∼ [L]4. This allows us to write
Eq. (2.14) as

∂tφ = −∇4φ + τ∇2φ + η, (2.23)

where the noise η ≡ η̄/γ is correlated as

〈η(r, t )η(r′, t ′)〉 = −2∇2δ(r − r′)δ(t − t ′), (2.24)

which readily follows from the correlations of η̄, taking
into account the transformation law of the δ function. We
do not rescale coordinates by the length L, because it is
instructive to keep all lengths explicit during the calculations.
While we mostly keep the quench temperature parameter
τ � 0 in Eq. (2.23) arbitrary in our discussion, in order to
facilitate analytical calculations, we will present our main
results for τ = 0, i.e., for a quench to the critical point.

D. Construction of the OP

Here the solution of the OP for model B in a box geometry
is constructed. It is also shown how the corresponding results
in the case of a thin film can be obtained via an appropriate
substitution. To this end we consider the set of orthonormal
eigenfunctions σn(z) and eigenvalues λ2

n of the operator −∂2
z ,

σ (p)
n (z) = 1√

L
exp

(
iλ(p)

n z
)
, λ(p)

n = 2πn

L
,

n = 0,±1,±2, . . . (periodic BCs), (2.25a)

σ (N )
n (z) =

√
2 − δn,0

L
cos

(
λ(N )

n z
)
, λ(N )

n = πn

L
,

n = 0, 1, 2, . . . (Neumann BCs), (2.25b)

which fulfill (for both p and N)∫ L

0
dz σm(z)σ ∗

n (z) = δm,n. (2.26)

Since the system has periodic BCs in the d − 1 lateral direc-
tions perpendicular to the z direction, we expand the OP and
the noise as

φ(r, t ) = 1√
A

∑
n‖,nd

eipn‖ ·r‖σnd (z)and (pn‖ , t ) (2.27)

and

η(r, t ) = 1√
A

∑
n‖,nd

eipn‖ ·r‖σnd (z)ζnd (pn‖ , t ). (2.28)

For clarity, we denote the z direction as the dth coordinate,
while the remaining directions (1, . . . , d − 1) refer to the
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lateral coordinates r‖ ∈ Rd−1:

r = {r‖, z} ≡ {(r1, . . . , rd−1), rd} ∈ Rd . (2.29)

The lateral wave vector pn‖ has the components

pnα ≡ pα = 2πnα
L‖

, α = 1, . . . , d − 1, (2.30)

where nα = 0,±1,±2, . . . and n‖ ≡ {n1, . . . , nd−1}. In order
to avoid clumsy notation, in the following we drop the sub-
scripts on (pn‖ , nd ) and write (p, n). It is useful to note that,
for the eigenfunctions considered here, one has∫ L

0
dz σn(z) =

√
Lδn,0. (2.31)

The noise modes ζn have the expansion

ζn(p, t ) = 1√
A

∫
A

dd−1r‖
∫ L

0
dz e−ip·r‖σ ∗

n (z)η({r‖, z}, t )

(2.32)

and are correlated as [see Eq. (2.24)]

〈ζn(p, t )ζ ∗
n′ (p′, t ′)〉 = 2

(
p2 + λ2

n

)
δ(t − t ′)δp,p′δn,n′ ,

〈ζn(p, t )〉 = 0. (2.33)

Analogously to Eq. (2.32), the OP modes are given by

an(p, t ) = 1√
A

∫
A

dd−1r‖
∫ L

0
dz e−ip·r‖σ ∗

n (z)φ({r‖, z}, t ).

(2.34)

The notation in and after Eq. (2.27) is chosen to highlight the
special nature of the lateral directions and extensions, which
become infinite for a thin film. The latter (limiting) case is
obtained by the replacement

1√
A

∑
p

→ 1√
(2π )d−1

∫
dd−1 p (2.35)

in Eqs. (2.27) and (2.28).
Inserting Eqs. (2.27) and (2.28) into Eq. (2.23) and using

Eq. (2.26) yields the equation for the OP modes an,

∂t an(p, t ) = −�n(p)an(p, t ) + ζn(p, t ), (2.36)

with

�n(p, τ ) ≡ (
p2 + λ2

n

)2 + τ(
p2 + λ2

n

)
. (2.37)

We occasionally omit the argument τ in order to keep the
notation simple. Unless otherwise stated, all results apply to
arbitrary τ � 0. The solution to Eq. (2.36) is

an(p, t ) = e−�n(p)t an(p, 0) +
∫ t

0
ds e−�n(p)(t−s)ζn(p, s)

(2.38)

in terms of the initial condition an(p, t = 0). From Eqs. (2.27)
and (2.31) it readily follows that the zero mode an=0(p = 0, t )
is related to the total integrated OP �(t ):

�(t ) =
∫

V
dd r φ(r, t ) =

√
ALan=0(p = 0, t ). (2.39)

In the case of an infinite transverse area (A → ∞), one
has

∫
V dd r φ(r, t ) = √

Lan=0(p = 0, t ) instead of Eq. (2.39).

Since �n=0(p = 0) = 0 and ζn=0(p = 0, t ) = 0 [as implied
by the correlations in Eq. (2.33)], the zero mode in fact
remains constant in time for all BCs considered here [see
Eq. (2.39)],

an=0(p = 0, t ) = a0(0, 0) = �√
AL

= const, (2.40)

which is consistent with the global OP conservation stated in
Eq. (2.5).

The two-time correlation function in mode space follows
from Eqs. (2.33 and (2.38),

〈an(p, t )a∗
n′ (p′, t ′)〉

=
[
〈|an(p, 0)|2〉e−�n(p)(t+t ′ )

+ 1

χn(p, τ )
(e−�n(p)|t−t ′|−e−�n (p)(t+t ′ ) )

]
δp,p′δn,n′ ,

(2.41)

where we used 〈an(p, 0)ζn(p, t )〉 = 0 for t > 0 and the fact
that the initial correlations are given by Eq. (2.1), i.e.,
〈an(p, 0)a∗

n′ (p′, 0)〉 ∝ δp,p′δn,n′ . We have introduced the short-
hand notation

χn(p, τ ) ≡ �n(p, τ )

p2 + λ2
n

= p2 + λ2
n + τ. (2.42)

Accordingly, the equal-time correlator is given by

〈an(p, t )a∗
n′ (p′, t )〉

=
[
〈|an(p, 0)|2〉e−2�n (p)t

+ 1

χn(p, τ )
(1 − e−2�n (p)t )

]
δp,p′δn,n′ . (2.43)

At any finite time, for p = 0 and n = 0 this expression
reduces to the time-independent correlations 〈|an=0(p =
0, t )|2〉 = �2/AL of the zero mode as implied by Eq. (2.40).
In Eq. (2.43), the limit t → ∞ (for general n and p)
yields 〈|an(p, t → ∞)|2〉 = 1/χn(p, τ ). For p = 0 and n = 0
this expression reduces to 1/τ , which is inconsistent with
Eq. (2.40). This indicates that the limit t → ∞ does not
commute with that of a vanishing wave vector.3In fact,

〈|an(p)|2〉eq,gc = 1

χn(p, τ )
(2.44)

describes the static equilibrium correlations of the modes
(including the zero mode) in the grand canonical ensemble
[see also Eq. (84) in Ref. [52]], in which �(t ) is allowed to
fluctuate and has a variance which diverges at criticality, i.e.,
for τ → 0, constituting the so-called zero-mode problem (see,
e.g., Ref. [53]). The present model instead realizes the equilib-
rium of the canonical ensemble, within which the zero mode
is constant in time and the equilibrium mode correlations are

3The noninterchangeability of the two limits essentially arises from
the second exponential in Eq. (2.43): For arbitrary p, n, and t → ∞,
one has e−2�n (p)t → 0, while for p → 0, n → 0, and finite t , one has
e−2�n (p)t → 1.
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given by

〈|an(p)|2〉eq ≡ 〈|an(p, t → ∞)|2〉 =
⎧⎨
⎩

|an=0(p = 0, 0)|2 = �2

AL for n = 0, p = 0
1

χn(p, τ )
otherwise.

(2.45a)

(2.45b)

Thermal ICs [Eq. (2.1)] are expressed in mode space by

〈|an(p, 0)|2〉 = v. (2.46)

For uncorrelated (i.e., flat) ICs [Eq. (2.2)] instead, one has
v = 0, which, within Gaussian theory, implies

φ(r, t = 0) = 0, an(p, 0) = 0, (2.47)

such that only the second term in square brackets in Eq. (2.43)
remains. We note that (grand canonical) equilibrium fluc-
tuations within the Gaussian Landau-Ginzburg model [see

Eq. (2.20)] at a reduced temperature
◦
τ 0 [corresponding to

a coupling constant τ0 = (ξ (0)
+ )−2 ◦

τ 0; see Eq. (2.19)] are de-
scribed by the standard Ornstein-Zernike form

〈|an(p)|2〉eq,gc = 1

p2 + λ2
n + τ0

. (2.48)

Thermal ICs [Eq. (2.46)] can thus be considered as an approx-
imation to equilibrium OP correlations at high temperatures
τ0 = 1/v → ∞. At finite τ0, we expect the approximation of
Eq. (2.48) by Eq. (2.46) to be reliable also for sufficiently large
times, because in this case the exponential factor in Eq. (2.43)
suppresses the modes with large p or λn. Upon introducing the
abbreviations

Sdyn,n(p, t ) ≡ e−2�n (p,τ )t

χn(p, τ )
,

Sstat,n(p) ≡ Sdyn,n(p, t = 0) = 1

χn(p, τ )
(2.49a)

for the dynamic and static contributions, respectively, as well
as

Srel,n(p, t ) ≡ 1

τ0
e−2�n (p,τ )t (2.49b)

for the relaxing contribution, the correlation function in
Eq. (2.43) can be expressed as

〈an(p, t )a∗
n′ (p′, t )〉flat = [Sstat,n(p, t ) − Sdyn,n(p, t )]δp,p′δn,n′

(2.50a)

and

〈an(p, t )a∗
n′ (p′, t )〉th = [Srel,n(p, t ) + Sstat,n(p, t )

− Sdyn,n(p, t )]δp,p′δn,n′ (2.50b)

for flat and thermal ICs, respectively.
By writing the solution in Eq. (2.38) as

an(p, t ) =
∫ t

0−
dsGn(p, t − s)[δ(s)an(p, 0) + ζn(p, s)],

Gn(p, t ) ≡ τ0Srel,n(p, t/2), (2.51)

we infer that Srel essentially corresponds to the Green’s func-
tion G for the fourth-order diffusion equation [Eq. (2.23)].
Furthermore, in equilibrium, time-translation invariance im-
plies 〈|an(p, t = 0)|2〉 = 1/χn(p, τ ) such that Eq. (2.41) ren-
ders

〈an(p, t )a∗
n(p, 0)〉eq = Sdyn,n(p, t/2). (2.52)

Accordingly, Sdyn essentially represents the equilibrium two-
time correlation function of the model.

III. BULK CORRELATION FUNCTIONS

The present approach to obtain the CCF requires knowl-
edge of the bulk correlation function Cb, which we discuss in
this section. The bulk counterparts of the correlators in mode
space, as given by Eqs. (2.41) and (2.43), are obtained upon
replacing the discrete eigenvalue λn (corresponding to the
direction of the confinement) by a continuous wave number
k and by attaining the continuum in line with Eq. (2.35). The
mode an(p) will be denoted in the bulk by a(q = {p, k}),
while �n(p) defined in Eq. (2.37) turns into �(q = {p, k}) =
(p2 + k2)2 + τ (p2 + k2) = q4 + τq2, where q ≡ {p, k} rep-
resents the d-dimensional vector having pα=1,...,d−1 as its
first d − 1 entries. Analogous mappings apply also to χn

[Eq. (2.42)] and Sn [Eq. (2.49)].
Accordingly, the two-time bulk OP correlation function is

given by the Fourier transform of Eq. (2.41), i.e.,

Cb(r, t, t ′)

≡ Cb(r, t, t ′)

≡ 〈φ({r‖, z}, t )φ({r′
‖ = 0, z′ = 0}, t ′)〉

=
∫

dd−1 p

(2π )d−1

∫
dk

2π
eip·r‖+ikz〈a({p, k}, t )a∗({p, k}, t ′)〉,

(3.1)
where we made use of translational invariance in all d direc-
tions as well as of isotropy, due to which Cb is solely a function
of r ≡ |r|. Accordingly, the equal-time bulk correlation func-
tion is given by

Cb(r, t ) ≡ Cb(r, t )

= 〈φ(r, t )φ(r′ = 0, t )〉

=
∫

dd q

(2π )d
eiq·r〈|a(q, t )|2〉. (3.2)

In a bulk system, global OP conservation [Eq. (2.39)] is
formally expressed as∫

dd r φ(r, t ) = a(q = 0, t ) = a(0, 0) = � = const, (3.3)

where we have used Eq. (2.40). It is useful to remark that this
implies∫

dd r Cb(r, t ) =
〈
φ(0, t )

∫
dd r φ(r, t )

〉
= 0. (3.4)
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FIG. 2. Auxiliary function Sdyn(r, t ) [Eq. (3.5)] as function of (a) time t and (b) distance r for spatial dimensions d = 3 and d = 4. The
quantity Sdyn(r, t/2) represents the equilibrium two-time correlation function in the bulk [see Eq. (2.52)]. Note that Sdyn is multiplied by
appropriate prefactors which render it a dimensionless function of ψ = r4/512t with t = γ t̃ . The actual time and distance dependences are
expressed in terms of the dimensionless scaling variable ψ [Eq. (3.6)]. The dashed lines represent the asymptotic behaviors applying to (a) late
times [Eq. (3.8)] and (b) large distances [Eq. (3.7)].

A. Preliminaries

The equal-time bulk OP correlator given in Eqs. (2.43)
and (3.2) can be determined explicitly for general d at bulk
criticality (τ = 0) [11]. According to Eq. (2.50) it suffices to
discuss the real-space expressions of the auxiliary quantities
defined in Eq. (2.49), the bulk counterparts of which will
correspondingly be denoted by S (q, t ). Turning first to the
contribution Sdyn [see Eq. (2.49a)], which can be interpreted
as the equilibrium two-time bulk correlation function [see
Eq. (2.52)], one obtains

Sdyn(r, t ) ≡
∫

dd q

(2π )d

e−2q4t

q2
eiq·r

= 21−d

π (1+d )/2�[(d − 1)/2]

∫ ∞

0
dq qd−3e−2q4t

×
∫ π

0
dθ (sin θ )d−2eiqr cos θ

= 1

(2π )d/2
r1−d/2

∫ ∞

0
dq qd/2−2e−2q4t Jd/2−1(qr)

= 2d/2−1π1/2−d/2

d�[(2 + d )/4]rd−2
ψd/4−1/2

[
d�[(d−2)/4]

8�(d/4)

× 1F3

(
d

4
− 1

2
;

1

2
,

1

2
+ d

4
,

d

4
;ψ

)

−
√
ψ 1F3

(
d

4
;

3

2
,

1

2
+ d

4
, 1 + d

4
;ψ

)]
, (3.5)

where Jν is a Bessel function of the first kind, 1F3 is a
hypergeometric function [54], and

ψ ≡ r4

512t
(3.6)

is a dimensionless scaling variable [recall Eq. (2.22)], which
is defined such that the crossover between the early- and
late-time (or, correspondingly, the large- and small-distance)
regimes typically occurs for ψ ∼ O(1). As in Eq. (3.2),
besides its dependence on t , Sdyn(r, t ) = Sdyn(r, t ) is in fact
a function of r only. The associated static contribution Sstat

[Eq. (2.49a)] follows from evaluating the first equation in

Eq. (3.5) at t = 0:

Sstat (r) ≡ Sdyn(r, t = 0)

= �(d/2 − 1)

4πd/2rd−2
� Sdyn(r → ∞, t ). (3.7)

As indicated, Eq. (3.7) also provides the leading asymptotic
behavior of Sdyn [Eq. (3.5)] for r → ∞. Accordingly, Sdyn is
generally finite for t → 0 and r �= 0. The asymptotic behav-
iors of Sdyn for t → ∞ (at fixed r �= 0) or, equivalently, for
small r (at fixed t > 0) are given by

Sdyn(r �= 0, t → ∞) � Sdyn(r → 0, t > 0)

� 25/2−7d/4π1/2−d/2

(d − 2)�(d/4)
t1/2−d/4. (3.8)

We note that Sdyn is also finite for r = 0, provided t > 0. The
divergence of the static correlation function Sstat (r) [Eq. (3.7)]
for r→0 corresponds to the divergence of Sdyn(r→0, t>0)
upon approaching t = 0. The behavior of Sdyn is illustrated in
Fig. 2.

We now turn to the auxiliary function Srel [Eq. (2.49b)],
which can be interpreted as the bulk Green’s function for
the linearized model B [see Eq. (2.51)]. At bulk criticality
(τ = 0), its real-space expression is given by

Srel(r, t ) ≡ 1

τ0

∫
dd q

(2π )d
e−2q4t eiq·r

= 2d/2π1/2−d/2

�[(2 + d )/4]τ0rd
ψd/4

[
0F2

(
1

2
,

1

2
+ d

4
;ψ

)

− 2
√
ψ�[(2 + d )/4]

�(1 + d/4)
0F2

(
3

2
, 1 + d

4
;ψ

)]
.

(3.9)

This result can be readily obtained from Eq. (3.5) using the
relation τ0Srel = −∇2Sdyn (with τ0 = 1/v), which follows
directly from the Fourier representations of Sdyn and Srel. Due
to translational invariance, one has Srel(r, t ) = Srel(r, t ). For
t → ∞ (and any r � 0) as well as for r → 0 (at fixed t > 0),
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FIG. 3. Auxiliary function Srel (r, t ) [Eq. (3.9)] as function of (a) time t and (b) distance r for spatial dimensions d = 3 and d = 4. The
quantity Srel (r, t/2) is proportional to the Green’s function for the linear model B [see Eq. (2.51)]. Note that Srel is multiplied by appropriate
prefactors which render it a dimensionless function of ψ = r4/512t with t = γ t̃ . The actual time and distance dependences are expressed in
terms of the dimensionless scaling variable ψ [Eq. (3.6)]. The dash-dotted parts correspond to −Srel. The dashed lines represent the asymptotic
behaviors applying to (a) late times [Eq. (3.10)] and (b) large distances [Eq. (3.11)]. For better visibility, the latter asymptote is compared with
Srel for d = 3 (solid curve) separately in the inset.

Srel behaves asymptotically as

Srel(r �= 0, t → ∞) � Srel(r → 0, t > 0)

� 2−7d/4π (1−d )/2

τ0�[1/2 + d/4]
t−d/4. (3.10)

In order to determine the leading behavior of Srel(r, t ) in the
limit r → ∞ for t > 0 or, equivalently, in the limit t → 0
for r > 0, the subdominant asymptotics of the generalized
hypergeometric function 0F2 is required (see Ref. [55]). One
obtains4

Srel(r → ∞, t > 0) � Srel(r > 0, t → 0)

� 21+d/2

τ0πd/2
√

3rd
ψd/6 exp

(
−3ψ1/3

2

)
× cos[(dπ − 9

√
3ψ1/3)/6]. (3.11)

This shows that Srel vanishes in an exponentially damped os-
cillatory fashion at large distances or short times, respectively.
From the Fourier representation in Eq. (3.9) one infers that the
divergence for t → 0 of the expression in Eq. (3.10) turns, for
t = 0, into Srel(r, t = 0) = τ−1

0 δ(d )(r). Figure 3 summarizes
the behavior of Srel.

The above expressions for Sdyn and Sstat are valid for
d �= 2.5 In two dimensions, the static correlation function, ob-
tained as the fundamental solution of the Laplace equation, is
given by the dimensionless expression Sstat = − ln(r/�)/2π
with some regularization length scale � [43]. The two-
dimensional case requires a careful treatment of the logarith-
mic divergences at short and large wavelengths and is not
considered here further.

4Further studies of the asymptotic behavior of the Green’s function
of general parabolic partial differential equations can be found, e.g.,
in Refs. [56–59].

5Although we assume d � 2 in Eq. (3.5), an explicit calculation
confirms the final result to hold also for d = 1. Note furthermore
that Eq. (3.7) develops a pole ∼1/(2 − d ) for d → 2.

B. Equal-time bulk correlation functions

1. Flat initial conditions

For flat ICs [Eq. (2.2)] the equal-time OP correlator in the
bulk Cb [Eq. (3.2)] follows from Eq. (2.50a):

Cb(r, t ) = Sflat (r, t ) ≡ Sstat (r) − Sdyn(r, t ). (3.12)

Using Eqs. (3.5) and (3.7), it can be shown that Sflat fulfills the
scaling behavior expressed in Eq. (2.8) [with cb ∼ (ξ (0)

+ )2−d

up to numerical constants and within the Gaussian approxima-
tion, consistent with Ref. [35]]. In particular, rd−2Sflat is solely
a function of the scaling variable ψ [Eq. (3.6)], implying that
the asymptotic behaviors of Sflat for r → ∞ and t → 0 are
closely related. The leading asymptotic behavior of Sflat is
given by

Sflat (r → ∞, t ) � Sflat (r > 0, t → 0)

� − 1

23−d/231/2πd/2rd−2
ψ (d−4)/6e−3ψ1/3/2

× sin

[
(1 − d )π

6
+ 3

√
3

2
ψ1/3

]
, (3.13)

which follows from the asymptotic behavior of the gener-
alized hypergeometric function 1F3 in next-to-leading order
(see Ref. [55]). According to Eq. (3.8), Sdyn approaches Sstat

algebraically in t for large t such that

Sflat (r, t → ∞) � Sstat (r). (3.14)

This reflects that, in the bulk, equilibrium is established for
t → ∞. The behavior of Sflat for r → 0 is singular. The
intermediate result in Eq. (3.5) can be written as

Sflat (r, t ) = 1

(2π )d/2
r2−d

∫ ∞

0
du(1 − e−2u4t/r4

)

× ud/2−2Jd/2−1(u). (3.15)

Next, performing the limit t → 0 for r > 0 fixed yields
Sflat (r, t = 0) = 0, which is also expected from Eq. (3.7).
However, for any t > 0 we can find a sufficiently small r such
that the exponential term in the integral in Eq. (3.15) becomes
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FIG. 4. Bulk correlation function Sflat (r, t ) for flat ICs [Eq. (3.12)], as function of (a) time t and (b) distance r for spatial dimensions
d = 3 and d = 4. Note that Sflat is multiplied by appropriate prefactors which render it a dimensionless function of ψ = r4/512t with t = γ t̃ .
The actual time and distance dependences are expressed in terms of the dimensionless scaling variable ψ [Eq. (3.6)]. The dash-dotted parts
correspond to −Sflat . In the insets, Sflat (for d = 3) is compared with the asymptotic expression in Eq. (3.13) (black dashed curve), which
captures the exponentially damped oscillatory behavior of Sflat at early times or large distances, respectively.

negligible. This renders the asymptotic behavior

Sflat (r → 0, t > 0) � 1

4πd/2rd−2
�(d/2 − 1) = Sstat (r),

(3.16)

which implies that, for any finite t > 0, Sflat diverges propor-
tionally to r2−d at small r. [Determining the autocorrelation
function Cb(r = 0, t, t ′) thus requires a suitable regularization
in general and is not considered here further.] The behavior
of Sflat is illustrated in Fig. 4. As shown in the insets, the
asymptotic expression in Eq. (3.13) accurately captures the
exponentially damped oscillatory behavior of Sflat at early
times or, correspondingly, at large distances.

As anticipated in the Introduction, the qualitative behavior
of a correlation function C is often characterized in terms of
a time-dependent correlation length ξ (t ) [44]. In the present
case, however, due to Eq. (3.4), the standard definition of ξ (t )

as the second moment of Cb, ξ 2(t ) =
∫

V dd r r2Cb(r,t )∫
V dd r Cb(r,t ) , where V

is an arbitrary but sufficiently large volume, is ill-defined.
This definition of ξ 2(t ) is problematic even if one restricts
the integral to a lower-dimensional plane: Since, for model B,
Cb(r, t ) is typically decaying in an oscillatory way, one could
obtain ξ 2 < 0. Instead, a more suitable measure of the growth
of the correlation volume is provided by the first zero crossing
ξ× of Cb. Applying this criterion to Sflat, the asymptote in
Eq. (3.13) renders

ξ× ∝ t1/4, (3.17)

which is consistent with the dynamic scaling hypothesis for
model B in the Gaussian limit [4]. The same scaling emerges
also for an effective ξ which is defined on the basis of the
asymptotic exponential decay reported in Eq. (3.13).

2. Thermal initial conditions

In the case of thermal ICs [Eq. (2.1)], the bulk correlation
function is given according to Eq. (2.50b) by

Cb(r, t ) = Sth(r, t ) = Srel(r, t ) + Sflat (r, t ). (3.18)

From Eqs. (3.5), (3.7), and (3.9) it follows that Sth fulfills the
scaling behavior expressed in Eq. (2.9) [with cb ∼ (ξ (0)

+ )2−d

up to numerical constants and within the Gaussian approxima-
tion]. Since, at late times, Sflat approaches Sstat [see Eq. (3.14)]
while Srel vanishes [see Eq. (3.10)], the late-time behavior
of Sth is always dominated by Sflat. Furthermore, owing to
Eq. (2.49b), one has Srel ∝ 1/τ0, such that, in the limit of
a large initial temperature, i.e., τ0 → ∞ [see Eq. (2.48)],
one obtains Sth � Sflat. We recall that, in fact, thermal ICs
accurately describe an initial equilibrium state only in this
limit τ0 → ∞ [see the discussion around Eq. (2.48)].

IV. CORRELATION FUNCTIONS IN CONFINEMENT

In the following, we focus on the equal-time correlation
function C(r‖, z, z′, t ) ≡ C(r‖ − r′

‖, z, z
′, t, t ′ = t ) of a finite

d-dimensional system having a cuboidal box geometry. Since
we assume periodic BCs in the subspace containing r‖ (see
Fig. 1), C is translationally invariant in r‖. This is important
for determining critical Casimir forces. The thin film limit
is readily obtained from the results for a box, as discussed
below. We recall that, at finite times t , the expression in
Eq. (2.43) for the mode correlations 〈|an(p, t )|2〉 applies to all
modes including the zero mode a0(0, t ). [This is not the case
in the limit t → ∞; see the discussion around Eq. (2.44).]
Accordingly, we obtain

C(r‖, z, z′, t ) = 1

A

∑
n‖,nd

eipn‖ ·r‖σnd (z)σ ∗
nd

(z′)
〈∣∣and (pn‖ , t )

∣∣2〉
,

(4.1)

where the eigenfunctions σn are given in Eq. (2.25) and the
notation is explained in Eqs. (2.29) and (2.30). Applying
the Poisson resummation formula [see Eqs. (A4) and (A5)]
renders

C(r‖, z, z′, t ) = N
{∞}∑

{mα=−∞}

∫
dd q

(2π )d

× eiq‖·r‖+q·L̃(m)σ̂qd (z)σ̂ ∗
qd

(z′)〈|a(q, t )|2〉,
(4.2)
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where we use the notation
∑{∞}

{mα=−∞} ≡ ∑∞
m1=−∞ · · ·∑∞

md =−∞ and define

N (p) = 1, σ̂ (p)
qd

(z) = eiqzz, (4.3a)

N (N ) = 2, σ̂ (N )
qd

(z) = cos(qd z) (4.3b)

for periodic and Neumann BCs, respectively. Furthermore,
the vector q is decomposed into lateral and transverse com-
ponents as q = {q‖, qd}, while L̃(m) stands for the d-
dimensional vector

L̃(m) ≡ {m1L‖, . . . ,md−1L‖,Nmd L}, (4.4)

which, for N = 1 (periodic BCs), we will simply write as
L(m). The notation a(q, t ) indicates the continuum case, as
explained in Sec. III.

For periodic BCs, Eq. (4.2) reduces to

C (p)(r‖, z − z′, t,L)

≡ C (p)(r‖, z, z′, t,L)

=
{∞}∑

{mα=−∞}
Cb({r‖, z − z′} + L(m), t ), (4.5)

where Cb denotes the (equal-time) bulk correlation function
[see Eq. (3.2)]. For Neumann BCs instead, using

cos(qz) cos(qz′) = 1
2 {cos[q(z − z′)] + cos[q(z + z′)]}, (4.6)

Equation (4.2) turns into (see also Ref. [60])

C (N )(r‖, z, z′, t,L)

= 1

2

{∞}∑
{mα=−∞}

[
Cb({r‖, z − z′} + L̃(m), t )

+ Cb({r‖,−(z − z′)} + L̃(m), t )

+ Cb({r‖, z + z′} + L̃(m), t )

+ Cb({r‖,−(z + z′)} + L̃(m), t )
]

=
{∞}∑

{mα=−∞}

[
Cb({r‖, z − z′} + L̃(m), t )

+ Cb({r‖, z + z′} + L̃(m), t )
]

= C (p)(r‖, z − z′, t, 2L) + C (p)(r‖, z + z′, t, 2L), (4.7)

where we have employed Eq. (4.5) in order to obtain the final
result, which involves the correlation function for periodic
BCs in a box of thickness 2L.6 Owing to the periodicity
C (p)(r‖, z = 2L, t, 2L) = C (p)(r‖, z = 0, t, 2L), so that in the
special case z = z′ = 0 or z = z′ = L, Eq. (4.7) reduces to

C (N )(r‖, z = z′ ∈ {0,L}, t,L)

= 2
{∞}∑

{mα=−∞}
Cb({r‖, 0} + L̃(m), t )

= 2C (p)(r‖, 0, t, 2L). (4.8)

6The second equality in Eq. (4.7) can be proven by using the
Fourier expression for Cb [Eq. (3.2)] and the fact that 〈|a(−q, t )|2〉 =
〈|a(q, t )|2〉.

This equation applies also to derivatives of C (N ) with respect to
r‖,α , z, or z′, noting that ∂n

z C (p)(r‖, z, t, 2L) = 0 for z ∈ {0, 2L}
and n odd.

In equilibrium, obtained for t → ∞, the zero mode must
be treated carefully due to the noninterchangeability of the
limits t → ∞ and {n‖, nd} → 0 in the expression for the cor-
relation function in Eq. (4.2) [see Eq. (2.45) and the associated
discussion]. This is reflected by the fact that 〈|and (pn‖ )|2〉
given in Eq. (2.45) is a discontinuous function of {n‖, nd}.
Before applying the Poisson resummation formula in the
equilibrium case, one must therefore separate the zero mode
from the mode sum in Eq. (4.2), i.e.,

Ceq(r‖, z, z′,L) = 1

A

∑
n‖,nd

′
eipn‖ ·r‖

× σnd (z)σ ∗
nd

(z′)
〈∣∣and (pn‖ )

∣∣2〉
eq +

(
�

AL

)2

= Ceq,gc(r‖, z, z′) − 1

ALτ
, (4.9)

where
∑′ stands for the sum excluding the single mode

n1 = · · · = nd = 0, � is the total OP [see Eq. (2.5)], and
we have used χ0(0, τ ) = τ [see Eq. (2.42)]. Furthermore, we
have introduced here the grand canonical static equilibrium
correlation function

Ceq,gc(r‖, z, z′,L)

= 1

A

∑
n‖,nd

eipn‖ ·r‖σnd (z)σ ∗
nd

(z′)
1

χnd (pn‖ , τ )
+

(
�

AL

)2

,

(4.10)

which does not involve a constraint on the zero mode [see also
Eq. (2.44)]. The last term in Eq. (4.10) is due to the fact that
we consider the correlations of the actual OP φ and not of
its fluctuation φ −�/AL. (In the present study, we focus on
� = 0.) Since Eq. (4.9) holds for all BCs considered here,
upon applying the Poisson resummation formula to Eq. (4.10),
one obtains the same expression for Ceq,gc as reported in
Eqs. (4.5) and 4.7 but with Cb(r, t ) replaced by Cb,eq(r).

Equation (4.9) coincides with the expression for the cor-
relation function in the canonical ensemble, derived within
equilibrium field theory in Ref. [52]. The term −1/ALτ
represents the constraint-induced correction stemming from
the nonfluctuating character of � [see Eq. (2.40)]. This term
diverges at criticality (τ → 0) and cancels the corresponding
divergence of the grand canonical correlation function Ceq,gc

[Eq. (4.10)] such that the canonical one Ceq [Eq. (4.9)] stays
finite for τ → 0.7

In the case of a thin film, where the transverse area A =
Ld−1

‖ → ∞ is infinitely extended, the (d − 1)-dimensional

7The divergent behavior of the correlation function is a known
artifact of Gaussian field theory in the grand canonical ensemble (see,
e.g., Refs. [52,53,61]).
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sum over pn in Eq. (4.1) has to be replaced according to8

1

A

∑
n

f (pn) →
∫

dd−1 p

(2π )d−1
f (p). (4.11)

Consequently, the associated Poisson representation of the
correlation function in Eq. (4.2) involves only the sum over
mz such that Eqs. (4.5), (4.7), and (4.8) reduce to

C (p)(r‖, z − z′, t,L)

=
∞∑

m=−∞
Cb({r‖, z − z′ + mL}, t ), (4.12a)

C (N )(r‖, z, z′, t,L)

=
∞∑

m=−∞
[Cb({r‖, z − z′ + 2mL}, t )

+ Cb({r‖, z + z′ + 2mL}, t )], (4.12b)

C (N )(r‖, z = z′ ∈ {0,L}, t,L)

= 2
∞∑

m=−∞
Cb({r‖, 2mL}, t )

= 2C (p)(r‖, 0, t, 2L). (4.12c)

Further analytic expressions for these correlation functions
are provided in Appendix B. Importantly, the constraint-
induced correction −1/ALτ vanishes in Eq. (4.9) both in the
thin film limit and in the bulk limit, implying that the corre-
sponding correlation function is identical in the canonical and
grand canonical ensembles

Ceq(r‖, z, z′) = Ceq,gc(r‖, z, z′) (A → ∞ or V → ∞).
(4.13)

We note, however, that this property is specific to non-
symmetry-breaking BCs, while for symmetry-breaking BCs,
in a thin film [51] ensemble differences can be relevant.

V. CRITICAL CASIMIR FORCE

Following Refs. [30,31,38,41,42], we define the CCF in
terms of the generalized force exerted by the OP field on an
inclusion (e.g., a surface) in the system. For a given instan-
taneous (i.e., spatially varying, but fixed) field configuration
φ(r), the generalized force acting in direction i on a single
surface described by an energy density Hs(li, φ(r)) localized
at ri = li is defined by [38,41,42]

Ki ≡ −∂F
∂li

= −
∫

V
dd r
∂H(r, φ(r),∇φ(r))

∂li
. (5.1)

Here F = ∫
V dd r H denotes the total energy, with H = Hb +

Hs and the bulk energy density Hb [see Eq. (2.18)]; V is
the system volume independent of li. In the case of the
bounding surfaces of the system, located at z = L and z = 0,

8The replacement rule in Eq. (4.11) applies to a correlation function
and is therefore different from the one in Eq. (2.35), which applies to
the OP field.

FIG. 5. Schematic view of the system under consideration, pro-
jected onto one of the lateral dimensions. The hatched areas represent
the integration volumes V (0,L)

s around the surfaces at z = 0 and z = L,
entering Eq. (5.2), while the shaded area illustrates the bulk medium
on the outside. The thickness of Vs is taken to be infinitesimal, which
facilitates the use of no-flux BCs [or, correspondingly, the symmetry
of the ingoing and outgoing fluxes in the case of periodic BCs; see
the discussion after Eq. (5.6)]. Here V (0,L)

s,{i,o} denotes the volumes of
the inner or outer fluid at the wall at z = 0 and z = L, respectively;
V (0,L)

s = V (0,L)
s,i ∪ V (0,L)

s,o .

respectively, the generalized force Ki in direction i = z can be
expressed as [41,42]

K (L)
i = −

∫
∂V (L)

s

dd−1s j T̄i j +
∫

V (L)
s

dd r(∇iμ)φ, (5.2a)

K (0)
i =

∫
∂V (0)

s

dd−1s j T̄i j −
∫

V (0)
s

dd r(∇iμ)φ, (5.2b)

where V (0)
s and V (L)

s are cuboid-shaped volumes of infinites-
imal thickness enclosing the surfaces at z = L and z = 0,
respectively (see Fig. 5),

T̄i j ≡ Ti j + μφδi j (5.3)

defines the dynamical stress tensor,

Ti j = ∂H
∂∇iφ

∇ jφ − δi jH (5.4)

is the standard (grand canonical) stress tensor [22], and

μ = δF
δφ

= ∂H
∂φ

− ∇ j

(
∂H
∂∇ jφ

)
(5.5)

is the chemical potential. The different signs in Eq. (5.2)
stem from the symmetrization of the derivative with respect
to lz in Eq. (5.1), which is necessary in order to obtain equal
but opposite forces on the boundaries of the system (see
Ref. [41]). The above expressions apply for any generic Hb

which is at most quadratic in gradients of φ but can contain
arbitrary powers of φ.

The generalized force Kz (per area A), averaged over the
left and right boundaries of the system, renders the dynamic
CCF K:

K = 1

2A

(
K (0)

z + K (L)
z

)
. (5.6)
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Upon thermal averaging, the first term on the right-hand side
(rhs) of Eq. (5.2) provides identical contributions to K at the
two boundaries. If φ and the noise [see Eq. (2.21)] obey no-
flux BCs at the surfaces, the second term on the rhs of Eq. (5.2)
vanishes due to the infinitesimal thickness of Vs. In fact, in this
case, the symmetrized definition in Eq. (5.6) is not necessary.
For periodic BCs instead, nonvanishing fluxes across the
surfaces imply that the last term in Eq. (5.2) does not vanish at
any single boundary. However, we have ∇iμ|z=0 = ∇iμ|z=L

such that the last term on the rhs of Eq. (5.2) cancels in the
sum in Eq. (5.6). We note that, in thermal equilibrium, the
second term on the rhs of Eq. (5.2) is zero on average, i.e.,
〈(∇iμ)φ〉 = 0 [see Eq. (5.34) below and Ref. [38]].

Taking into account the direction of the surface normals
(which point outward from the respective volumes Vs), the
mean CCF follows from Eqs. (5.2) and (5.6) as

〈K(t )〉 = 1

A

∫
∂V (L,0)

s,i

dd−1s(L,0)
z (r‖, z)〈T̄zz(r‖, z, t )〉

− 1

A

∫
∂V (L,0)

s,o

dd−1s(L,0)
z (r‖, z)〈T̄zz,b(r‖, z, t )〉

≡ 〈P f (t )〉 − 〈Pb(t )〉, (5.7)

where ∂V (L,0)
s,{i,o} denotes the surface of the inner or outer fluid

at z = L and z = 0, respectively (see Fig. 5) [with the cor-
responding area element dd−1sz(r‖, z)], and where T̄zz,b, ac-
cordingly, represents the bulk stress. As set out in Eq. (2.11),
the last line in Eq. (5.7) defines the averaged film and bulk
pressures. We will use the notion of a film pressure in both the
case of a thin film and that of a box geometry.

For a Gaussian Hamiltonian density of the Landau-
Ginzburg form [Eq. (2.18)], the chemical potential [Eq. (5.5)]
reduces to the bulk value μ = −∇2φ + τφ and the dynamic
stress tensor in Eq. (5.3) takes the form

T̄zz = 1

2
(∂zφ)2 − 1

2

d−1∑
α=1

(∂αφ)2 + 1

2
τφ2 − φ∇2φ. (5.8)

In the following, we focus on a critical quench, i.e., τ = 0; as
before, we also assume� = 0. Accordingly, the mean CCF in
Eq. (5.7) is given by

〈K(t )〉 = 〈P f (t )〉 − 〈Pb(t )〉

=
[

1

2
〈[∂zφ(r‖, z, t )]2〉 − 〈

φ(r‖, z, t )∂2
z φ(r‖, z, t )

〉

− 1

2

d−1∑
α=1

〈[∂αφ(r‖, z, t )]2〉

−
〈
φ(r‖, z, t )

d−1∑
α=1

∂2
αφ(r‖, z, t )

〉]
r‖=0‖
z∈{0,L}

− B, (5.9)

where B denotes the corresponding bulk contribution, explicit
expressions of which will be provided below. In Eq. (5.9),
translational invariance along the lateral directions allows one
to set r‖ = 0. The correlations of the OP derivatives can be
cast into derivatives of the OP correlation function, as will be
shown below.

Here we emphasize that Eq. (5.9) strictly applies only to
finite times. In fact, upon taking the limit t → ∞ in order to
calculate equilibrium quantities, it is necessary to regularize
the zero-mode divergence occurring for τ → 0 [see Eqs. (4.9)
and (4.13) and the associated discussion]. Accordingly, in
the case t → ∞, a nonzero τ > 0 must be kept within the
intermediate calculations and the limit τ → 0 is carried out
only at the end. An exception is a thin film (� = 0) where,
within Gaussian approximation, the zero-mode divergence
does not play a role because the corresponding problematic
term in Eq. (4.9) vanishes [52].9 For a thin film, one may thus
set τ = 0 from the outset if one takes the limit t → ∞.

We proceed by analyzing the dynamical and equilibrium
CCF for various geometries and BCs based on the stress tensor
formalism.

A. Thin film with periodic BCs

We first consider a thin film with periodic BCs at its
confining surfaces (z = 0,L), which is the simplest geometry
to study CCFs. Using Eq. (4.2) [reduced to the special case of
a thin film via Eq. (4.11)], we determine the autocorrelators

〈R(p)(t )〉 ≡ 〈∂zφ(0‖, z, t )∂zφ(0‖, z, t )〉|z∈{0,L}

= 1

L

∫
dd−1 p

(2π )d−1

∑
n

(
λ(p)

n

)2〈|an(p, t )|2〉

= −〈φ(0‖, z, t )∂2
z φ(0‖, z, t )〉|z∈{0,L}

= −∂2
z C (p)(0‖, z, t )|z=0, (5.10a)

〈Q(p)(t )〉 ≡ 〈φ(r‖, z, t )∇2
‖φ(r‖, z, t )〉∣∣ r‖=0‖

z∈{0,L}

= − 1

L

∫
dd−1 p

(2π )d−1

∑
n

p2〈|an(p, t )|2〉

= −
d−1∑
a=1

〈[∂αφ(r‖, z, r)]2〉
∣∣∣∣ r‖=0‖

z∈{0,L}

= ∇2
‖C (p)(r‖, 0, t )

∣∣
r‖=0‖

, (5.10b)

where we have introduced the operator

∇2
‖ ≡

d−1∑
α=1

∂2
α. (5.11)

The averaged instantaneous film pressure 〈P f 〉 follows ac-
cording to Eq. (5.9) as〈

P (p)
f (t )

〉 = 3
2 〈R(p)(t )〉 − 1

2 〈Q(p)(t )〉. (5.12)

Upon applying the Poisson resummation formula via
Eq. (4.12a) (see also Appendix A), one obtains

〈R(p)(t )〉 = −
∞∑

m=−∞
∂2

z Cb({0‖, z}, t )

∣∣∣∣
z=Lm

, (5.13a)

〈Q(p)(t )〉 =
∞∑

m=−∞
∇2

‖Cb({r‖, z}, t )

∣∣∣∣
z=Lm,r‖=0‖

(5.13b)

9This can be different at higher orders in perturbation theory (see
Refs. [53,62]).
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in terms of the equal-time bulk correlation function Cb defined
in Eq. (3.2).

In the following we consider flat as well as thermal ICs,
for which the bulk correlator Cb is provided in Eqs. (3.12) and
(3.18), respectively. The derivatives required in Eq. (5.13) are
readily obtained from the analytic expressions for Cb provided
in Sec. III. Since Cb depends only on r = |r|, one has

∂2
αCb(r, t ) = ∂α

[
rα
r
∂rCb(r, t )

]

= r2
α

r2
∂2

r Cb(r, t ) +
(

1

r
− r2

α

r3

)
∂rCb(r, t ). (5.14)

Consequently, Eq. (5.13b) can be written as 〈Q(p)(t )〉 =∑∞
m=−∞

d−1
z ∂zCb({0‖, z}, t )|z=Lm. Explicit expressions for the

derivatives of Sdyn and Srel are rather lengthy and are not
stated here; they can be readily obtained from Eqs. (3.5) and
(3.9) using standard properties of hypergeometric functions
[54]. However, it is useful to report the following asymptotic
behaviors (β = 1, . . . , d):

∂2
r Sdyn(r, t → ∞)

� ∂2
r Sdyn(r, t )

∣∣
z→0 � ∂2

βSdyn(r, t → ∞)
∣∣
r‖=0‖

� ∂2
βSdyn(r, t )

∣∣
r‖=0‖,z→0

� r−1∂rSdyn(r, t → ∞) � r−1∂rSdyn(r, t )|r→0

� − �(d/4)

22+5d/4πd/2�(1 + d/2)t d/4
, (5.15a)

∂2
r Srel(r �= 0, t → ∞)

� r−1∂rSrel(r �= 0, t → ∞)

� − π1/2−d/2

25/2+7d/4�(1 + d/4)t1/2+d/4
, (5.15b)

∂2
r Srel(r �= 0, t → 0)

∼ r−1∂rSrel(r �= 0, t → 0) ∼ ∂2
r Srel(r, t )|r→∞

∼ r−1∂rSrel(r, t → 0)|r→∞ → 0, (5.15c)

∂2
r Sflat (r, t → 0)

� ∂2
r Sflat (r, t )|r→∞ � r−1∂rSflat (r, t → 0)

� r−1∂rSflat (r, t )|r→∞ → 0. (5.15d)

In fact, according to Eq. (3.13), ∂2
r Sdyn approaches ∂2

r Sstat

exponentially for large r or small t . Furthermore, the leading
asymptotic behavior extending Eq. (5.15c) to large but finite r
or small but nonzero t can be straightforwardly obtained from
Eq. (3.11).

Owing to Eqs. (5.15c) and (5.15d), the derivatives of Cb

appearing in Eq. (5.13) vanish for |z| → ∞. Therefore, in
Eq. (5.13), in the bulk limit L → ∞, only terms for m = 0 sur-
vive. These render, via Eq. (2.12), the bulk pressure 〈Pb(t )〉.
The bulk pressure can equivalently be obtained by directly
evaluating the rhs of Eq. (5.12) with the bulk correlation
function [Eq. (3.2)].

Using the fact that Cb(z, t ) = Cb(−z, t ), the time-dependent
CCF [Eq. (5.9)] at bulk criticality (τ = 0) for a slab with

periodic BCs eventually follows as

〈K(p)(t )〉 = −
∞∑

m=1

[
3∂2

z Cb(z, t ) + d − 1

z
∂zCb(z, t )

]
z=Lm

.

(5.16)

Since Cb fulfills the scaling behavior in Eq. (2.9) with z = 4
[and recalling Eqs. (2.15) and (2.22)], one readily demon-
strates that 〈K(p)(t )〉 indeed has the scaling form anticipated in

Eq. (2.13) (with
◦
τ = 0). In particular, Ld〈K(p)〉 is a function

of the dimensionless time scaling variable t/Lz.

1. Equilibrium CCF

The contributions from Sdyn and Srel vanish in the long-
time limit, owing to Eqs. (5.15b) and (5.15a). Both for flat and
thermal ICs [see Eqs. (3.12) and (3.18)], the equilibrium CCF
〈K(p)〉eq at bulk criticality thus follows by inserting Cb = Sstat

[Eq. (3.7)] into Eq. (5.16), rendering10

〈K(p)〉eq = 〈K(p)(t → ∞)〉

= −
∞∑

m=1

[
3∂2

z Sstat (z) + d − 1

z
∂zSstat (z)

]

= L−dπ−d/2�(d/2)(1 − d )ζ (d ), (5.17)

where, in the last step, we have used Eq. (3.7) and introduced
the Riemann zeta function ζ (s) = ∑∞

n=1 n−s [54]. In spatial
dimensions d = 3 and 4, one obtains

〈K(p)〉eq =
{

− 1
L3
ζ (3)
π
, d = 3

− 1
L4
π2

30 , d = 4,
(5.18)

respectively. The same expression as in Eq. (5.17) is obtained
from a calculation of 〈K(p)〉eq based on the residual finite-size
free energy (see Ref. [21]). Note that, concerning the CCF, the
ensemble difference is immaterial for a thin film with periodic
BCs [see also Eq. (4.13)].

2. Dynamic CCF for flat initial conditions

The CCF for flat ICs, which is obtained by inserting Cb =
Sflat [Eq. (3.12)] into Eq. (5.16), is denoted by 〈K(p)

flat (t )〉. At
finite times, a closed analytical expression for 〈K(p)

flat (t )〉 is not
available, and the CCF thus has to be determined numerically.
Due to the rapid exponential decay of Sflat for large values
of r [see Eq. (3.13)], it suffices to retain only the first few
terms of the sum in Eq. (5.16) in order to obtain an accurate
estimate. The CCF 〈K(p)

flat (t )〉 obtained in this way is illustrated
in Fig. 6(a) for d = 3 spatial dimensions. From Eq. (5.15d) it
follows that the CCF vanishes initially:〈

K(p)
flat (t = 0)

〉 = 0. (5.19)

At short times t/Lz � O(1), the CCF grows in an oscillatory
fashion. At late times t/Lz � O(1) the CCF approaches its

10For a thin film in d � 2 dimensions, the limit t → ∞ can be
exchanged with the sum over m. This is not permitted in the case
of a box geometry, as will be discussed in Sec. V C 2.
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FIG. 6. Time evolution of the dynamic CCF 〈K(p)(t )〉 [per kBTc, Eq. (5.16)] in a thin film for periodic BCs and d = 3 dimensions. At time
t = 0, the system is instantaneously quenched to the bulk critical temperature (τ = 0). (a) CCF for flat ICs [Eq. (2.2)]. The dashed line indicates
the value of the equilibrium CCF at Tc [Eq. (5.17)]. (b) Contribution τ0〈K(p)

rel (t )〉 [Eq. (5.22)] to the CCF 〈K(p)
th (t )〉 = 〈K(p)

flat (t )〉 + 〈K(p)
rel (t )〉 for

thermal ICs [Eq. (2.1)], where τ0 = 1/v is a measure of the initial temperature [see Eq. (2.48)]. In both panels, the CCF and time are scaled
according to Eq. (2.13) such that the universal behavior of the CCF scaling function is exhibited by the plot explicitly.

equilibrium value [Eq. (5.17)] algebraically in time from
below (see Appendix C for a derivation of this behavior):〈

K(p)
flat (t )

〉 − 〈K(p)〉eq ∝ −t1/4−d/4. (5.20)

3. Dynamic CCF for thermal initial conditions

According to Eq. (3.18), the dynamic CCF for thermal ICs
can be written as〈

K(p)
th (t )

〉 = 〈
K(p)

rel (t )
〉 + 〈

K(p)
flat (t )

〉
, (5.21)

where 〈K(p)
flat〉 is defined in the preceding subsection, while

〈
K(p)

rel (t )
〉 ≡ −

∞∑
m=1

[
3∂2

z Srel(z, t ) + 2

z
∂zSrel(z, t )

]
z=Lm

(5.22)

captures the contribution stemming from Srel [Eq. (3.9)]. Ac-
cording to Eqs. (5.15b) and (5.15c), 〈K(p)

rel 〉 vanishes both ini-
tially and at late times, implying that 〈K(p)

rel 〉 essentially mod-
ifies only the transient behavior of the dynamic CCF. Since
〈K(p)

rel 〉 ∝ 1/τ0, for large initial temperatures [see Eq. (2.48)]
the influence of the thermal IC is diminished such that
〈K(p)

th (t )〉|τ0→∞ � 〈K(p)
flat (t )〉. Figure 6(b) displays τ0〈K(p)

rel (t )〉,
which is independent of the initial temperature τ0, as a func-
tion of time.

B. Thin film with Neumann BCs

In order to obtain the dynamic CCF in a thin film with
Neumann BCs, we proceed as in Sec. V A. Accordingly, using
Eqs. (4.2) and (4.11), we obtain the correlation functions

〈R(N )(t )〉 ≡ −〈
φ(0‖, z, t )∂2

z φ(0‖, z, t )
〉∣∣

z∈{0,L}

= 1

L

∫
dd−1 p

(2π )d−1

∞∑
n=0

(
λ(N )

n

)2
(2 − δn,0)〈|an(p, t )|2〉

= −∂2
z C (N )(r‖ = 0‖, z, z′, t )

∣∣
z=z′∈{0,L}, (5.23a)

〈Q(N )(t )〉 ≡
〈
φ(r‖, z, t )

d−1∑
α=1

∂2
αφ(r‖, z, t )

〉∣∣∣∣∣
r‖=0‖
z∈{0,L}

= −
d−1∑
α=1

〈[∂αφ(r‖, z, r)]2〉
∣∣∣∣∣

r‖=0‖
z∈{0,L}

= − 1

L

∫
dd−1 p

(2π )d−1

∞∑
n=0

p2(2 − δn,0)〈|an(p, t )|2〉

= ∇2
‖C (N )(r‖, z, z, t )

∣∣
z∈{0,L}, (5.23b)

in terms of which Eq. (5.9) renders the film pressure11〈
P (N )

f (t )
〉 = 〈R(N )(t )〉 − 1

2 〈Q(N )(t )〉. (5.24)

Upon invoking the Poisson summation formula via
Eq. (4.12b) (see also Appendix A), the correlators in
Eq. (5.23) can be expressed as

〈R(N )(t )〉 = −2
∞∑

m=−∞
∂2

z Cb({r‖ = 0‖, z}, t )

∣∣∣∣
z=2Lm

= 2〈R(p)(t )〉|L→2L, (5.25a)

〈Q(N )(t )〉 = 2
∞∑

m=−∞
∇2

‖Cb({r‖, z}, t )

∣∣∣∣
z=2Lm,r‖=0‖

= 2
∞∑

m=−∞

d − 1

z
∂zCb({0‖, z}, t )

∣∣∣∣
z=2Lm

= 2〈Q(p)(t )〉|L→2L, (5.25b)

where Cb is the equal-time bulk correlation function [Eq. (3.2)]
and where we have used Eq. (5.14) as well as Eq. (5.13). On

11Since φ is constructed as a sum of Neumann eigenfunctions [see
Eq. (2.27)], Eq. (2.25b) implies ∂zφ(0, z = 0, t ) = 0 such that the
correlator involving ∂zφ in Eq. (5.9) does not contribute to 〈P (N )

f 〉.
This is the reason for the prefactors in Eqs. (5.12) and (5.24) to be
different.
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FIG. 7. Time evolution of the dynamic CCF 〈K(N )(t )〉 [per kBTc, Eq. (5.26)] in a thin film for Neumann BCs and d = 3 dimensions. At
time t = 0, the system is instantaneously quenched to the bulk critical temperature (τ = 0). (a) CCF for flat ICs. The dashed line indicates
the value of the equilibrium CCF at Tc [Eq. (5.27)]. (b) Contribution τ0〈K(N )

rel (t )〉 to the CCF 〈K(N )
th (t )〉 = 〈K(N )

flat (t )〉 + 〈K(N )
rel (t )〉 for thermal ICs

[see Eq. (2.1)], where τ0 = 1/v is a measure of the initial temperature [see Eq. (2.48)]. In both panels, CCF and time are scaled according to
Eq. (2.13) such that the universal behavior of the CCF scaling function is exhibited by the plot explicitly.

the rhs, the expressions for periodic BCs given in Eq. (5.13)
are to be evaluated for 2L instead of L.

As before, the bulk pressure 〈P (N )
b (t )〉 is provided by the

terms pertaining to m = 0 in Eq. (5.25). Consequently, the
dynamic CCF for a film with Neumann BCs follows from
Eqs. (5.24) and (5.25) as

〈K(N )(t )〉

= −2
∞∑

m=1

[
2∂2

z Cb(z, t ) + d − 1

z
∂zCb(z, t )

]
z=2Lm

= −2−d+1
∞∑

m=1

[
2∂2

z Cb(z, t/2z)+ d − 1

z
∂zCb(z, t/2z)

]
z=Lm

.

(5.26)

In this equation we made use of the scaling behavior expressed

in Eq. (2.13) (with
◦
τ = 0), according to which a change in the

film thickness L is equivalent to a change of the amplitude
together with a rescaling of the time which appears in the
dynamic CCF.

1. Equilibrium CCF

Due to Eqs. (5.15a) and (5.15b), in the long-time limit,
only Sstat [Eq. (3.7)] contributes to the dynamic CCF, indepen-
dently of the type of IC [see Eqs. (3.12) and (3.18)]. Hence,
upon inserting Sstat into Eq. (5.26), we obtain the equilibrium
CCF for Neumann BCs at bulk criticality (τ = 0)

〈K(N )〉eq = 〈K(N )(t → ∞)〉 = 2−d〈K(p)〉eq, (5.27)

which can be expressed in terms of the equilibrium CCF for
periodic BCs reported in Eq. (5.17) (for the same value of the
film thickness L), consistent with Refs. [21,52]. As is the case
for periodic BCs, in the thin film geometry with Neumann
BCs the CCF is the same in the canonical and the grand
canonical ensembles, respectively.

2. Dynamic CCF

Inserting Eqs. (3.12) or (3.18) for Cb into Eq. (5.26)
renders the CCF for flat and thermal ICs, respectively. The
numerically determined dynamic CCF 〈K(N )(t )〉 for flat ICs

is illustrated in Fig. 7(a). Analogously to periodic BCs (see
Sec. V A), the dynamic CCF vanishes initially, 〈K(N )(t →
0)〉 → 0, and approaches its equilibrium value [Eq. (5.27)] at
late times in an oscillatory fashion. The contribution 〈K(N )

rel (t )〉
to the CCF for thermal ICs, obtained by inserting Cb = Srel

into Eq. (5.26), is shown in Fig. 7(b).

C. Cubical box with periodic BCs

In the case of a finite cuboidal system with periodic BCs at
all surfaces, the film pressure follows from Eq. (5.9) [analo-
gously to Eq. (5.12)] as〈

P (p)
f (t )

〉 = 3
2 〈R(p)(t )〉 − 1

2 〈Q(p)(t )〉, (5.28)

with the correlators

〈R(p)(t )〉 ≡ 〈∂zφ(0‖, z, t )∂zφ(0‖, z, t )〉|z∈{0,L}

= 1

AL

∑
p,n

(
λ(p)

n

)2〈|an(p, t )|2〉

= −〈
φ(0‖, z, t )∂2

z φ(0‖, z, t )
〉∣∣

z∈{0,L}

= −∂2
z C (p)(0‖, z, t )|z∈{0,L}

= −
{∞}∑

{mα=−∞}
∂2

z Cb(r, t )

∣∣∣∣∣∣
r=L(m)

, (5.29a)

〈Q(p)(t )〉 ≡ 〈φ(r‖, z, t )∇2
‖φ(r‖, z, t )〉| r‖=0

z∈{0,L}

= − 1

AL

∑
p,n

p2〈|an(p, t )|2〉

= −
d−1∑
α=1

〈[∂αφ(r‖, z, r)]2〉
∣∣∣∣∣

r‖=0‖
z∈{0,L}

= ∇2
‖C (p)(r‖, z, t )

∣∣ r‖=0‖
z∈{0,L}

=
{∞}∑

{mα=−∞}
∇2

‖Cb(r, t )

∣∣∣∣∣∣
r=L(m)

, (5.29b)
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where we have applied the Poisson resummation formula
via Eq. (4.5). [For further details regarding the notation, see
Eqs. (4.2) and (4.4).] With the aid of Eq. (5.14), the required
derivatives are obtained as

∂2
z Cb(r, t ) =

(
1

r
− z2

r3

)
∂rCb + z2

r2
∂2

r Cb(r, t ), (5.30a)

∇2
‖Cb =

(
d − 2

r
+ z2

r3

)
∂rCb +

(
1 − z2

r2

)
∂2

r Cb. (5.30b)

In the Poisson representation in Eq. (5.29), the terms per-
taining to m = 0 (i.e., m1 = · · · = md = 0) provide the bulk
contribution to the CCF. Accordingly, defining the indicator
function

�(m) ≡
{

0 if m = 0
1 otherwise, (5.31)

the CCF follows from Eq. (5.28) as

〈K(p)(t )〉 = −
∞∑

m1=−∞
· · ·

∞∑
md =−∞

�(m)

[(
1

2
+ z2

r2

)
∂2

r Cb

+
(

1 + d

2r
− z2

r3

)
∂rCb

]
r=L(m)

. (5.32)

1. Equilibrium CCF

We now demonstrate that Eq. (5.32) leads to the canonical
equilibrium CCF which was previously obtained in Ref. [52]
based on statistical field theory. We emphasize that evaluating
Eq. (5.32) with the correlation function obtained at bulk
criticality τ = 0, i.e., Cb = Sstat [see Eq. (3.7)], does not result
in the correct equilibrium CCF at τ = 0 (see Appendix D).
Instead, for the purpose of regularizing the zero-mode diver-
gence [see the discussion following Eq. (4.9)] it is necessary
to consider a nonzero τ and perform the limit τ → 0 only at
the end of the calculation. For nonzero τ , Eq. (5.8) renders,
analogously to Eq. (5.28), the canonical equilibrium film
pressure〈
P (p)

f

〉
eq = 3

2 〈R(p)〉eq − 1
2 〈Q(p)〉eq

+ 1
2τC

(p)
eq (r‖ = 0‖, z = 0)

= 3
2 〈R(p)〉eq − 1

2 〈Q(p)〉eq

+ 1
2τC

(p)
eq,gc(r‖ = 0‖, z = 0) − 1

2 L−d�d−1, (5.33)

where we have used Eq. (4.9) in order to replace the canonical
by the grand canonical static correlation function (for� = 0).
In order to reformulate Eq. (5.33), we invoke the Schwinger-
Dyson equation (see, e.g., Refs. [38,43]),〈

φ(r)
δF
δφ(r′)

〉
= δ(r − r′), (5.34)

which, in the Gaussian case and for τ �= 0, implies the follow-
ing identity for the static bulk correlation function (see also
Ref. [63]):

−∇2Cb,eq(r) + τCb,eq(r) = δ(r). (5.35)
Inserting this relation into Eq. (5.29b), with ∇2 = ∇2

‖ + ∂2
z ,

renders

〈Q(p)〉eq = 〈R(p)〉eq + τ
{∞}∑

{mα=−∞}
Cb,eq[L(m)]

︸ ︷︷ ︸
C (p)

eq,gc(0‖,0)

−δ(0), (5.36)

where we have used Eqs. (4.5) and (4.10) in order to identify
the static finite-size correlation function C (p)

eq,gc (which pertains
to the grand canonical ensemble). Accordingly, we obtain
from Eq. (5.33) the canonical equilibrium film pressure〈

P (p)
f

〉
eq = 〈R(p)〉eq − 1

2δ(0) − 1
2 L−d�d−1. (5.37)

The singular term δ(0) acquires a well-defined meaning by
regularizing the theory on a lattice. Specifically, upon express-
ing Eq. (5.35) in Fourier space, one obtains the regularized
form δ(0) = ∫ π/�

−π/� dk/2π = 1/�, where � denotes the lattice
constant. However, since δ(0) is actually independent of L
(and therefore represents a bulk term irrelevant for the CCF),
it is not necessary to actually perform this regularization here.
The last term on the rhs of Eq. (5.37) stems from the absence
of the zero-mode fluctuations [see Eq. (2.5)] in the canonical
ensemble [52]. Its specific form is closely related to the
contributionμφ in the dynamical stress tensor [Eq. (5.3)] such
that, without it, one would obtain the wrong sign for the last
term in Eq. (5.37). The zero-mode contribution L−d�d−1/2
in Eq. (4.9) plays no role for the correlators 〈R(p)〉eq and
〈Q(p)〉eq, because they are derivatives of the correlation func-
tion. Hence, they take the same form in the canonical and the
grand canonical ensemble. Furthermore, in the thin film limit
� → 0, Eq. (5.37) implies that 〈P f 〉eq = 〈P f 〉eq,gc and hence

〈K(p)〉eq = 〈K(p)〉eq,gc (thin film, � → 0), (5.38)

consistent with Eq. (5.17).
One is left with determining the expression of 〈R(p)〉eq in Eq. (5.37) for arbitrary τ � 0. Inserting Eq. (2.45) into the first line

of Eq. (5.29a), one obtains

〈R(p)〉eq = 1

AL

∑
n‖,nd

(
λ

(p)
nd

)2(
λ

(p)
nd

)2 + p2
n‖ + τ

= 1

AL

∑
n‖,nd

(
λ(p)

nd

)2
∫ ∞

0
ds e

−s[(λ(p)
nd )2+p2

n‖+τ ]
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= 1

2A

d

dL

∑
n‖,nd

∫ ∞

0

ds

s
exp

{
−s

[
τ +

(
2πnd

L

)2

+
d−1∑
α=1

(
2πnα

L‖

)2
]}

= 1

2A

d

dL

∑
n‖,nd

∫ ∞

0

ds

s
exp

{
−s

[
L2τ

4π2
+ n2

d + �2
d−1∑
α=1

n2
α

]}

= 1

2A

d

dL

∫ ∞

0

ds

s
exp

(
−L2τ s

4π2

)
ϑ (s)[ϑ (�2s)]d−1, (5.39)

where

ϑ (y) =
∞∑

n=−∞
e−yn2

(5.40)

is the Jacobi theta function [54]. Note that the total derivative d/dL also acts on �, which is a function of L [see Eq. (2.4)]. The
corresponding bulk contribution follows from Eq. (5.39) by replacing the sum over the eigenspectrum n by integrals according
to Eq. (4.11), which essentially amounts to replacing ϑ (y) in Eq. (5.39) with

∫ ∞
−∞ dn e−yn2 = (π/y)1/2.12After subtraction of all

bulk contributions, the canonical equilibrium CCF for τ � 0 follows from Eq. (5.37) as

〈K(p)〉eq = − 1

2A

d

dL

∫ ∞

0

ds

s
exp

(
−L2τ s

4π2

){
�−d+1

(
π

s

)d/2

− ϑ (s)[ϑ (�2s)]d−1

}
− 1

2
L−d�d−1

= 〈K(p)〉eq,gc − 1

2
L−d�d−1. (5.41)

Here we have used Eq. (2.4), which implies

1

AL
= L−d�d−1, (5.42)

and have identified the grand canonical CCF as

〈K(p)〉eq,gc = − d

dL

[
1

2
L−d+1

∫ ∞

0

ds

s
exp

(
−L2τ s

4π2

){(
π

s

)d/2

− ϑ (s)[�ϑ (�2s)]d−1

}]
. (5.43)

The expression in Eq. (5.41) fulfills the scaling form given in
Eq. (2.13) (with v = 0; see Ref. [52]).

Notably, Eq. (5.39) can be written as 〈R(p)〉eq =
−dF (p)

gc /dL, where F (p)
gc = 1

2

∑
n‖,nd

ln[p2
n‖ + (λ(p)

nd )2] is the
(unregularized) grand canonical free energy of the system
(for � = 0).13 The expression in large square brackets in
Eq. (5.43) thus represents the associated grand canonical
residual finite-size free energy per area Fres/A [52,64].14

These results demonstrate that the stress tensor formalism
used here leads to the same expression for the equilibrium
CCF as the approach based on the free energy.

12Equivalently, one could apply the Poisson resummation formula
[Eq. (A1)] directly to Eq. (5.39) [i.e., Eq. (5.40) therein] and identify
the ensuing zero mode m = 0 as the bulk contribution.

13The (finite) excess contribution of the free energy can be obtained
by subtracting the associated bulk free energy from F (p)

gc [52]. This
procedure is analogous to determining the (finite) CCF by subtracting
the bulk pressure from the film pressure (the latter being infinite in a
continuum theory as well) [see Eq. (2.11)].

14Fres diverges logarithmically ∼ 1
2 AL−d+1�d−1 ln(L2τ ) =

1
2 ln(L2τ ) for τ → 0, which is due to the contribution of the
zero mode (see Ref. [52] for further discussion). However, this
divergence drops out of Eq. (5.43) after taking the derivative with
respect to L.

The limit τ → 0 of Eq. (5.43) is singular and must be
performed after computing the integral and the derivative (see
Appendix E for further discussion). The canonical equilibrium
CCF obtained from Eq. (5.41) at bulk criticality, i.e., τ → 0,
is shown in Fig. 8 as a function of the aspect ratio �. An
asymptotic analysis (see Appendix E) reveals that, for a cubic
geometry (� = 1) and at bulk criticality, the grand canonical

FIG. 8. Canonical CCF in thermal equilibrium [Eq. (5.41)] for a
box with periodic BCs in all directions at bulk criticality (τ = 0) as a
function of the aspect ratio �, for d = 3 and d = 4 dimensions. Note
that K is taken in units of kBTc so that it has the units of an inverse
volume.
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FIG. 9. Time evolution of the dynamic CCF 〈K(p)(t )〉 [in d = 3 and per kBTc, Eq. (5.32)] for a box with periodic BCs for various aspect
ratios � (� = 0 is the thin film limit). At time t = 0, the system is instantaneously quenched to the bulk critical temperature (τ = 0). (a) CCF
for flat ICs. The dashed lines indicate the equilibrium CCF at Tc [see Eq. (5.41) and Fig. 8]. (b) Contribution τ0〈K(p)

rel (t )〉 (see Sec. V C 3) to the
CCF for thermal ICs [see Eq. (2.1)], where τ0 = 1/v is a measure for the initial temperature [see Eq. (2.48)]. In both panels, the CCF and the
time are scaled according to Eq. (2.13) such that the universal behavior of the CCF scaling function is exhibited in the plot.

CCF attains the remarkably simple value

〈K(p)〉eq,gc

∣∣
τ→0,�=1 � − 1

Ld

1

d
. (5.44)

2. Dynamic CCF for flat ICs

The time-dependent CCF 〈K(p)
flat (t )〉 for flat ICs is obtained

by evaluating Eq. (5.32) using Eq. (3.12), i.e., Cb(r, t ) =
Sflat (r, t ) = Sstat (r) − Sdyn(r, t ). According to Eq. (3.13), Sflat

vanishes exponentially in the limit t → 0, which implies〈
K(p)

flat (t = 0)
〉 = 0. (5.45)

At late times t � Lz [which corresponds to t̃/t̃(0)
+ �

(L/ξ (0)
+ )z, z = 4], 〈K(p)

flat (t )〉 approaches the equilibrium value
of the CCF given in Eq. (5.41). Obtaining this result from the
dynamics is however intricate because not only Sstat , but also
Sdyn contributes to the late-time limit of 〈K(p)

flat (t )〉, despite the
fact that Sdyn(r, t ) and its derivatives vanish algebraically for
large t [see Eq. (3.8)]:

∂2
r Sdyn(r, t → ∞) ∼ 1

r
∂rSdyn(r, t → ∞) ∼ −t−d/4. (5.46)

The reason for the nonzero contribution of Sdyn to 〈K(p)
flat (t �

Lz)〉 is the d-fold summation in Eq. (5.32), which, as shown
in Appendix F, balances the rather mild algebraic decay in
Eq. (5.46).15 The summation in Eq. (5.32) therefore does not
commute with the limit t → ∞.

The contribution to the equilibrium CCF stemming from
Sdyn can be calculated exactly in d = 1 spatial dimensions
(see Appendix F), while it has to be determined numerically
for d > 1. The universal behavior of 〈K(p)

flat (t )〉 is illustrated
in Fig. 9(a) as a function of time for d = 3 and various
aspect ratios �. For an accurate estimate it suffices to take into
account only terms with |m1,...,d | � O(100) in the numerical
evaluation of Eq. (5.32), the precise number for truncation

15This effect does not arise for a thin film (see Sec. V A), because
in this case the onefold sum is insufficient to balance the algebraic
decay in Eq. (5.15a).

depending somewhat on the value of t/Lz being considered.
The computation can be further sped up by exploiting the
isotropy of the expression in the lateral directions. Notably,
for � = 1, the contribution to 〈K(p)

flat (t )〉 stemming from Sstat

vanishes identically (see Appendix D), implying in particular
that the equilibrium value 〈K(p)

flat〉eq < 0 (see Fig. 8) arises
within the dynamics solely due to Sdyn. In Fig. 9 one observes
that changing the aspect ratio mainly affects the late-time
equilibrium value of the CCF.

3. Dynamic CCF for thermal ICs

Analogously to Eq. (5.21), the dynamic CCF 〈K(p)
th (t )〉 for

thermal ICs, obtained by inserting Eq. (3.18) into Eq. (5.32),
can be split up into the contributions 〈K(p)

flat (t )〉 and 〈K(p)
rel (t )〉.

In contrast to 〈K(p)
flat (t )〉 discussed in the preceding section,

〈K(p)
rel (t )〉 does not contribute to the late-time limit of the CCF,

because according to Eq. (3.10) the relevant derivatives of Srel

decay more rapidly than those in Eq. (5.46):

∂2
r Srel(r, t → ∞) ∼ 1

r
∂rSdyn(r, t → ∞) ∼ −t−(d+2)/4.

(5.47)

Instead, 〈K(p)
rel (t )〉, which is illustrated in Fig. 9(b), contributes

to 〈K(p)
th (t )〉 only at intermediate times with a magnitude

proportional to 1/τ0 [see Eq. (2.1)].

D. Cubical box with Neumann BCs

The calculation of the CCF for Neumann BCs in a cuboidal
box proceeds analogously to Secs. V B and V C. Therefore,
we summarize here only the main steps. In the box geometry,
the film pressure is given by the same expression as for the
thin film [Eq. (5.24)], i.e.,〈

P (N )
f (t )

〉 = 〈R(N )(t )〉 − 1
2 〈Q(N )(t )〉, (5.48)

but with [see Eq. (4.4) for the notation]

〈R(N )(t )〉 = −2
{∞}∑

{mα=−∞}
∂2

z Cb({r‖, z}, t )

∣∣∣∣
r=L̃(m)

= 2〈R(p)(t )〉|2L, (5.49a)
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〈Q(N )(t )〉 = 2
{∞}∑

{mα=−∞}
∇2

‖Cb({r‖, z}, t )

∣∣∣∣
r=L̃(m)

= 2〈Q(p)(t )〉|2L, (5.49b)

where 〈R(p)〉 and 〈Q(p)〉 refer to the expressions for a box with
periodic BCs given in Eq. (5.29), which are to be evaluated
here for the film thickness 2L. Using Eq. (5.30), the CCF
follows from Eq. (5.48) as

〈K(N )(t )〉 = −
∞∑

mx=−∞
· · ·

∞∑
mz=−∞

�(m)

[(
1 + z2

r2

)
∂2

r Cb

+
(

d

r
− z2

r3

)
∂rCb

]
r=L̃(m)

, (5.50)

where, analogously to Eq. (5.32), the term pertaining to m =
0 [see Eq. (5.31)] is identified with the bulk pressure and is
therefore absent in the sum.

1. Equilibrium CCF

In order to obtain the equilibrium CCF, we proceed as in
Sec. V C 1 and consider Eq. (5.8) in equilibrium for arbitrary
τ � 0. This renders the film pressure〈

P (N )
f

〉
eq = 〈R(N )〉eq− 1

2 〈Q(N )〉eq + 1
2τC

(N )
eq (0‖, z ∈ {0,L})

= 〈R(N )〉eq − 1
2 〈Q(N )〉eq

+ 1
2τC

(N )
eq,gc(0‖, z ∈ {0,L}) − 1

2 L−d�d−1, (5.51)

where we have used Eq. (4.9). Since the relations between
periodic and Neumann BCs provided by Eq. (5.49) hold also
in the equilibrium case, the analogous form of Eq. (5.36) for
Neumann BCs follows by using Eqs. (4.8), (5.36), and (5.49)
as 〈Q(N )〉eq = 〈R(N )〉eq + τC (N )

eq,gc(0‖, z ∈ {0,L}) − 2δ(0). In-
serting this into Eq. (5.51) renders〈

P (N )
f

〉
eq = 1

2 〈R(N )〉eq + δ(0) − 1
2 L−d�d−1. (5.52)

The quantity δ(0) is defined as in Eq. (5.37) and represents
a bulk contribution, while the term −L−d�−d/2 is due to the
global OP conservation. The equilibrium CCF for a box with
Neumann BCs follows from Eq. (5.52) as16

〈K(N )(τ, �,L)〉eq = 〈K(N )(τ, �,L)〉eq,gc − 1
2 L−d�d−1,

(5.53)

where, using Eqs. (5.37) and (5.49a), the grand canonical CCF
〈K(N )〉eq,gc can be expressed in terms of the corresponding one
for periodic BCs [Eq. (5.43)] as

〈K(N )(τ, �,L)〉eq,gc = 〈K(p)(τ, 2�, 2L)〉eq,gc

= 2−d〈K(p)(4τ, 2�,L)〉eq,gc. (5.54)

In the last step we have used the fact that τ enters the
underlying expression only in the combination L2τ . The CCF

16An alternative form for the CCF, which is equivalent to Eq. (5.53),
is given in Ref. [52], where the CCF is obtained from the residual
finite-size contribution to the free energy.

FIG. 10. Canonical CCF in thermal equilibrium [Eq. (5.41)] for
a box with Neumann BCs in the transverse direction and periodic
BCs in the lateral directions at bulk criticality (τ = 0) as a function
of the aspect ratio �, for d = 3 and d = 4 dimensions. Note that K is
taken in units of kBTc so that it has the units of an inverse volume.

in Eq. (5.53) fulfills the scaling form given in Eq. (2.13) (with
v = 0) [52] and is illustrated in Fig. 10 at bulk criticality, i.e.,
τ → 0, as a function of �.

2. Dynamic CCF

The time-dependent CCF for flat and thermal ICs follows
from Eq. (5.50) upon inserting Eqs. (3.12) or (3.18) for
the bulk correlation function Cb. Analogously to the case of
periodic BCs (see Sec. V C 2), at late times t � Lz, the dy-
namic CCF receives contributions from both the static and the
dynamic correlators Sstat and Sdyn. Accordingly, in Eq. (5.50)
the limit t → ∞ must be performed after the summation in
order to obtain the correct equilibrium value [Eq. (5.53)] of the
CCF.

As illustrated in Fig. 11(a), the dynamic CCF for Neumann
BCs and flat ICs initially vanishes and approaches its late-time
equilibrium value [see Eq. (5.53) and Fig. 10] in a nonmono-
tonic fashion. Fig. 11(b) shows the contribution 〈K(N )

rel (t )〉
to the CCF for thermal ICs, which is obtained by inserting
Cb = Srel [Eq. (3.9)] into Eq. (5.50) [see also Eq. (5.21)]. In
contrast to the case of periodic BCs (see Fig. 9), increasing the
aspect ratio � from 0 to 1 has a pronounced effect on the time-
dependent CCF, inducing in particular a shift of the location
of the major maximum of the CCF towards shorter times.
A heuristic understanding of this behavior can be gained by
noting that, according to Eq. (2.9), the term in square brackets
in Eq. (5.50) has the scaling form r−d K (ψ ), ψ = r4/512t =
L4[r2

‖/(2�)2 + z2]2/t , where the scaling function K (ψ ) at-
tains its maximum for ψ ∼ O(1) and vanishes for ψ → ∞
with exponentially decaying oscillations [see Eqs. (3.11) and
(3.13)]. We note the factor 2 multiplying � in the expression
for ψ , which stems from the fact that the expression in square
brackets in Eq. (5.50) has to be evaluated for z = 2mzL.
Accordingly, in Eq. (5.50) for � � 1/2, the transverse mode
m = {0, . . . , 0, 1} is dominant and the temporal shape of the
CCF depends only weakly on �. In contrast, for ρ > 1/2 and
a lateral mode m ∈ {{1, 0, . . . , 0}, {0, 1, 0, . . . , 0}, . . . }, one
reaches ψ ∼ O(1) already at small t/L4. Thus these modes
increasingly contribute to the CCF and are responsible for a
shift of the maximum towards earlier times. The same rea-
soning applies also to the CCF for periodic BCs (see Fig. 9),
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FIG. 11. Time evolution of the dynamic CCF [in d = 3 and per kBTc, Eq. (5.50)] for a box with Neumann BCs in the transverse direction
(and periodic BCs in the lateral directions) for various aspect ratios � (� = 0 is the thin film limit). At time t = 0, the system is instantaneously
quenched to the bulk critical temperature (τ = 0). (a) CCF for flat ICs. The dashed lines indicate the equilibrium CCF at Tc [see Eq. (5.53) and
Fig. 10]. (b) Contribution τ0〈K(N )

rel (t )〉 (see Sec. V D 2) to the CCF for thermal ICs [see Eq. (2.1)], where τ0 = 1/v is a measure of the initial
temperature [see Eq. (2.48)]. In both panels, CCF and time are scaled according to Eq. (2.13) such that the universal behavior of the CCF
scaling function is exhibited in the plot.

except that here the crossover between the two regimes occurs
for � � 1 (which is thus not apparent in the plots).

VI. SUMMARY AND OUTLOOK

We have studied the nonequilibrium dynamics of a con-
fined fluid quenched to its critical point. The confinement
is realized by a d-dimensional cuboid box of volume V =
LLd−1

‖ , thickness L, and lateral size L‖ (see Fig. 1). Included
in this setup is the limit of a thin film, for which L‖ →
∞. Our analysis is based on the (linearized) equations of
model B, which describe a near-critical fluid with conserved
OP, neglecting heat and momentum transport [4]. In the
case of a box, periodic or Neumann BCs are imposed in
the transverse (z) direction and, for technical reasons, pe-
riodic BCs in the remaining, lateral directions. These BCs
ensure that the total integrated OP � is conserved [see
Eq. (2.5)]. Accordingly, in equilibrium, which is achieved
at late times (t → ∞), the canonical ensemble is realized.
We take the initial (t = 0) OP to have a vanishing mean
value and short-range correlations [see Eq. (2.1)], amounting
to a constant amplitude proportional to v of the initial OP
variance (thermal ICs). This includes the case of a vanish-
ing initial OP φ(r, t = 0) = 0, which we call flat ICs [see
Eq. (2.2)]. Physically, thermal ICs correspond to starting
the quench from equilibrium at a supercritical temperature
which is sufficiently high to ensure a short initial correlation
length.

Following Refs. [38,41,42], the present study focuses on
the nonequilibrium CCF, which we define in terms of a
generalized force acting on the confining boundaries of the
system. The generalized force and the associated dynamical
stress tensor [41,42] are determined by the finite-size OP
correlation function and derivatives thereof, evaluated at co-
inciding spatial points.

Our main results can be summarized as follows.
(i) We have presented analytical expressions for the static

and dynamic correlation functions of an OP governed by
model B at bulk criticality subject to periodic or Neumann
BCs. These finite-size correlation functions are expressed,

via the Poisson resummation formula, in terms of an infinite
summation over image points of the bulk correlation func-
tion (see also Refs. [65,66]). The latter is given in closed
form in terms of generalized hypergeometric functions. In
the Poisson representation of a finite-size quantity the bulk
contribution can be explicitly identified, which facilitates the
determination of the CCF.

(ii) The formalism, which is based on the recently intro-
duced dynamic stress tensor [41,42], is shown to lead, in
the late-time limit, to the same equilibrium CCF obtained
previously within statistical field theory [21,52]. In the case
of a box geometry the total OP conservation gives rise to
the canonical CCF [52]. In contrast, for a thin film the OP
conservation is immaterial and the standard grand canonical
CCF [21] is recovered. For periodic and Neumann BCs and a
total OP � = 0, the value of the canonical CCF is (within
the Gaussian approximation) reduced relative to the grand
canonical one by the amount 1/2V [see Eqs. (5.41) and (5.53)
and Ref. [52]].

(iii) For all geometries and BCs considered here, the dy-
namic CCF vanishes initially. Physically, this can be under-
stood as a consequence of the short-range correlations of the
ICs [see Eq. (2.1)] and the symmetry-preserving character
of the BCs (i.e., there are no surface fields). The (nonzero)
late-time equilibrium value of the CCF is approached in an
oscillatory growing fashion. This oscillatory behavior is in
contrast to the more gentle growth of the dynamic CCF for
quenches within model A dynamics (i.e., for nonconserved
OP) in a critical film [38], as well as to the purely transient,
nonoscillatory forces reported for model B in systems far from
criticality [30,31].

(iv) Thermal ICs give rise to an additional transient at
intermediate times, superimposed on the dynamics of the CCF
pertaining to flat ICs. Thermal ICs do not affect the late-
time behavior of the CCF. Their influence diminishes upon
decreasing the amplitude of the initial OP correlations [see
Eq. (2.1)].

Within the framework of boundary critical phenomena
[67,68], imposing Neumann BCs for the OP [Eq. (2.25)] at
the Gaussian level corresponds to the so-called special surface
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universality class (SUC).17 Besides the so-called normal SUC,
the quench dynamics of which has been studied in Ref. [41],
another relevant SUC for fluids is the so-called ordinary
SUC, corresponding (within the Gaussian approximation) to
Dirichlet BCs. Each static SUC splits up into several dy-
namic SUCs depending on the dynamic model considered.
In contrast to Neumann BCs, standard Dirichlet BCs do not
entail a vanishing flux at the boundaries of the system. In fact,
for semi-infinite geometries, in Refs. [40,70] nonconservative
dynamics at a surface has been shown to lead to a new
dynamic SUC (called model BA in Ref. [70]), which is distinct
from the fully conservative model B [39] (referred to as
model BB in this context). A modification of Dirichlet BCs in
order to implement the no-flux condition is possible but leads
to transcendental eigenvalues [71,72] and is left for future
investigations.

Another direction into which the present study can be ex-
tended concerns the dynamics following a quench to a slightly
supercritical temperature. In fact, in the high-temperature
limit of model B, which in thermal equilibrium is free of
long-range correlations, one observes a transient postquench
Casimir-like force induced solely by the dynamic conserva-
tion law [30,31], while the equilibrium CCF vanishes.

It should also be rewarding to go beyond the Gaussian
dynamics considered here, retaining the φ4 nonlinearity in the
Landau-Ginzburg free-energy functional. The nonlinear term
is expected to lead, inter alia, to corrections of the early-time
behavior after the quench [73]. Furthermore, the effect of
a nonzero initial mean OP, i.e., 〈φ(r, t = 0)〉 = �/V �= 0,
could be investigated. In the case of nonconserved dynamics,
it has been shown that a nonzero initial OP leads to a universal
initial growth behavior of the OP, the so-called critical initial
slip [47,66,73–75], which is described by a different dynamic
critical exponent.18 Additionally, it would be insightful to
explore the relationship between the present model and active
matter systems in more detail [46].

Regarding the experimental realization of our findings,
quenches of binary liquid mixtures to their critical demixing
point appear to be promising candidates. Indeed, extending
established experimental techniques for equilibrium CCFs
(see, e.g., Ref. [76]) to nonequilibrium scenarios is a timely
issue. In this regard, the influence of thermal diffusion and
momentum transport on the quench dynamics could be elu-
cidated [77,78]. Ultimately these studies should aim at the
normal SUC as the one to which actual fluids belong due
to the generic presence of symmetry-breaking surface fields.
Notably, while the ordinary SUC is experimentally realizable
for fluids via a suitable tuning of the surface fields [79–81],
achieving conditions appropriate for the special SUC is still
an open issue.

A more direct test of our predictions can be achieved via
simulations, for which non-symmetry-breaking BCs are easily
realizable. Recently, progress has been made, e.g., within

17This correspondence between Neumann BCs and the special SUC
breaks down beyond the Gaussian approximation; see, e.g., Ref. [69]
for further discussion and references.

18It is known, however, that in model B no genuinely new initial-
slip exponent appears [47].

molecular dynamics [82,83] and within the lattice Boltzmann
method [84–86] towards simulation of critical dynamics and
determining CCFs [87]. Moreover, these simulation methods
typically realize the canonical ensemble and thus allow one to
test the ensemble differences of the CCF [51,52].
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APPENDIX A: POISSON RESUMMATION FORMULA

The Poisson resummation formula in its general form (see,
e.g., Refs. [53,66,88]) states that, for a given function f̂ (n)
depending on n ∈ ZD,∑

n

f̂ (n) =
∑

m

F (m), (A1)

where m ∈ ZD,

F (r) ≡
∫
RD

dDk f̂ (k)e2π ik·r = (2π )D f (2πr), (A2)

and

f (r) =
∫
RD

dDk

(2π )D
f̂ (k)eik·r (A3)

represents the standard (D-dimensional) inverse Fourier
transform of f̂ . Specifically, if f̂ depends on a (D < d)-
dimensional vector n ∈ ZD via the form f̂ ({ 2πnα

Lα
}) with Lα ∈

R, α = 1, . . . ,D, Eq. (A1) renders

∑
n

f̂

({
2πnα

Lα

})
=

∏
α Lα

(2π )D

∑
m

∫
dDk f̂ (k)eikαmαLα

=
∏
α

Lα
∑

m

f (r = L(m)), (A4)

where L(m) is shorthand notation for the D-dimensional
vector {m1L1, . . . ,mDLD} [see Eq. (4.4)]. Another relevant
case for the present study is obtained if f̂ depends on n =
0, 1, 2, . . . in the form f̂ (n) = (2 − δn,0) ˆ̂f ( π |n|

L ), with L ∈ R

and some function ˆ̂f . Here Eq. (A1) renders

∑
n=0,1,...

(2 − δn,0) ˆ̂f

(
π |n|

L

)
= 2

∑
n=0,1,...

ˆ̂f

(
π |n|

L

)
− ˆ̂f (0)

=
∞∑

n=−∞,
n �=0

ˆ̂f

(
π |n|

L

)
+ ˆ̂f (0)

=
∞∑

n=−∞

ˆ̂f

(
π |n|

L

)

= 2L
∞∑

m=−∞
f (r = 2Lm), (A5)

where now, accordingly, f in Eq. (A3) is to be evaluated by

replacing f̂ by ˆ̂f on the right-hand side.
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APPENDIX B: STATIC EQUILIBRIUM CORRELATION
FUNCTIONS IN A THIN FILM

Here we present analytic expressions for the static equilib-
rium correlation function Ceq(r‖, z, z′) [Eq. (4.9)] in a thin film
for periodic as well as Neumann BCs. In this case, according
to Eq. (4.13), Ceq is not affected by the choice of the ensemble.

1. Thin film with periodic BCs

Upon inserting Cb = Sstat [Eq. (3.7)] into Eq. (4.12a), the
static correlation function for a thin film with periodic BCs
follows as

C (p)
eq (r‖, z) = �(d/2 − 1)

4πd/2

∞∑
m=−∞

1

|(z + mL)2 + r2
‖ |d/2−1

= �(d/2 − 1)

4πd/2Ld−2

∞∑
m=−∞

1

|(ζ + m)2 + r̂2|d/2−1
,

(B1)
where ζ ≡ z/L and r̂ ≡ r‖/L. Due to the periodicity in the z
direction, C (p)

eq depends only on one z coordinate. For r‖ �= 0,
the sum represents an inhomogeneous Epstein zeta function
which can be determined according to Eq. (4.13) in Ref. [89].
This renders

C (p)
eq (r‖ > 0, z)

= 1

Ld−2

[
�(d/2 − 3/2)

4πd/2−1/2
r̂3−d

+ 1

π
r̂ (3−d )/2

∞∑
n=1

nd/2−3/2 cos(2πnζ )Kd/2−3/2(2πnr̂)

]
,

(B2)

with the modified Bessel function Kν of the second kind. For
r‖ = 0, Eq. (B1) can be expressed in terms of the Hurwitz zeta

function ζH (s, q) [54] as

C (p)
eq (r‖ = 0, z) = �(d/2 − 1)

4πd/2Ld−2

[
1

ζ d−2
+ ζH (d − 2, 1 + ζ )

+ ζH (d − 2, 1 − ζ )

]
. (B3)

For d → 3 one has ζH (d − 2, u) � 1
d−3 −�(u) + O(d − 3),

where � denotes the dilogarithm. The logarithmic diver-
gence of the sum in Eq. (B1) for d = 3 is reflected by the
simple poles ∼2/(d − 3) in Eqs. (B2) and (B3), stemming
from the contributions �(d/2 − 3/2) and ζH , respectively.
Equations (B1) and (B2) are therefore valid for d > 3. For
d = 4, the sum in Eq. (B2) can be carried out in closed form,
yielding

C (p)
eq (r‖, z)|d=4 = 1

4πLr‖

[
1 + e−2π r̂ − cos(2πζ )

cos(2πζ ) − cosh(2π r̂)

]
.

(B4)

For large lateral distances r̂ � 1, Eq. (B4) reduces to
C (p)

eq (r‖ � L, z) � (π/L)Sstat (r‖), i.e., C (p)
eq shows the same r‖

dependence as the correlation function in a critical (d = 3)-
dimensional bulk system [Eq. (3.7)]. On the other hand, in the
limit L → ∞ one obtains C (p)

eq (r‖, z) � 1/4π2(r2
‖ + z2), i.e.,

the static bulk correlator [Eq. (3.7)] for d = 4.

2. Thin film with Neumann BCs

Upon using Eq. (B2) and the last line of Eq. (4.7), the form
of the static equilibrium correlation function for a thin film
with Neumann BCs

C (N )
eq (r‖ > 0, z, z′) = 1

Ld−2

[
�(d/2 − 3/2)

4πd/2−1/2
r̂3−d + 1

π
r̂ (3−d )/2

∞∑
n=1

(
n

2

)(d−3)/2

cos(πnζ ) cos(πnζ ′)K(d−3)/2(πnr̂)

]
(B5)

is obtained, with ζ ≡ z/L and r̂ ≡ r‖/L. In contrast to the periodic case, C (N )
eq depends explicitly on z′. For z′ = 0, Eq. (B5) differs

from the periodic one [Eq. (B2)] only by the replacement n → n/2 in the summation. For r‖ = z′ = 0, one has

C (N )
eq (r‖ = 0, z) = 23−dC (p)

eq (r‖ = 0, z/2). (B6)

In the case of d = 4 dimensions, Eq. (B5) can be determined explicitly, rendering [in analogy to Eq. (B4)]

C (N )
eq (r‖, z, z′)|d=4 = 1

8πLr‖

sinh(π r̂){cos[π (ζ − ζ ′)] + cos[π (ζ + ζ ′)] − 2 cosh(π r̂)}
{cos[π (ζ − ζ ′)] − cosh(π r̂)}{cosh(π r̂) − cos[π (ζ + ζ ′)]} . (B7)

APPENDIX C: LATE-TIME ASYMPTOTICS OF THE CCF
FOR A THIN FILM

Here we derive the late-time asymptotic behavior, reported
in Eq. (5.20), of the dynamic CCF for periodic BCs in the thin
film geometry. Using Eqs. (3.12) and (5.17), one can write
Eq. (5.16) as

〈K(t )〉 − 〈K〉eq =
∞∑

m=1

h (Lm, t ), (C1)

with

h (z, t ) ≡ 3∂2
z Sdyn(z, t ) + d − 1

z
∂zSdyn(z, t ) = t−d/4h(ψ ),

ψ = z4

512t
, (C2)

where we have expressed h (z, t ) in terms of a scaling func-
tion h(ψ ). The explicit form of h(ψ ) can be obtained from
Eq. (3.5), but it is rather lengthy and is thus not stated here.
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However, we note its limiting behaviors

h(ψ → 0) � (2 + d )π (1−d )/2

27d/4d�(1/2 + d/4)
,

h(ψ → ∞) � (d − 1)π1−d/2

29d/4�(1 − d/2) sin(dπ/2)
ψ−d/4. (C3)

In order to proceed, we recall the Euler-Maclaurin formula

∞∑
m=1

f (m) =
∫ ∞

1
dm f (m) + f (1) + f (∞)

2
+ R,

|R| � 1

12

∫ ∞

1
dm | f ′′(m)|, (C4)

where R denotes the remainder. Applying this formula to
Eq. (C1) and using Eq. (C3) as well as the scaling property
expressed in Eq. (C2), we obtain, in the limit of late times
t � L4,

∞∑
m=1

h (Lm, t ) � t1/4−d/4 21/4

L

∫ ∞

0
dψ ψ−3/4h(ψ )

+ 1

2
t−d/4h(0) + R. (C5)

We note that the lower integration boundary and the argument
of h in the second term vanish in this limit of late t . Moreover,
owing to Eq. (2.22), the rhs in Eq. (C5) indeed has the correct
dimension L−d . The remainder R is estimated as |R| �
t−1/2−d/4L2

∫ ∞
0 dψ ψ−3/4|h′′(ψ )|. According to Eq. (C3) [and

the fact that h′′(ψ → 0) is finite], the integrals over h(ψ )
and h′′(ψ ) are finite and we thus conclude that the dominant
behavior for large times in Eq. (C5) is provided by the first
term on the r.h.s. An analysis of this contribution yields the
late-time asymptotic behavior

〈K(t )〉 − 〈K〉eq � −23/4−7d/4π1−d/2

�(1/4 + d/4)
t1/4−d/4. (C6)

APPENDIX D: STATIC CONTRIBUTION TO THE CCF

Here we discuss the contribution to the CCF which results
from evaluating Eq. (5.32) with Cb = Sstat [Eq. (3.7)]. This

so-called static contribution leads to

〈K(p)〉stat = −�(d/2)

2πd/2

{∞}∑
{mα=−∞}

�(m)

[
dz2

rd+2
− 1

rd

]
rα=L‖mα,rz=Lmz

= −
{∞}∑

{mα=−∞}
�(m)∂2

z Sstat (r)

∣∣∣∣∣∣
rα=L‖mα,rz=Lmz

, (D1)

where the aspect ratio � is given in Eq. (2.4) and � in
Eq. (5.31). Interestingly, for � = 1 one finds

〈K(p)〉stat|�=1 = 0, (D2)

which can be readily proven by writing the term in square
brackets in the first line of Eq. (D1) as [(d − 1)r2

z −∑d−1
α=1 r2

α]/rd+2 = r−d−2 ∑d−1
α=1(r2

z − r2
α ) and using the fact

that, for � = 1, rz and rα run over the same set of values.
Analogously, for Neumann BCs, Eq. (5.53) implies

〈K(N )〉stat|�=1 = 0. (D3)

We emphasize that, in a box geometry and for both periodic
and Neumann BCs, 〈K〉stat in general does not represent the
equilibrium CCF, i.e.,

〈K〉stat �= 〈K〉eq, � > 0. (D4)

The reason is that the equilibrium CCF acquires a contribution
from Sdyn which does not vanish in the limit t → ∞ (see the
discussion in Sec. V C 2). This contribution vanishes only in
the case of a thin film, for which one thus obtains 〈K〉stat =
〈K〉eq [see Eq. (5.17)].

APPENDIX E: CCF FOR A BOX WITH PERIODIC BCs
NEAR BULK CRITICALITY

Here we analyze the behavior of the (grand canonical)
equilibrium CCF for periodic BCs as reported in Eq. (5.43)
upon approaching the bulk critical point τ → 0 and discuss
its relation to 〈Kstat〉 defined in Eq. (D1). Upon expressing
the Jacobi theta function [Eq. (5.40)] by means of the Poisson
resummation formula [Eq. (A1)] as

ϑ (y) =
√
π

y

∞∑
m=−∞

e−π2m2/y, (E1)

Eq. (5.43) takes the form

〈K(p)〉eq,gc = d

dL

⎡
⎢⎣ 1

(2π )d/2Ld−1

{∞}∑
{mα=−∞}

�(m)

√
L2τ

�−2
∑d−1
α=1 m2

α + m2
z

Kd/2

⎛
⎜⎝
⎛
⎜⎝
⎛
⎜⎝

√√√√L2τ

(
�−2

d−1∑
α=1

m2
α + m2

z

)⎞
⎟⎠
⎞
⎟⎠
⎞
⎟⎠

⎤
⎥⎦

= 1

Ld

{∞}∑
{mα=−∞}

�(m)

{
κd/4r̂−2−d/2Kd/2(2π r̂

√
κ )

[
�−2

d−1∑
α=1

m2
α − (d − 1)m2

z

]

− 2πκ1/2+d/4r̂−1−d/2K1−d/2(2π r̂
√
κ )m2

z

}
, (E2)
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where κ ≡ L2τ/4π2, r̂ ≡ �−2 ∑d−1
α=1 m2

α + m2
z , and Kn(z) de-

notes the modified Bessel function of the second kind. The
function �(m) is defined in Eq. (5.31) and accounts for the
last term in curly brackets in Eq. (5.43). We note that here
the total derivative is required, because � depends on L [see
Eq. (2.4)].

We henceforth focus on a cubic box geometry, i.e., � =
1. In this case, the first term in curly brackets in Eq. (E2)
vanishes after the summation over m.19 Next we analyze the
behavior of the last term in curly brackets in Eq. (E2), i.e.,

J ≡ −2πκ1/2+d/4

Ld

{∞}∑
{mα=−∞}

�(m)r̂−1−d/2K1−d/2(2π r̂
√
κ )m2

z .

(E3)
For nonzero τ > 0, one has J < 0. In the limit
τ → 0, if taken before the sum over m, one obtains
κ1/2+d/4K1−d/2(2π r̂

√
κ ) → 0, which is consistent with

Eq. (D2). However, accepting Eq. (E2) as the definition of the
CCF, the actual value of 〈K(p)〉eq,gc at bulk criticality must be
obtained by taking the limit τ → 0 after the summation over
m.

In order to determine the limit of J for κ → 0, we approx-
imate the sum in Eq. (E3) by an integral. Upon introducing
d-dimensional spherical coordinates, one obtains in fact a
τ -independent result

J −→
κ→0

2πκ1/2+d/4

Ld

∫ ∞

0
dr

∫
d� rd/2−2r2

z K1−d/2(2πr
√
κ )

= − 1

Ld

1

d
. (E4)

In the calculation, we rotated the coordinate system such
that rz = r cos θ and used the fact that the surface area of
the (d − 1)-dimensional sphere is given by �d−1 ≡ ∫

d� =
2πd/2/�(d/2) = �d−1

∫ π
0 dθ sind−2 θ . In summary, Eqs. (E2)

and (E4) render the value

〈K(p)〉eq,gc|τ→0,�=1 → − 1

Ld

1

d
, (E5)

which is different from Eq. (D2). Notably, Eq. (E5) agrees
accurately with a numerical evaluation of Eq. (5.43).

APPENDIX F: DYNAMIC CONTRIBUTION TO THE
EQUILIBRIUM CCF

In this Appendix we analyze the dynamic contribution to
the equilibrium CCF for a box with periodic BCs, as expressed
in Eq. (5.32), stemming from the nonfluctuating property of
the zero mode at late but finite times (t � L4). An analogous
analysis for Neumann BCs leads to essentially the same result,
but is, due to the approximative character of the calculation,
not included here. We note that, while we consider flat ICs
[see Eq. (3.12)], the obtained asymptotic results are valid
also for thermal ICs, because their asymptotic contribution to

19This can be readily seen by writing the term in square brackets in
that line as

∑d−1
α=1(m2

α − m2
z ) and noting that mα and mz run over the

same set of integer values [compare Eq. (D2)].

the CCF is subdominant at late times [see Eqs. (5.15b) and
(5.15a)].

1. Exact calculation in dimension d = 1

In spatial dimension d = 1, the exact asymptotic behavior
of the CCF at late times (t → ∞) can be determined analyti-
cally. By using Eq. (3.12), in d = 1 Eq. (5.32) reduces to

〈K(p)(t )〉|d=1 = 3

2

∞∑
m=−∞

′
∂2

r [Sstat (mL) − Sdyn(mL, t )], (F1)

where the prime indicates the absence of the term m = 0.
We remark that, in d = 1, Eq. (3.7) renders Sstat (r) = −r/2,
which does not contribute to 〈K(p)(t )〉. The sum in Eq. (F1)
can be determined via the Abel-Plana summation formula
[90], which, for an even function f (m) = f (−m), states that

∞∑
m=−∞

′
f (m) = 2

∫ ∞

0
dx f (x) − f (0)

+ 2i
∫ ∞

0
dt

f (it ) − f (−it )

e2πt − 1
. (F2)

For f ≡ ∂2
r Sdyn, the last term on the rhs of Eq. (F2) vanishes,

while the second term decays proportionally to t−1/4 and can
be neglected for large t . Using the expression for Sdyn in
Fourier space given in Eq. (3.5), one is then left with

〈K(p)(t � L4)〉|d=1 � − 3

2L

∫ ∞

−∞
dr

∫ ∞

−∞

dk

2π
eikre−2k4t

= − 3

2L

∫ ∞

−∞
dk δ(k)e−2k4t = − 3

2L
.

(F3)

A direct calculation analogously to Eqs. (5.39) and (5.41)
of the CCF in dimension d = 1 at equilibrium yields

〈K(p)〉eq|d=1 = Lτ

4π2

∫ ∞

0
ds exp

(
− L2τ

4π2
s

)[(
π

s

)1/2

− ϑ (s)

]

= 1

L

{√
L2τ

2

[
1 − coth

(√
L2τ

2

)]
− 1

2

}
, (F4)

where, in order to obtain the last expression, we have used the
expansion of coth in terms of simple fractions (see Ref. [91]).
At the bulk critical point (τ = 0), Eq. (F4) reduces to

〈K(p)〉eq|d=1,τ→0 = − 3

2L
, (F5)

in agreement with the asymptotic estimate in Eq. (F3).

2. Asymptotic estimate in dimensions d > 1

In spatial dimensions d > 1, the late-time behavior of
the CCF can be estimated asymptotically. To this end, we
define g as the term in square brackets in Eq. (5.32) and note
that, according to Eqs. (3.5) and (3.12), g can generally be

012114-24



DYNAMICS OF THE CRITICAL CASIMIR FORCE FOR A … PHYSICAL REVIEW E 100, 012114 (2019)

expressed as

g({r‖, z}, t ) = gstat ({r‖, z}) − t−d/4gdyn(ψ,ψz ),

ψ ≡ r4

512t
,

ψz ≡ z4

512t
, (F6)

with r2 = r2
‖ + z2. The functions gstat and gdyn represent the

contributions stemming from Sstat and Sdyn, respectively. The
explicit form of these functions does not matter for the fol-
lowing discussion, but in principle it can be obtained from
Eq. (5.32). We henceforth consider the case ψz ∼ ψ and do
not indicate the dependence on ψz separately.

The leading behavior of gdyn for ψ � 1, i.e., for short
distances r � r∗ ≡ (512t )1/4, follows from the asymptotic
relations in Eq. (5.15a):

g({r‖, z}, t )|ψ�1 � gstat ({r‖, z}, t ) − Ct−d/4,

C = 2 + d

21+7d/4π (d−1)/2d�(1/2 + d/4)
. (F7)

In the opposite limit ψ � 1, i.e., for large distances r �
r∗ ≡ (512t )1/4, gdyn approaches gstat via exponentially damped
oscillations [see Eq. (3.13)], implying

g({r‖, z}, t )|ψ�1 � 2d/2(r2 + 2z2)ψd/6

√
3πd/2rd+2

e−3ψ1/3/2

× cos[(dπ − 9
√

3ψ1/3)/6]. (F8)

For large but finite times t � L4, we use Eqs. (F6)–(F8) in
order to estimate the CCF in Eq. (5.32) as

〈K(p)(t → ∞)〉

∼ 〈K(p)〉stat −
∞∑

mx=−∞
· · ·

∞∑
mz=−∞

�(m){θ (εr∗ − r)gdyn

× ({r‖, z}, t )|ψ�1+θ (r − r∗/ε)g({r‖, z}, t )|ψ�1}r=L(m),

(F9)

where 〈K(p)〉stat accounts for the contribution stemming from
gstat in Eq. (F6) (which is discussed separately in Appendix D);
ε � 1 is a small positive but otherwise arbitrary real number
which ensures that r � r∗ or r � r∗, respectively. In Eq. (F9)
we have neglected the contribution from gdyn for ψ ∼ O(1),
which, according to Eq. (F6), is suppressed for large t and
contributes only within the limited range where r ∼ r∗. For
t � L4 and r � r∗, ψ varies strongly between neighboring
values of m which occur in the sum in Eq. (F9). This implies
that in Eq. (F8) a steep exponential decay occurs within a short
range in r. Accordingly, also the last term in Eq. (F9) can
be neglected. Thus the sum in Eq. (F9) is dominated by the
contributions from the limit ψ � 1. Since for t � L4 these
contributions vary weakly between neighboring values of m,
a reasonable approximation of the asymptotic behavior can be
obtained by replacing the sums by integrals. This renders

〈K(p)(t → ∞)〉 ∼ 〈K(p)〉stat − C

AL
t−d/4

∫
dd r θ (εr∗ − r).

(F10)
In the second term on the rhs of Eq. (F10), the inte-
gral amounts to the volume (εr∗)dπd/2/�(d/2 + 1) of the
d-dimensional sphere of radius εr∗. Upon inserting r∗ =
(512t )1/4 one obtains

〈K(p)(t → ∞)〉 ∼ 〈K(p)〉stat − L−dρd−1εdC̃,

C̃ � 2d−3(2 + d )�(d/4)

�(1 + d/2)2
, (F11)

which is time independent. The last term in Eq. (F11) provides
an estimate of the dynamical contribution to the equilibrium
CCF, induced by the late-time behavior of model B. We
emphasize that, due to Eq. (D4), this term does not corre-
spond to the last term in Eq. (5.41). Furthermore, due to
the arbitrariness of ε and the involved approximations, the
numerical value of this term carries a significant uncertainty.
Nevertheless, for d = 3 and d = 4, one has C̃ ∼ O(1) such
that, for a reasonable value of ε ∼ O(0.1), Eq. (F11) predicts
a value for 〈K(p)(t → ∞)〉 which is close to the exact one
obtained from Eq. (5.41) for τ → 0 (see also Fig. 8).
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