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One of the vital roles of computing is to solve large-scale combinatorial optimization problems in a short time.
In recent years, methods have been proposed that map optimization problems to ones of searching for the ground
state of an Ising model by using a stochastic process. Simulated annealing (SA) is a representative algorithm.
However, it is inherently difficult to perform a parallel search. Here we propose an algorithm called momentum
annealing (MA), which, unlike SA, updates all spins of fully connected Ising models simultaneously and can be
implemented on GPUs that are widely used for scientific computing. MA running in parallel on GPUs is 250
times faster than SA running on a modern CPU at solving problems involving 100 000 spin Ising models.
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I. INTRODUCTION

Problems in various applications such as social network
analysis, circuit layout, and machine learning are difficult to
solve precisely [1–5]. In fact, many of them are NP-hard [6].
In such cases, the techniques of combinatorial optimization
are considered essential to arrive at adequate solutions. In
particular, computing with Ising models has attracted a lot
of interest. An Ising model consists of N binary spins σi ∈
{−1, 1} with couplings Ji j and local fields hi. Its Hamiltonian
is defined as

H (σ1, . . . , σN ) = −
∑
i< j

Ji jσiσ j −
∑

i

hiσi. (1)

The spin-spin connection can be represented by a graph G
with a set of vertices V = {v1, . . . , vN }; spins σi and σ j

on vertices vi and v j are connected by couplings Ji j . Here
the computation works by first mapping a quadratic binary
optimization problem to an Ising problem and then finding
the ground state of the Hamiltonian [7,8]. Most such Ising
machines mimic the behavior of an Ising model by using
quantum mechanics or some algorithm [9–15]. A quantum
annealer, which is a device to perform quantum annealing
[16], has been studied theoretically and experimentally. It
has been shown that a quantum annealer has better solu-
tion performance than conventional algorithms in a class of
nonconvex optimization problems [17,18]. Other Ising ma-
chines also have attracted interest regarding computational
time. However, to date they are not able to simulate large
Ising models; for example, the number of spins in quantum
annealers [9] and optical network systems [10] is currently
limited to about 2000. These size limitations make it hard to
use them to solve real-world problems.

Despite the above problems, state-of-the-art digital com-
puters running heuristic algorithms and having huge mem-
ories can potentially solve large problems. Here simulated
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annealing (SA) has been shown to find solutions for a wide
range of optimization problems [19,20]. SA is a probabilistic
approximate algorithm for finding a state such that a given
function f (x) is minimized [21]. It consists of discrete-time
Markov processes that converge to a Boltzmann distribu-
tion. The existence probability of state x is proportional to
exp[− f (x)/T ], where T is a parameter called temperature.
Sampling from the distribution at low temperature attains
an optimal or near-optimal solution with high probability.
Convergence is achieved by making stochastic transitions
based on a Markov chain Monte Carlo algorithm. Typically, a
random Ising problem with Hamiltonian (1) is solved through
single spin updates. Although spins that are not connected
to any others can be independently and simultaneously up-
dated, simultaneous updates cannot be made under any other
conditions [22]; that is, SA can only flip single spins for
all-to-all connected random Ising models. This requirement is
a bottleneck that makes it hard to shorten the computing time,
because it means we cannot perform parallel processing on the
spins. Meanwhile we can parallelize spin updates of a sparse
Ising model. The factor of speed-up by the parallelization
depends on the chromatic number of G. In this computing
flow, we must solve a graph coloring problem before Monte
Carlo simulations, but it is an NP-hard. It is theoretically
difficult even to obtain an approximate solution [23], and it
actually takes some time. If we know that the Ising model
to be solved is on the sparse graph with a small chromatic
number such as a grid or chimera graph, we can avoid the
coloring process, and the parallelization is effective [24].
However, such a situation is generally not to be expected.

In this paper, we propose a method called momentum
annealing (MA), which enables simultaneous spin updates
of any Ising model. Our algorithm performs Monte Carlo
simulations of Ising models on a trivial two-colorable graph
to find the ground state of any Ising model. The advantages
of MA are that it can be executed using parallel processing,
and thus we implemented MA on GPUs. In fact, we have
found that, compared with an SA program optimized for
running on multiple processors, a GPU implementation of
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FIG. 1. Conversion of Ising model into bipartite graph. (a) A
fully connected Ising model with N = 7. (b) An Ising model on a
complete bipartite graph G′. If the values of red (bold) couplings are
sufficiently large, the spin configurations on the left match those on
the right in the ground state.

our algorithm is 247 times faster at finding an approximate
solution to a problem mapped to a fully connected Ising model
with 100 000 spins.

II. THEORETICAL BACKGROUND

A. Mapping to a bipartite graph

Figure 1 shows the conversion of an Ising model into a
representation on a bipartite graph. In Fig. 1(b),the left and
right spins of the Ising model on the bipartite graph G′ are
denoted as σ L

1 , . . . , σ L
N and σ R

1 , . . . , σ R
N , respectively. The

coupling between spin σ L
i and σ R

j is set to Ji j (= Jji ), and
the coupling between spins σ L

i and σ R
i is denoted as wi. The

Hamiltonian on G′ is expressed as follows:

H ′ = −
∑
i, j

Ji jσ
L
i σ R

j −
∑

i

hi
(
σ L

i + σ R
i

) −
∑

i

wiσ
L
i σ R

i .

(2)

If w1, . . . ,wN are sufficiently large, the spin configurations
on the left and right side become equivalent in the ground
state [25]. Denoting the values of σ L

1 , . . . , σ L
N in the ground

state by b1, . . . , bN , we can express the Ising energy as Hmin =
−2

∑
i< j Ji jbib j − 2

∑
i hibi − ∑

i wi. Because the third term
on the right side is a constant independent of bi, the values
b1, . . . , bN can be regarded as the spin configuration that mini-
mizes Eq. (1). Thus, in the ground state, the spin configuration
on the left (or right) side of Fig. 1(b) also minimizes the Ising
energy of Fig. 1(a). Updating all spins on each side in parallel
is possible. We expect that this will shorten the computational
time.

Similar to SA, our algorithm explores spin configuration in
the ground state by using the Metropolis algorithm [26]. Here
we consider the case of updating a spin on the left side of
the Ising model on G′. The transition probability depends on
the energy change in the state transition. If the ith spin flips,
energy increases by � :=2σ L

i (hi + ∑N
j=1 Ji jσ

R
j ). Since the

Metropolis algorithm accepts the transition with a probability
of min{1, exp(−�/T )}, a flip occurs if and only if � � 0 or
u � exp(−�/T ), where u is a uniformly distributed random

variable between 0 and 1. This condition is equivalent to
� � T γi, where γi is a gamma random variable with shape
and scale parameters of value one. When we update only the
ith spin, the condition that the spin is 1 through the update is
expressed as follows:

� > T γi ⇔ hi +
N∑

j=1

Ji jσ
R
j > T γi/2 (σ L

i = 1)

� � T γi ⇔ hi +
N∑

j=1

Ji jσ
R
j � −T γi/2 (σ L

i = −1). (3)

After the update, a new value of the spin becomes 1 if and only
if hi + ∑N

j=1 Ji jσ
R
j � σ L

i T γi/2 and is computed by σ L
i ←

sgn(hi + ∑N
j=1 Ji jσ

R
j − σ L

i T γi/2). The function sgn(x) re-
turns y such that the ith element of y is 1 if the ith element
of x is positive and is −1 otherwise. To simulate the Markov
process of spins, we update all spins on the left sequentially.
Each calculation depends on the spin on the right and not on
the left, and it means that simultaneous flips of all spins on the
left are allowed. Therefore, we can update all spins on the left
side by using Eq. (4) with α = L and ᾱ = R:⎡

⎢⎣
σα

1
...

σα
N

⎤
⎥⎦ ← sgn

⎛
⎜⎝h +

⎛
⎜⎝J +

⎡
⎢⎣

w1 O
. . .

O wN

⎤
⎥⎦

⎞
⎟⎠

⎡
⎢⎣

σ ᾱ
1
...

σ ᾱ
N

⎤
⎥⎦

− T

2

⎡
⎢⎣

γ1 O
. . .

O γN

⎤
⎥⎦

⎡
⎢⎣

σα
1
...

σα
N

⎤
⎥⎦

⎞
⎟⎠. (4)

Here J = (Ji j )N×N is the adjacency matrix of G. Due to the
symmetry of G′, an update rule of spins on the right side can
be written as Eq. (4) with α = R and ᾱ = L. By repeating
these calculations alternately while decreasing temperature T ,
we can execute annealing for the Ising model on G′.

Moreover, we can consider the stochastic time evolution of
Ising spins from another point of view. Let k be the index of
the above alternate iteration (k � 1) and sk be the spin values
obtained at the kth step. Here we start the update from the
spins on the left side. Then sk represents values after (k + 1)/2
updates in the left spins if k is odd, and values after k/2
updates in the right otherwise. We refer the initial spin values
on the left and right sides as s−1 and s0, respectively. Then we
can rewrite the update rule as follows:

sk = sgn

(
h + [J + diag(w1, . . . ,wN )]sk−1 − Tk

2
�ksk−2

)
.

(5)

Here Tk and �k are the temperature and a diagonal matrix of γi

at the kth step, respectively. This means the update rule of MA
to be a second-order Markov chain of the original Ising model.
The proposed Markov chain originates from the single-spin
flip Monte Carlo simulation. MA transits states with the
balance condition and ergodicity, and thus a sufficiently slow
annealing schedule allows spin configuration to reach the
ground state [27].
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B. Strength of momentum couplings

How should we determine the values of wi so that the
spin configurations on both sides of G′ match in the ground
state? Too large a value of wi will make it difficult to obtain
a good solution, because the spin configuration will get stuck
in a local minimum immediately. To avoid this problem, it is
better for the values of wi to be as small as possible. Here we
have proved that the following equality satisfies the condition
for the matching of spin values in the ground state (see the
Supplemental Material [28] for the proof):

wi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
v j∈V

|Ji j | − 1

2

∑
v j∈C

|Ji j | (vi ∈ C)

λ

2
(vi /∈ C)

, (6)

where λ is the largest eigenvalue of −J , and C is an ar-
bitrary subset of V . In particular, we choose C = {vi | λ �∑

v j∈V |Ji j |}. Without Eq. (6), we must make wi greater than∑
v j∈V |Ji j |, but in that case, the spin configuration would not

change during single-spin flip annealing [25]. For example,
we consider the all-to-all connected Ising model whose cou-
plings are chosen from {−1, 1} with equal probability, i.e.,
P(Ji j = 1) = P(Ji j = −1) = 1/2. According to the random
matrix theory, the largest eigenvalue of J is close to 2

√
N

with a high probability as N becomes large [29], which means
wi = O(

√
N ). Meanwhile, the lower bound of wi obtained

with the current inequality is N − 1. Equation (6) allows to
decrease the values of wi. It is because of this equation that our
algorithm works properly as a Monte Carlo heuristics based
on thermal annealing process.

The coupling wi is a momentum effect on the temporal
behavior of the spin σi. MA achieves simultaneous spin
flips owing to this effect. It is better to decrease the energy
barrier between spin configurations for improving the search
efficiency. Here we use two techniques: dropout and mo-
mentum scaling. Our dropout is inspired by the method for
improving generalization performance of neural network [30].
In dropout, we choose several couplings wi with a certain
probability and treat their strengths as zero temporarily. The
probability decreases to zero gradually. Momentum scaling
increases the coupling wi from a small value to the original
one computed by Eq. (6). Although the momentum couplings
become small by this equation, they might still be larger than
other couplings. If some of the momentum couplings have
larger strengths than other couplings, dropout and momentum
scaling relieve the inertia effects of the coupling. As annealing
proceeds, all w1, . . . ,wN return to their original values.

The MA computation can be summarized as follows. First,
we compute the largest eigenvalue of the adjacency matrix and
calculate w1, . . . ,wN by using Eq. (6). We prepare the current
spin configuration and its previous state. In the initialization,
each spin is typically chosen from {−1, 1} at random. Then
we update the spin configuration by repeating the stochastic
behavior based on the second-order Markov process with
Eq. (5), dropout, and momentum scaling. We can exploit
the parallelism of not only spin update but also dropout,
momentum scaling, and random number generation. Once the
process finishes according to some criteria, we consider the

Algorithm 1. Momentum annealing for Ising model.

1: Calculate w1, . . . , wN by using Eq. (6)
2: Initialize spin configurations s−1 and s0

3: k ← 0
4: while criteria are not satisfied do
5: k ← k + 1
6: Update temperature Tk , dropout rate pk , and momentum

scaling factor ck

7: for all i = 1, . . . , N do in parallel
8: Set wi to zero with a probability of pk temporarily
9: Decrease wi to ckwi temporarily
10: Sample a random variable from the gamma distribution

with shape and scale parameters of value one, and set it
to the ith diagonal element of �k

11: Calculate the ith element of sk by using Eq. (5)
12: end for
13: end while
14: Return current spin configuration as a solution

spin configuration at that time to be a solution of the original
Ising problem. We show the steps of MA in Algorithm 1.

III. RESULTS

A. Performance to find the exact solution

We compared MA with SA in terms of their solution
performance and computation time to find the ground state.
Using a machine-independent graph generator [31], we pre-
pared Ising models with N spins. We chose the value of the
coupling Ji j from integers between −2M−1 + 1 and 2M−1 − 1
uniformly at random. The value of N was varied from 20 to
120 for M = 2 and from 20 to 90 for M = 10. Zero values
are excluded from the coupling range only if M = 2. For each
case, we generated 100 fully connected and 100 sparse Ising
models with an edge density of 10%, and obtained the exact
solution of all problems using BiqCrunch [32]. On the basis of
a preliminary experiment, we used the temperature schedule

Tk = 1

β0 ln(1 + k)
(k � 1), (7)

where β0 = 1.0 × 10−1 for M = 2 and β0 = 3.0 × 10−4 for
M = 10 (see the Supplemental Material [28] for details of
graph generation and parameter determination). To run MA,
we set the kth dropout rate pk and the momentum scaling
factor ck to be

pk =max

{
0, 0.5 − k

2000

}
, ck =min

{
1,

√
k

1000

}
. (8)

These effects gradually disappear as annealing proceeds. Af-
ter 1000 sweeps, our algorithm simulated the original system.
We ran a highly optimized program of SA on an Ubuntu
16.04.4 Linux server with multiple cores of a POWER8 CPU
and 512 GB of memory. It was based on a previous study
program [33], and we utilized OpenMP to parallelize the
energy calculations at each step. While changing the number
of threads, we investigated the optimal number of threads. For
each case, we performed MA and SA 1000 times, respectively.
We used MCS-to-solution and time-to-solution as a metric
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FIG. 2. Scaling of the optimal Monte Carlo steps to find the ground state with a probability of 99%. Shown are the 50th, 75th, and 85th
percentiles over a set of 100 instances. The error bars represent 95% confidence intervals.

to evaluate the performance. They are the minimum Monte
Carlo steps and computing time to find the ground state
with a probability of 99%, respectively. One sweep entailed
attempting to flip each spin once. Here MA and SA carried
out one sweep in one and N Monte Carlo steps, respectively.
We took for granted that MA updates all spins once, because
the algorithm pays the cost so as to achieve the parallelization.
The MCS-to-solution is calculated as

min
k

{
k

⌈
ln(1 − 0.99)

ln(1 − qk )

⌉}
, (9)

where qk is a probability that a single annealing with k Monte
Carlo steps finds the ground state. Similarly time-to-solution
is defined as

min
k

{
tk

⌈
ln(1 − 0.99)

ln(1 − qk )

⌉}
, (10)

where tk represents the time that annealing takes to carry
out k Monte Carlo steps [34]. MCS-to-solution and time-
to-solution show the performance to find the ground state
from the viewpoint of calculation amount and wall-clock time,
respectively.

Figure 2 compares the MCS-to-solution of both annealing
methods. Were the number of sweeps to increase drastically

as a result of our momentum couplings, the parallel update
of MA would not decrease the Monte Carlo steps enough to
be effective. Fortunately, the results show that MA can find
the ground states and has a lower scaling of MCS-to-solution
than SA for any cases. This relative reduction is just what we
expected.

For the parallel processing, we implemented MA on
a GPU (NVIDIA Tesla P100). The implementation pro-
vides couplings with single-precision floating point numbers.
Figure 3 plots the time-to-solution as a function of N . When
the number of spins is small, MA takes a longer time than
SA. However, since MA has a lower increase rate of MCS-
to-solution and time-to-solution than SA especially for fully
connected Ising models, we can expect that MA will be faster
than SA when the number of spins is more enormous than
hundreds of spins.

B. Performance to find an approximated solution

1. Comparison of SG and GW-SDP

We investigate the computational performance of our al-
gorithm for large-scale instances. Before the evaluation, we
discuss about some algorithms to solve the quadratic binary
optimization problem. To the best of our knowledge, no
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FIG. 3. Scaling of optimal annealing time to find the ground
state with a probability of 99%. Shown are the 50th, 75th, and 85th
percentiles over a set of 100 instances. The error bars represent 95%
confidence intervals. SA was run on a single thread.

algorithm can find the ground state of an Ising model exactly
in a practical amount of time when the number of spins is
greater than hundreds of spins. It is thus reasonable to use in-
stead an approximate algorithm for benchmarking. One of the
well-known methods is the Goemans-Williamson SDP (GW-
SDP) algorithm, which solves the maximum-cut problem with
a guarantee of solution quality [35]. This algorithm relaxes the
original problem to one of semidefinite programming (SDP).
However, it is difficult to use SDP to solve large problems,
because of its long computation time. Therefore, we used the
Sahni-Gonzales (SG) algorithm for large instances [36].

SG is a greedy heuristic, and its solution quality is not
bounded theoretically. To confirm the performance of SG, we
compared the solution qualities obtained with SG and GW-
SDP. Using the graph generator, we prepared Ising models
with N spins and M bit widths (N = 500, 2000, 5000 and
M = 2, 4, 6, 8, 10). For each case, we generated 10 different
Ising models with different seeds. In GW-SDP, we took a
random hyperplane through the origin 1000 times and chose
the best solution. Here HSG and HGW denote Ising energies

FIG. 4. Comparison of Ising energies obtained with SG and GW-
SDP. For each number of spins, 50 different instances are investi-
gated. Each box plot indicates interquartile range (each horizontal
line in the box is the median).

obtained with SG and GW-SDP, respectively. Figure 4 plots
the distribution of HSG/HGW. The ratios are nearly one for
each case. SG thus has a solution performance comparable to
GW-SDP. Therefore, we conclude that it is reasonable to use
it to obtain the reference values.

2. Fully connected Ising model

We compared MA with SA in terms of their solution
performance and computation time on fully connected Ising
models. Using the graph generator, we prepared Ising mod-
els with N = 500, 2000, 10 000, 50 000, 100 000 and M =
2, 4, 6, 8, 10. We used the same annealing schedule as Eqs. (7)
and (8) with β0 = 1.0 × 10−1, 2.5 × 10−2, 6.0 × 10−3, 1.3 ×
10−3, and 3.0 × 10−4 for each bit width M. For each case, we
performed MA and SA 100 times, respectively.

Figure 5(a) compares the number of sweeps that SA and
MA take to reach the Ising energy obtained with SG. The
results show that MA kept the number of Monte Carlo steps
almost constant, whereas SA increased the number of steps
on the order O(N1.0). For massively parallel processing, we
implemented MA on GPUs (NVIDIA Tesla P100 × 4 con-
nected to a POWER8 CPU by NVLink and 64 GB mem-
ory in total). Figure 5(b) plots the computational time as a
function of N . By increasing the number of GPUs, we can
attempt to flip more spins at once. However, communica-
tions between GPUs take time. Here MA with an optimal
number of GPUs and SA on an optimal threads CPU took
O(N0.9) and O(N2.0) time, respectively. The computational
time of MA includes the communication time. Thus, despite
the need for communications, our implementation of MA on
GPUs is superior in terms of computation time to SA on a
CPU.

Figure 6(a) plots temporal energy curves when using MA
and SA to solve the fully connected Ising model with 100 000
spins and 10 bit-width couplings. Here both methods per-
formed 2000 sweeps. To reach the Ising energy obtained
with SG, MA, and SA took 0.16 and 38.90 sec, respectively.
Namely, MA was 247 times faster than SA at reaching
an approximate solution. Figure 6(b) shows a histogram of
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FIG. 5. Scaling of time to reach the Ising energy obtained by
SG. For each number of spins, five types of all-to-all connected
Ising models were tested (M = 2, 4, 6, 8, 10). For each case,
we performed MA and SA 100 times, respectively. Dots show
the average time of the five cases. (a) We assumed that MA and
SA take one and N Monte Carlo steps for one sweep, respectively.
(b) The minimum computational time for N = 2000, 5000, and
10 000 was found for 1, 2, and 4 GPUs, respectively. From these
results we extrapolated the dashed line, which shows the optimal
scaling of the computational time of MA. The optimal number of
threads in the SA for fully connected Ising models was 1 for 500
and 2000 spins, 32 for 10 000 spins, 60 for 50 000 spins, and 40 for
100 000 spins.

Ising energies after the annealing. For the same number of
sweeps, on average, MA reached a less energetic state than SA
did.

3. Sparse Ising model

Next, we compared the solution performance and compu-
tation time when solving Ising models on a sparse graph. In
this experiment, we solved the maximum-cut problem, which
is equivalent to finding the ground state of the Ising model
[37]. We tested three different maximum-cut problems: G61,
G81, and torusg3-15. G61 and G81 are random and toroidal

FIG. 6. Experimental results obtained with MA and SA solving
fully connected Ising model with 100 000 spins and 10 bit widths.
(a) Temporal curve of Ising energy. The dashed line corresponds
to the target Ising energy of −6 363 591 595 obtained with SG.
(b) Histograms of Ising energy after both methods performed 2000
sweeps.

grid graphs taken from the G-set [38] whose edge weights
are limited to {−1, 1}. Torusg3-15 is taken from the DIMACS

library [39]. Its edge weights are Gaussian distributed. MA
was implemented with a single GPU, because it does not
require a large memory for sparsity. The optimal β0 of the
fully connected Ising models was inversely proportional to
the average value of |Ji j |. From this observation, we used
the temperature schedule by Eq. (7) with β0 = 1.0 × 10−1 for
G61 and G81, and β0 = 1.0 × 10−6 for torusg3-15.

The results are summarized in Fig. 7. The listed times are
those to reach the cut value obtained with SG. The upper and
lower values in each row are those obtained with SA and
MA, respectively. For each instance, MA reached the target
cut value in 0.01 sec, whereas SA took 20–800 times longer.
The histograms are cut values after annealing for 1 sec. The
average cut values with MA are better than those with SA.
These results suggest that MA on a GPU outperforms SA on a
modern CPU at solving not only dense- but also sparse-graph
problems.
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FIG. 7. Experimental results of maximum-cut problem obtained with MA and SA. We tested three sparse instances: G61, G81, and torusg3-
15. Here |V | and |E | represent the number of vertices and nonzero edge weights, respectively. Vertical lines correspond to cut values obtained
with SG. The histograms show cut values obtained after annealing for 1 s. In all cases, single-threaded SAs were faster than multithreaded
SAs. In contradiction to Fig. 6(b), it is better for the distribution to be located on the right side because we solve the maximum problem.

IV. DISCUSSION

A. Eigenvalue computation

Let us examine the total computing time. The eigenvalue
computation is required once in MA. Since MA calculates
only the largest eigenvalue of −J , we used the shifted power
method [40]. All eigenvalues of K := −J + μI , where I is
an identity matrix and μ is a constant, are greater than those
of −J by μ. If μ is sufficiently large, the largest eigenvalue
and the absolute largest eigenvalue of K are the same. Since
K is a real and symmetric matrix, we can obtain the absolute
largest eigenvalue of it by using the power method. Hence, we
compute the largest eigenvalue of −J by subtracting μ from
the absolute largest eigenvalue of K . This method performs a
matrix-vector multiplication repeatedly, and a GPU is a suit-
able architecture for it. In addition, an approximate eigenvalue
computation is sufficient for MA.

How should we determine the value of μ so that the
largest eigenvalue and the absolute largest eigenvalue of K
are the same? If μ � maxi {

∑
j �=i |Ji j |}, it satisfies the condi-

tion above because K is diagonally dominant, and it means
K is positive semidefinite. However, it will be difficult to
obtain the largest eigenvalue rapidly by the power method
due to its slow convergence. In this paper, we chose μ =
maxi {

∑
j �=i |Ji j |}/100 and perform the power method. If the

value ξ obtained by the calculation is non-negative, it ap-
proximates the largest eigenvalue of K . Otherwise, it does the

smallest eigenvalue of K , and thus we increase μ by −ξ and
restart the power method. The recalculation always returns the
largest eigenvalue of K .

Now let us investigate the whole calculation time of the
shifted power method. Figure 8 shows a temporal curve
of the estimated largest eigenvalue when we calculate the
eigenvalues of the adjacency matrix of the Ising model with
N = 100 000 and M = 10. From this result, we conclude that

FIG. 8. Convergence of largest eigenvalue by the power method.
We show an example when calculating the largest eigenvalue of the
adjacency matrix on an Ising model with N = 100 000 and M = 10.
The dot shows the result at 300 iterations.
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it is sufficient to iterate the shifted power method 300 times.
This calculation takes 6.8 sec on the four GPUs, and it is
required only once at the beginning of MA even though the
annealing is performed dozens of times. As shown in Fig. 6(a),
single annealing of MA takes about 0.1–1.0 sec. Therefore,
the eigenvalue computation is not the most time-consuming
part in MA.

B. Applicability to MCMC methods

The proposed algorithm is an extension of SA. What
bothers SA is that it is difficult to find a path to the ground state
in the problem where the number of local minima increases
exponentially with the number of variables. To overcome
the problem, an optimization algorithm via MCMC sampling
has been widely proposed besides SA. Parallel tempering
[41,42] improves the solution performance by promoting
convergence to the Boltzmann distribution. It simulates inde-
pendent Markov chains in which a temperature is constant
and exchanges them stochastically at a specified interval.
We can perform the independent runs by using Eq. (5) with
fixed temperatures. Another improved algorithm is simulated
quantum annealing by a path integral Monte Carlo method
(SQA), which is a quantum-inspired algorithm that simulates
the quantum tunneling phenomena of an Ising model with
a transverse field. It has been reported that SQA has better
scalability of computational time than SA [17,43]. The SQA
for Ising model can be achieved by MCMC for the Ising
model one-dimensional higher. Also, efficient nonlocal update
algorithms for spin glasses have been developed [44,45]. We
can execute MA with these techniques, and it will increase the
success probability to find the ground state.

The Boltzmann sampling is an MCMC method to carry
out a statistical evaluation of an Ising model and is studied
for machine learning [46–48]. It samples a spin configuration

from equilibrium state at a finite temperature. Our algorithm
focuses on the ground state search, which can be regarded as
sampling from the equilibrium state at zero temperature. To
apply MA to the Boltzmann sampling, we have to evaluate the
error incurred by the mapping of the Ising model with Eq. (6).
Not only combinatorial optimization but also statistical evalu-
ation of the system is promising due to its broad applications,
and the analysis is open problem.

Finally, we refer to the effect of dropout and momentum
scaling. In a preliminary experiment, we confirmed that a spin
configuration gets stuck in a local minimum easily, and it
is hard to reach the ground state without these techniques.
Further study of the techniques is also future work.

V. CONCLUSION

We have presented an MCMC-based annealing algorithm
for finding the ground state of Ising models. Our proposed
algorithm, which we call momentum annealing (MA), enables
us to update all spins simultaneously even if all spins are fully
connected. We have demonstrated that MA can obtain the
exact solution with lower Monte Carlo steps than SA. When
solving a fully connected Ising model with 100 000 spins, we
have confirmed that MA running on four NVIDIA Tesla P100
is 250 times faster than SA running on an IBM POWER8 CPU
at reaching the approximate solution obtained with Sahni-
Gonzales algorithm. Furthermore, we have shown that MA
is faster than SA for not only dense- but also sparse-graph
instances. In this paper, we have tested the Ising problem
with up to 100 000 spins due to the memory size. MA on
parallel computers with larger memory will be able to solve
Ising problems with more spins while keeping scalability of
computational time.
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