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The big-jump principle is a well-established mathematical result for sums of independent and identically
distributed random variables extracted from a fat-tailed distribution. It states that the tail of the distribution of the
sum is the same as the distribution of the largest summand. In practice, it means that when in a stochastic process
the relevant quantity is a sum of variables, the mechanism leading to rare events is peculiar: Instead of being
caused by a set of many small deviations all in the same direction, one jump, the biggest of the lot, provides
the main contribution to the rare large fluctuation. We reformulate and elevate the big-jump principle beyond
its current status to allow it to deal with correlations, finite cutoffs, continuous paths, memory, and quenched
disorder. Doing so we are able to predict rare events using the extended big-jump principle in Lévy walks, in
a model of laser cooling, in a scattering process on a heterogeneous structure, and in a class of Lévy walks
with memory. We argue that the generalized big-jump principle can serve as an excellent guideline for reliable
estimates of risk and probabilities of rare events in many complex processes featuring heavy-tailed distributions,
ranging from contamination spreading to active transport in the cell.
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I. INTRODUCTION

The estimation of the probability of rare events in mathe-
matics, physics, economics, and geophysics has been inves-
tigated for decades in the context of extreme value statistics
[1–4] and large deviation theory [5–8]. Rare events, like the
crash of a stock market or the overflow of a river or an
earthquake are clearly important but difficult to predict. A
starting point for this class of problems, in the physical and
mathematical literature, is the analysis of the far tail of the
distribution in a basic stochastic process, useful in many
modeling frameworks, i.e., the position of a random walker.
Central limit theorem arguments can be used to predict the
shape of the central part of a bunch of walkers, but they do
not describe the far tail of the packet, which is driven by the
statistics of rare fluctuations. For a random walker, rare events
and the characterization of the tail of the density are extremely
important. Imagine we model the spreading of some deadly
poison in a medium with a random walk process. If an agent
in the medium is sensitive to the poison, then one would like
to estimate the far tail of the density of the poisonous particles.

We advance here the principle of the single big jump, which
is used to analyze rare events in (roughly speaking) fat-tailed
processes. Very generally, consider a process consisting of
random displacements, and our observable is the sum of the
displacements, namely the position of a random walker in
space. The big jump principle deals with a situation where
the far tail of the density of particles starting from a common
origin is the same as the distribution of the largest jump in
the process. This means that one big jump is dominating
the statistics of the rare events of the sum. Thus, instead
of experiencing a set of many small displacements all in

the same direction, which would lead to a rare large (and
exponentially suppressed) fluctuation, one jump, the biggest
of the lot, provides the mechanism to rare events.

The big jump effect is believed to be at work in several
domains of science, ranging from economics to geophysics.
It has been rigorously proven for the sum of independent
identically distributed (IID) random variables extracted from
fat-tailed distributions [9–11] and in the presence of specific
correlations [12,13]. Its extension to more physical processes
is still far from being understood. Interestingly, this extension
would allow for better estimates of risks and a better forecast
of catastrophic events in many complex processes featuring
heavy-tailed distributions, from earthquakes to biology. The
main purpose of this paper is to show that, after technical and
conceptual modifications, we will be able to use the principle
to describe rare events in widely applicable physical models.

Mathematically, the big-jump principle is formulated for
a set of N IID random variables {x1, . . . xN } with a common
fat-tailed (more precisely, subexponential) distribution and it
reads [10,14]:

Prob(x1 + · · · xN > X ) = Prob(max{x1, . . . xN } > X ), (1)

when X is large. This means that the tail of the distribution
of the largest summand is the same as the tail of the sum and
in this sense the sum is dominated by a single macroscopic
jump [15–18]. An example in the IID domain are Lévy flights
in dimension one, which deal with a sum of displacements
drawn from a power law probability density function λ(xi ) ∼
x−(1+α)

i , and in this case one finds that Eq. (1) is also a simple
power law proportional to N and to X −α .
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The case of IID random variables is clearly over sim-
plified in physical modeling. In the context of spreading
phenomenon, one simple reason to the breakdown of the
simplified IID version of the principle of big jump is that
diffusive behavior in its far tails is cutoff by finite speed
of propagation. Thus the decay like X −α , predicted by the
principle in its current form, is unphysical in the situations
we are familiar with, that is with a finite observation time.
One of our goals is to formulate the principle in more general
terms and then show how the far tail of the sum behaves
beyond the IID case, when the finite speed of the particles
couples nontrivially space and time. This we do with the
widely applicable Lévy walk model [19,20].

Second, the most common way to treat stochastic processes
is with the use of stochastic differential equations, for ex-
ample, Langevin equations. In this case the trajectories are
continuous and in fact the jumps are infinitesimal, hence at
first glance it might seem impossible to use the principle of big
jump. However using a level crossing technique [21], we are
able to reformulate the big-jump principle also for continuous
Langevin processes, thus extending its scope dramatically. For
that aim we use a model of cold atoms diffusing in optical
lattices [21–23].

Third, the current status of the mathematical theory deals
with the case of a sum of IID random variables, as mentioned.
Clearly in many physical situations we have complex spa-
tiotemporal correlations and these again demand a rethinking
of the formulation of the big-jump principle [24,25]. The case
studied here is the Lévy-Lorentz gas, which deals with the
motion of test particles with fixed speed colliding with a set
of scatterers with very heterogeneous spacing [26,27]. Finally,
we will consider a correlated version of Lévy walks, going
beyond its renewal assumption, still showing that the principle
works and extending it to a wide range of physical processes
with memory.

Our approach is based on the splitting of the rare event
in two contributions: the first one comes from the typical
length scale of the process and amounts to calculating a
jump rate function; the latter deals with the estimate of an
effective probability of performing a big jump, much larger
than the characteristic length of the process. The effects of
correlations are then included in the sum over all paths that
contribute to the big jump. Moreover, while in simpler models
the identification of the biggest jump is somehow obvious,
for correlated and continuous processes we encounter new
challenges. In all these cases, we are able to obtain an explicit
form of the tail of the distribution driven by rare events. We
uncover rich physics in the rare events, in the sense that while
the typical fluctuations are described by the standard tool-box
of central limit theorems, the rare events reveal the details
of the underlying processes, like the nonanalytical behaviours
found in the Lévy Lorentz gas (see details below).

Both large deviation theory and the big-jump principle
investigate statistics of rare events, beyond the traditional
central limit theorems. However, here end the similarities, as
large deviation theory deals with systems with exponentially
small fluctuations, i.e., P(x) ∼ exp[−NI (x)], where N can
be the number of steps in a simple random walk (the well
established theory is of course much more general). The main
focus there is therefore on the calculation of the rate function

I (x). However, as discussed by Touchette [6], when a fat
tail is present, such as, for example, in the two-sided Pareto
distribution of the summands xi, the rate function is equal to
zero, so alternative approaches are needed. Further, our work
sheds new light on the so called infinite covariant densities and
strong anomalous diffusion [28], as we explain further down.

The paper is organized as follows. In Sec. II we start
with further discussion of the IID case, and then consider
the widely applicable Lévy walk model. In Sec. III we tackle
the problem of big-jump definition for continuous trajectories
in a Langevin equation modeling cold atom motion, and in
Sec. IV we consider the case of quenched disorder in the
Lévy-Lorentz gas, with an extension to a correlated random
walk in Sec. V. Finally, in Secs. VI and VII we present a
discussion, a list of open problems and our perspectives.

II. IID RANDOM VARIABLES, LÉVY WALKS,
AND THE SINGLE BIG JUMP

A. IID random variables

Let us first recall the case of IID random variables, which
can be considered the well-established starting point for our
method. Consider the sum R = ∑N

i=1 Li of N IID random
variables all drawn from a common long tailed Probability
Density Function (PDF), e.g.,

λ(L) = α(L0)α

L1+α
, (2)

with 0 < L0 < L < ∞. So in our example, we choose a
simple power law for the jump size distribution. Notice that,
for IID random variables, the big-jump principle holds for
the wider class of subexponential functions [10,14], that
includes, for example, the Weibull distribution of the form
λ(L) ∼ Lα−1 exp(−a|L|α ) with 0 < α < 1. In this case, all the
moments of the distribution are finite.

According to the single-big-jump principle in Eq. (1), the
sum R can be estimated, for large R, by the largest value of
the summands, i.e., Prob(R > R̃) � Prob(Max{Li} > R̃) [10].
This can be calculated as follows:

Prob(Max{Li} > R̃) = 1 −
N∏

i=1

(
1 −

∫ ∞

R̃
λ(Li)dLi

)

= 1 −
(

1 −
∫ ∞

R̃
λ(L)dL

)N

� N
∫ ∞

R̃
λ(L)dL. (3)

Then the PDF of R is given by the derivative of Eq. (3):

PDF(R) ∼ Nα(L0)αR−1−α. (4)

This well-known result holds for all α > 0, including the
cases α > 2, where the sum is attracted to the Gaussian
central limit theorem. The reason for this is that Eq. (1) holds
for rare events, namely, for large X , where the central limit
theorem does not hold. Notice also that technically the big-
jump principle is related to the field of extreme value statistics,
which deals with the question of the distribution of the largest
random variable drawn from a set on N random variables
[29–32]. In extreme value theories, N is usually taken to be
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FIG. 1. Numerical verification of the big-jump principle: the sum
N of IID random variables extracted from Eq. (2) is compared to their
maximum and to the analytic estimate αN (R/L0)−α−1, here L0 = 1.

large, which is not a demand for the principle. In particular,
focusing on IID random variables described by Eq. (2), the
maximum value follows a Frechét distribution [1–3] when
N → ∞, and for large R this decays precisely as a fat-tailed
power law, as indicated in Eq. (4). Other types of relations
between sums of random variables, not necessarily of power
law type and possibly correlated summands are treated in
Refs. [13,33].

In Fig. 1 we compare the sum R of N IID random variables
extracted from the distribution Eq. (2) with their maximum
and with the asymptotic estimate in Eq. (4). The plot shows
the efficiency of the single-big-jump principle: in particular,
even at large N , we get a reliable estimate of the asymptotic
tail also for values of R which are close to the value that
corresponds to the peak of the distribution.

In random walk theory, the sum R = ∑N
i=1 Li represents

the displacement of the particle starting on the origin, after N
steps, and for simplicity we have considered positive random
variables, Li > 0. The results are however easily extended
to any distribution with power law decay at large Li. The
case where the PDF of the step Li is symmetric [λ(Li) =
λ(−Li )] and 0 < α < 2 in the physical literature is called the
symmetric Lévy flight in dimension one. One can argue, at

least in the context of random walk theory, that the Lévy flight
is marginally physical, as the mean-square displacement of
the particle is infinity, 〈R2〉 = ∞, for any N . The unphysical
element of the model is that a long jump takes the same
amount of time as a small jump. As mentioned in Sec. I, a
more physical but still simple model is the Lévy walk. Here
a velocity is introduced into the model, so that in a finite
time the walker cannot reach arbitrary large distances and
hence the mean-square displacement is always finite [19,20].
The Lévy walk model has found many applications [19].
For example, in the spreading of heat and energy in many
body one dimensional systems, under certain conditions the
spreading is described by Lévy laws, which are cut off by
sound modes, so that the speed of sound is a natural cutoff in
these systems. The far tail of the distribution of the Lévy walk
was previously investigated, using the moment generating
function approach [21,28,34]. As we now show, unlike the
IID case, the principle of big jump still holds but it is not
completely trivial. We will discuss a heuristic derivation of
the principle, that will be useful in the following, and then
describe the jump rate method.

B. Lévy walks

Let us now consider a one-dimensional Lévy walk where
the length of the jumps Li > 0 is again extracted from the
distribution λ(L) in Eq. (2) but in each jump the distance
Li is covered with probability 1/2 at velocity vi = v and
with probability 1/2 at velocity vi = −v (v > 0). An event
corresponding to the extraction of a new jump can be con-
sidered as a collision. The step lengths and the velocities are
mutually independent random variables and the process is
renewed after each jump. Each step is covered in the finite
time τi = Li/v, and one can equivalently define the model
by extracting the duration of each step from the distribution
ψ (τ ) = vλ(τv). At time T = 0, the walker begins its motion
extracting the first jump, then we observe the system at the
measurement time T . The number of collisions N at time
T is now given by the condition

∑N
i=1 τi � T <

∑N+1
i=1 τi,

so here N is random, unlike the previously studied case of
Lévy flights. The time τB = LB/v = T − ∑N

i=1 τi is called
the backward recurrence time. The relevant quantity now is
the PDF P(R, T ), i.e., the probability for the walker to be at
time T at distance R from the starting point: R = |∑N

i=1 τivi +
τBvi+1| = |∑N

i=1 Livi/v + LBvi+1/v|. The process is symmet-
ric with respect to the origin and therefore the distance R fully
describes the density of particles in space. Due to the finite
velocity, the walker in a time T cannot reach distances larger
than vT . Hence we expect that P(R, T ) = 0 for R > vT so
that the moments 〈Rq(T )〉 are clearly finite for any value of q.

The Lévy-Gauss central limit theorem can be used to
show that the PDF P(R, T ) displays the following scaling
form: P(R, T ) = �(T )−1 f [R/�(T )] where the scaling length
behaves as �(T ) ∼ T 1/2 for α > 2, �(T ) ∼ T 1/α for 1 < α <

2 and as �(T ) ∼ T for α < 1 [19,20]. These dynamical phases
are called normal for α > 2 [since the scaling function f (.)
is Gaussian], superdiffusive for 1 < α < 2 (since the mean-
square displacement grows faster than normal) and ballistic
for α < 1. The form of the scaling function f (.), the moments
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of the process and its extensions, for example, to higher
dimensions, were obtained in previous works [19,20,35].

The big-jump principle does not deal with the scaling of the
PDF P(R, T ) on the typical length scale �(T ). The focus here
is on rare events, when R is large and of the order of vT . The
big-jump principle then suggests that, asymptotically, when R̃
is large,

Prob(R > R̃) = Prob(R̄M > R̃), (5)

where R̄M = max{L1, ...LB}.
Following the derivation for IID presented in the previous

section, the PDF P(R, T ) for large R can be estimated as
follows. During a big jump, which is of order of vT , the
trajectory does not renew itself in a time interval R/v < T .
In the total remaining time T − R/v the walker is generating
attempts (renewals) to make the big jump. For α > 1 the
average time between collision events 〈τ 〉 = ∫ ∞

0 dτψ (τ )τ is
finite, and this is the case investigated here. The renewal rate
is 〈τ 〉−1 and so the typical number of renewals is

Neff ∼ (T − R/v)/〈τ 〉, (6)

which provides a nice estimate for large times: T � 〈τ 〉. We
can argue that for L0 	 R̃ < vT, Prob(R > R̃) = Prob(R̄M >

R̃) is given by the number of renewals times the probability
for a jump to bring the particle a distance larger than R̃:

Prob(R > R̃) � Neff

∫ ∞

R̃
λ(L)dL

= T − R̃/v

〈τ 〉
∫ ∞

R̃
λ(L)dL 	 1, (7)

while for R̃ > vT, Prob(R > R̃) = 0. Now we obtain the PDF
by taking the derivative. For large R we get P(R, T ) = 0 if
R > vT and

P(R, T ) � 1

v〈τ 〉
∫ ∞

R
λ(L)dL + T − R/v

〈τ 〉 λ(R)

� B0(R, T ) + B1(R, T ), (8)

if R < vT , with

B0(R, T ) = 1

v〈τ 〉 (L0)αR−α (9)

and

B1(R, T ) = T − R/v

〈τ 〉 α(L0)αR−1−α, (10)

which is the exact result for the tail of the PDF of the Lévy
walk, obtained by a different method [28,34]. Compared with
the IID case, all we did was to replace N with Neff , still
this heuristic argument provides the known result. This is
an indication that the big-jump principle is a useful simple
tool to obtain asymptotic results at ease, and this will be
now extended to interpret the physical meaning of the two
terms B0 and B1. This form of the PDF holds for the scaling
region R ∼ vT , namely for rare events, while for R ∼ �(T )
the distribution is described by the Lévy-Gauss central limit
theorem. So for α > 1 the principle of big jump gives the
far tail of the distribution and hence is complementary to the
central limit theorem.

Notice that B0(R, T ) + B1(R, T ) ≡ T −αIα (R/vT ) in
Eq. (8), with

Iα (y) = C[αy−(1+α) − (α − 1)y−α], (11)

is not normalized, as its integration diverges due to the pole in
y → 0 in Eq. (11), which stems from B1(R, T ). This is hardly
surprising, since as we have just mentioned this equation
works only for R ∼ vT and the divergence stems from the
R → 0 limit. The nonnormalized expression T −αIα (R/vT ) is
called an infinite density, since while being nonnormalized
(hence the term infinite) it can be used to compute exactly the
moments 〈Rq〉 with q > α. The idea is that moments which
are integrable with respect to this nonnormalizable function
can be computed as if it was a standard density. In other
words, the function RqIα (R/vT )/T α is integrable, as Rq cures
the divergence of the density on R → 0 when q > α. Infinite
densities play an important role also in ergodic theory. We
remark that in Iα (R/vT ) there is a scaling length that grows
linearly with time. This means that, when the single big jump
dominates the dynamics, the typical space-time relation of
the single step is ballistic (for any α), and this ballistic scale
controls the behavior of the far tail of the density.

C. Lévy walks: The jump rate and the big jump

In Lévy walks, the mean waiting time between renewals
is finite for α > 1. We will therefore use now an alternative
approach to derive the tail of the PDF P(R, T ), based on the
rate of attempts of making a big jump. This will provide a
physical interpretation of the terms B0(R, T ) and B1(R, T ) and
it will be useful when we will apply the big-jump principle in
more complex processes further on.

Let us consider NT the average number of jumps up to time
T , we define the jump rate reff (Tw ) = dNT /dT . For the sake
of the analysis performed in the next sections, reff can depend
on time, while here reff (Tw ) = 〈τ 〉−1, since the mean duration
of a step is constant and finite for α > 1. We also define
ptot (L, Tw )dLdTw, i.e., the probability that the walker in the
time interval [Tw, Tw + dTw] performs a jump of length be-
tween L and L + dL. Since the jump length L is uncorrelated
from the jumping time, it follows that ptot (L, Tw )dLdTw =
reff (Tw )λ(L)dLdTw.

Now, at large R the big-jump principle states that the PDF
P(R, T ) is determined by the largest jump occurring up to time
T . Let us analyze heuristically the motion, following Fig. 2:
at a time Tw ∈ [0, T ] the walker takes its longest step L ∼ vT .
The propagation of the walker up to Tw is of order of �(Tw ) 	
L and it can be neglected. After this big jump, the motion of
the walker can again be neglected since it covers a distance of
order �(T − R/v − Tw ) 	 L. Summing up, in the big-jump
picture: the walker remains at the starting point up to time Tw,
then it performs a jump of length L ∼ vT , after that it remains
in L. We now have to sum ptot (L, Tw )dLdTw over all the paths
(L and Tw) that take the walker at a distance R at time T and, as
shown in Fig. 2, two different kind of processes are possible.

In the first path in Fig. 2(a), L > v(T − Tw ), the walker
is still moving in the big jump at T and R = v(T − Tw ),
i.e., L > R, Tw = T − R/v and dTw = dR/v. Clearly all the
jumps of length L > R contribute to the process ending in R,
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FIG. 2. The big jump starts at time Tw and this jump can either
lead you to the time horizon of the Lévy walk (left panel) or it may
start and end before the completion of the process at time T (right
panel). These processes are used in the text to explain the meaning
of the two terms contributing to the far tail distribution of the Lévy
walker. To investigate rare fluctuations of the total displacement, we
need to consider only the big jump, while in the time interval (0, Tw )
we generate attempts to make the big jump with a rate specified in
the text.

so the probability density B0(R, T ) of this process is

B0(R, T )dR = reff (T − R/v)dR/v

∫ ∞

R
λ(L)dL

= dR

v〈τ 〉
(

L0

R

)α

, (12)

since here reff (T − R/v) = reff (Tw ) = 〈τ 〉−1. If L < v(T −
Tw ) [Fig. 2(b)], then the walker ends its motion in L so that
R = L and dR = dL. This process is possible for all the Tw

such that Tw < T − R/v. The probability of reaching R is then
obtained integrating over the different Tw arriving at the same
position:

B1(R, T )dR = αLα
0 dR

R1+α

∫ T −R/v

0
reff (Tw )dTw

= αLα
0 (T − R/v)

〈τ 〉R1+α
dR. (13)

Summing Eqs. (12) and (13) we get Eq. (8). This explains that
two different processes give rise to the terms B0(R, T ) and
B1(R, T ).

The results obtained here can be easily generalized to dif-
ferent definitions of Lévy walks. For example, in dimensions
larger than one, or in the case of random velocity (e.g., Gaus-
sian velocity distribution). In the wait first model [19,36,37],
where the particle is localized in space, and then makes an
instantaneous displacement, big jumps can be generated only
by the second process since the particle is at rest at the
moment of observation T , and the tail of P(R, T ) is given by
B1(R, T ) only. Another possible extension where the big-jump
principle can be applied is the model where the motion of
the particle is not ballistic [38]. An important example of
accelerated motion will be discussed in detail in Sec. III.
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FIG. 3. Numerical verification of the big-jump principle for the
Lévy Walk: P(R, T ) is compared to P(R̄m, T ) and to the analytic
estimate Iα (R/T ).

In Fig. 3 we present our main results and compare them
with finite time simulations. We plot the far tail of the PDF as
a function of R/T , for α = 1.5 and α = 2.2. As expected, in
the long-time limit the densities fully agree with the big-jump
approximation. We also plot the distribution of the largest
jump R̄M . The agreement between the distribution of R̄M and
the distribution of the total displacements for large R is clearly
visible and both distributions converge to the asymptotic
results in a finite timescale. Figure 4 shows indeed that the
biggest jump R̄M and the final position R are correlated: each
dot represent R̄M and R for a single walker at T = 216. For
large R we observe that R̄M ≈ R, while for short distances
large fluctuations are present due to multiple processes.

III. ANOMALOUS DIFFUSION FOR COLD ATOMS
IN OPTICAL LATTICES

Both for IID random variables and for Lévy walks, the
concept of “jump” is very clear: the displacement between
renewals. But in real data we may have continuous trajec-
tories, where the jump is not well defined (we are ignoring
here sampling effects, which naturally lead to jumps. The
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FIG. 4. Numerical verification of the direct correlation between
the final position of the walker R and R̄M = max{L1, ...LB}. Dots
represent the final position R of the walker at T = 216 as a function
of the maximum jump R̄M of the same walker. Red line correspond
to the linear plot R = R̄M .

topic of sampling is left for future work). Hence, now we
turn to a model known to generate Lévy statistics, both in
theory [21,39] and in the laboratory [40], based on a nonlin-
ear Langevin equation. This is Sisyphus cooling [39,41,42].
Within this theory, energy dissipation of atoms in an optical
traps can be described by the Langevin equation

v̇ = − v

1 + v2
+

√
2Dξ (t ), (14)

where ξ (t ) is a white Gaussian noise with zero mean:
〈ξ (t )ξ (t ′)〉 = δ(t − t ′) and v represents the atom velocity. In
Eq. (14) and all along this section we are using dimensionless
variables for velocity, time and space (see details in Ref. [22]).
The space R covered by the atom in a time T is

R(T ) =
∫ T

0
v(t )dt . (15)

0 2 4 6 8 10 12
-5

-4

-3

-2

-1

0

1

2

FIG. 5. A realization of a path of the Langevin Eq. (14) for an
atom in an optical lattice. The zero crossing define time intervals
between renewal events since the underlying Langevin process is
Markovian. We show the waiting times, {τ1, ....τ

∗} which are known
to follow power law statistics, and in red we show the big jump.
Notice that at observation time T the process is not crossing zero, so
the last time interval called the backward recurrence time τ ∗, must
be treated differently. For further details see Ref. [23].

The motion of the atoms in this framework has been studied
in Refs. [21–23]. The dynamical evolution can be described
in terms of a random walk where each step is defined by
two subsequent events with v(t ) = 0, as described in Fig. 5.
Thus, we will use the zero crossings of the velocity process
to describe a jump and with this we will check the validity of
the big-jump principle [43]. More precisely the size of each
jump is the area under the velocity curve between two zero
crossings. Using this definition, according to Eq. (14), the
steps of the walker are uncorrelated but the duration and the
length of each single step should be extracted by a complex
distribution relating in a non trivial way space and time. In
particular, the joint distribution for a step having length L and
duration τ is

	E (L, τ ) = g(τ )φE (L|τ ), (16)

where g(τ ) is the PDF for a step of duration τ and φE (L|τ )
is the conditional PDF for L given τ . In Ref. [22] it has been
shown that for large τ

g(τ ) � g∗τ−1−3ν/2, (17)

where g∗ is a numerical constant and the exponent ν depends
on the noise D in Eq. (14) as

ν = 1 + D

3D
. (18)

The conditional PDF φE (L|τ ) obeys the following scaling
property:

φE (L|τ ) = 1

τ 3/2
BE (L/τ 3/2). (19)

The scaling function BE (x) exponentially decays to zero at
large x and its analytic expression has been evaluated in
Ref. [22]. Equation (19) shows that a step of length L is
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covered in a time of order τ 3/2. This accelerated motion
corresponds to the ballistic motion of a single step in the Lévy
walks. From Eqs. (14)–(19) we also get that the probability
that a step has length L is q(L) ∼ L−ν−1.

In Ref. [21] the motion of the walker at short distances has
been studied using techniques similar to the Lévy walk case,
with ν playing the same role of the exponent α. In particular
for ν > 2 (i.e., D < 1/5) both the mean-square displacement
〈L2〉 and the mean duration 〈τ 〉 of a step are finite; therefore,
P(R, T ) is a Gaussian with a characteristic length �(T ) ∼
T 1/2. For 2/3 < ν < 2 (i.e., 1/5 < D < 1) the mean duration
of a step is finite but the mean-square displacement diverges;
in this case P(R, T ) is described by a Lévy scaling function
Lν (·) i.e., P(R, T ) = �(T )−1Lν[R/�(T )], where �(T ) ∼ T 1/ν .
Finally for ν < 2/3 (i.e., D > 1) the motion is accelerated
as T 3/2 and P(R, T ) = �(T )−1 fν[R/�(T )] with �(T ) ∼ T 3/2

[ fν (·) is a ν dependent scaling function].
In the case ν > 2/3 we expect that the probability of

finding a particle in a position R ∼ T 3/2 � �(T ) can be
evaluated considering a single big jump leading it to a distance
L ∼ T 3/2 � �(T ). In particular we can consider, at time Tw,
the probability ptot (L, Tw, τ )dLdTwdτ that the particle makes
a jump of length L and duration τ : Taking into account that
the probability of making a step is 〈τ 〉−1 independently of Tw,
we have

ptot (L, Tw, τ ) = 	E (L, τ )

〈τ 〉 . (20)

The PDF P(R, T ) can be calculated taking into account the
different processes driving the particle at a distance R at time
T with a single jump of length L. As in the case of Lévy walks
there are two possibilities. First the particle can make a jump
of length L = R and duration τ ; such a jump can be made at
any Tw ∈ [0, T − τ ]. Moreover, all the values of τ ∈ [0, T ]
have to be taken into account. Since dR = dL, we get the
contribution of this process to P(R, T ) by integrating over all
possible τ and Tw:∫ T

0
dτ	E (R, τ )

∫ T −τ

0

dTw

〈τ 〉

∼
∫ T

0
dτ

g∗(T − τ )

〈τ 〉τ 5
2 + 3ν

2

BE

(
R

τ
3
2

)
= B1(R, T ), (21)

where the second expression holds for large R and T . In this
case, the single step is characterized by a superballistic motion
where in a time T the particle covers a distance of order T 3/2,
therefore the natural rescaled variable is z = R/T 3/2. Defining
y = R/τ 3/2 we get

B1(z, T ) = g∗
T

1
2 + 3ν

2 〈τ 〉z1+ν

∫ ∞

z
dy

(
1 − (z/y)

2
3
)
yνBE (y).

(22)

As for the Lévy walk, another kind of process provides a
non trivial contribution to P(R, T ), i.e., when at time T the
walker is still moving in the big jump. In this case, one has
to consider the probability to perform a jump longer than
R. Since the motion is the result of a Langevin stochastic
process, the distance R can be covered in different times τ ∗,
hence, we call �M (R, τ ∗) the probability to cover in a step a
distance larger than R arriving in R exactly at τ ∗. According

to Refs. [21,23] we can write

�M (R, τ ∗) = w(τ ∗)
1

τ ∗ 3
2

BM

(
R

τ ∗ 3
2

)
, (23)

where w(τ ∗) = ∫ ∞
τ ∗ g(τ )dτ is the probability of making

a jump of duration longer than τ ∗, while ψM (R|τ ∗) =
τ ∗−3/2BM (R/τ ∗3/2) is the conditional probability of covering
a distance larger than R given τ ∗. We remark that �M (R, τ ∗)
can be introduced also in Lévy walks where ballistic motion
entails that trivially: �M (R, τ ∗) = δ(R − vτ ∗)

∫ ∞
R λ(L)dL.

However, if the motion during the step is determined by
Eq. (14), then BM (·) displays a nontrivial behavior (see
Ref. [22] for details). We notice that only the jumps occurring
at Tw = T − τ ∗ bring the walker in R at time T . Therefore,
integration over Tw is not necessary or equivalently we can
insert a delta function. However, different τ ∗ provide different
contributions to the process, so we have to integrate over the
possible τ ∗ ∈ [0, T ]. Taking into account that the jumping rate
〈τ 〉−1 is independent of Tw, the contribution to the PDF is∫ T

0
dτ ∗�M (R, τ ∗)

∫ T

0
dTw

δ(Tw − T + τ∗)

〈τ 〉

∼ g∗
〈τ 〉

2

3ν

∫ T

0
dτ ∗ 1

τ ∗ 3
2 (1+ν)

BM

(
R

τ ∗ 3
2

)
= B0(R, T ), (24)

where we take into account that for large τ ∗ we have
w(τ ∗) ∼ g∗

∫ ∞
τ ∗ τ−1−3ν/2dτ = g∗(2/3ν)τ ∗−3ν/2. Introducing

in Eq. (25) the rescaled variable z = R/T 3/2 and defining
y = R/τ ∗3/2 we get

B0(z, T ) = 1

T
1
2 + 3ν

2

2g∗
3ν〈τ 〉z1+ν

∫ ∞

z
dy(z/y)

2
3 yνBM (y). (25)

Summing the contributions to P(R, T ) in Eqs (22) and (25)
we get

P(R, T ) ∼ B0(z, T ) + B1(z, T ) = 1

T
1
2 + 3ν

2

Iν
(
R/T

3
2
)
, (26)

i.e., the expression obtained in Ref. [23] with a totally dif-
ferent method. In Ref. [23] a comparison of Eq. (26) with
numerical simulations is also presented showing a very nice
agreement in the asymptotic regime. As discussed in details in
Ref. [23], Eq. (26) is not normalized, since Iν (x) diverges for
x → 0. This again is hardly surprising since Eq. (26) works
for large values of R. Still the big-jump principle provides
the moments of order q > ν, and as such it gives the infinite
density of the process (like the simpler Lévy walk case). We
remark that also in this case the long tails are described by the
same scaling length characterizing the single jump dynamics,
i.e., T 3/2 which plays the same role of the ballistic motion in
the Lévy walk case.

IV. THE SINGLE BIG JUMP IN THE LÉVY-LORENTZ GAS

A. The Lévy-Lorentz gas

The approach introduced for the Lévy walk, which takes
into account the different contributions to the big jumps in
the PDF, can be applied to the case of a walker moving in
a random sequence of 1D scatterers spaced according to a
Lévy distribution [26], i.e., a Lévy-Lorentz gas. This is a
prototypical model where the highly non trivial correlation
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FIG. 6. Short-distance scaling of the PDF for the Lévy-Lorentz gas according to Eqs. (27) and (28). A Gaussian PDF is observed for α > 1.

among the steps is introduced by the quenched disorder, that is
the positions of the scatterers in a sample. We build the system
placing a scatterer on the origin and spacing the others in the
positive and negative directions so that the probability density
for two consecutive scatterers to be at distance L is λ(L) as
defined in Eq. (2). A continuous time random walk [44] is
naturally defined on the 1D quenched scatterers distribution:
a walker starts from the scatterer in the origin, then it moves
with constant velocity v until it reaches one of the scatterers,
and then it is transmitted or reflected with probability 1/2. We
consider walkers starting from a scattering point. Indeed it is
known that for α < 1, i.e., when the average distance between
scatterers diverges, the results in the asymptotic region depend
on the initial position of the walker [26,45]. Moreover, the
PDF to be at distance R from the origin at time T P(R, T ) has
been obtained by averaging both on the walker trajectories and
on the realizations of the disorder.

In Refs. [27,46], using an analogy with an equivalent
electrical model [47], it has been shown that the bulk part
of P(R, T ) displays a scaling behavior with a characteristic
length �(T ) growing as

�(T ) ∼
{

T
1

1+α if 0 < α < 1
T

1
2 if α > 1

. (27)

In particular, the scaling form of P(R, T ) reads

P(R, T ) = �−1(T ) f [R/�(T )] + B(R, T ), (28)

with a convergence in probability to �−1(T ) f [R/�(T )],

lim
T →∞

∫ ∞

0
|P(R, T ) − �−1(T ) f [R/�(T )]|dR = 0. (29)

The leading contribution to P(R, T ) is hence �−1(T )
f [R/�(T )], which is significantly different from zero only
for R � �(T ). The short-distance behavior described by
Eqs. (27)–(29) has been tested in numerical simulations, as
shown in Fig. 6, and then rigorously proved in a series of
recent papers [48–51].

The subleading term B(R, T ) (that satisfies limT →∞∫ |B(R, T )|dR = 0), describes the behavior of P(R, T ) at
larger distances, i.e., �(T ) 	 R < vT [since the velocity v

is finite, B(R, T ) is strictly zero for R > vT ]. Notice that
B(R, T ) can provide important contributions to higher mo-
ments of the distribution:

〈Rq(T )〉 =
∫ K�(T )

0
�−1(T ) f (R/�(T ))RqdR

+
∫ vT

K�(T )
B(R, T )RqdR, (30)
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FIG. 7. Rescaling of the PDF for the Lévy-Lorentz gas according to Eq. (34). The data at α = 0.5, α = 1.2, α = 1.5, and α = 2.2
are obtained by averaging over 5 × 107, 5 × 108, 109, and 4 × 109 walkers moving on different realizations of the structure. Notice the
discontinuities at R/(vT ) = 1/3, 1/5, 1/7..., which are found for all values of α.

where K is a finite constant, as the first term can be subleading
with respect to the second integral for large enough q. Notice
that Eq. (30) contains once again the natural cutoff vT , which
is the maximum distance that the walker can cover in a
time T . This suggests that the ballistic scaling length vT
characterizing each single step becomes dominant at large
distance.

We will show that B(R, T ) exhibits the following scaling:

B(R, T ) ∼
{

T − 1+α+α2

1+α Iα
(

R
vT

)
if 0 < α < 1

T − 1
2 −αIα

(
R
vT

)
if 1 � α

, (31)

where Iα (x) is an α-dependent scaling function that we will
evaluate analytically using the big-jump principle. The single
jump dynamics gives rise to a ballistic scaling length vT .
We will show that

∫
Iα (x)dx = ∞ and therefore Iα (.) is an

infinite density [28,34] and as discussed in Eq. (30) for large
enough p > 0, Iα (x) can be used to estimate the moments
of the process. In particular, the competition of timescales
in Eqs. (27)–(31) provides the full behavior of 〈Rq(T )〉 as a

function of time [27,52]:

〈Rq(t )〉 ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T
q

1+α ∼ �(T )q if α < 1, q < α

T
q(1+α)−α2

1+α if α < 1, q > α

T
q
2 ∼ �(T )q if α > 1, q < 2α − 1

T
1
2 +q−α if α > 1, q > 2α − 1

. (32)

In Ref. [27] the asymptotic behaviors of Eqs. (32) has been
obtained using a single big-jump heuristic argument and it
has been shown that the results are consistent with numerical
simulations. Similar estimates, always based on single big-
jump arguments, have been obtained in higher dimensions
[53,54].

However, Iα (x) is not merely a mean to generate moments,
as it describes the far tails of P(R, T ). In particular, numerical
simulations presented in Fig. 7 show that Eq. (31) provides the
correct scaling behavior for P(R, T ) at large R. Furthermore it
is evident from these figures that the far tail of the spreading
particles is nontrivial in the sense that the packet exhibits
nonanalytical behaviors and surprising step like structures.
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FIG. 8. The single big-jump process for in Lévy Lorentz gas.
Panels (a)–(c) refer to the cases with 0, 1, and 2 reflections, respec-
tively. The distance of the scattering points L corresponding to the
big jump is in orange, the final position R is in magenta and the total
traveled distance in the big jump v(T − Tw ) is in blue.

B. An analytical estimate of the big jump

Let us now introduce our derivation following the reason-
ing applied for the simple Lévy Walk. We assume that the
motion of the walker at large distance R ∼ vT is determined
by a single stochastic event occurring at the crossing time Tw.
At Tw, the walker crosses a scattering point, and this scatterer
is followed by a large jump of length L ∼ vT , where the
walker moves ballistically. Up to time Tw, the motion of the
walker can be neglected since it is of order R ∼ �(Tw ) 	 vT .
After crossing this long gap, the motion of the walker can be
considered deterministic, since the borders of the gap acts as a
perfect reflective walls at least on timescale of order T . Indeed
for a recurrent random walk the probability that the walker is
not reflected vanishes at long times. So, the motion, shown in
Fig. 8, is the following: up to time Tw the walker remains at
the starting point, then it bounces back and forth in the gap of
length L for a time T − Tw.

First we discuss the property of the crossing time Tw. We
call Neff (Tw ) the number of distinct sites crossed by the walker
up to time Tw. Neff (Tw ) has been studied in Ref. [27], where it
is shown that for large enough times Neff (Tw ) ∼ (Tw/τ0)1/2 if

α > 1 and Neff (Tw ) ∼ (Tw/τ0)α/(1+α) if α < 1 (τ0 is a suitable
time constant). This estimate is obtained taking into account
that before entering the large gap the walker has typically
moved of �(T ) and the number of scatterer within a distance
�(t ) is proportional to �(t ) if α > 1 and to �(T )α if α < 1; see
Ref. [47]. We define reff (Tw ) as the (now time dependent) rate
at which the walker crosses scattering sites that have never
been reached before, i.e.,

reff (Tw ) = dNeff (Tw )

dTw

∼
⎧⎨
⎩T

− 1
1+α

w τ
− α

1+α

0 if 0 < α < 1

T
− 1

2
w τ

− 1
2

0 if 1 � α

.

(33)
The value of τ0 is in general not known since we evaluate Neff

using a scaling argument which provides only the functional
form of Neff (Tw ). However, in the final result for B(R, T ) τ0

only determines the value of a global factor which has to be
suitably fixed in the comparison with numerical simulations.

We introduce the probability ptot (L, Tw )dTwdL (L0/v 	
Tw < T ) at time Tw that the walker enters into a gap of length
L never visited before (L ∼ vT ). Since the distribution of the
gap length λ(L) is time independent we have ptot (L, Tw ) =
reff (Tw )λ(L) where reff (Tw )dTw is the probability that at Tw

the walker crosses a site never visited before and λ(L)dL is
the probability that this site is followed by a gap of length
L. Now we estimate P(R, T ) by integrating ptot (L, Tw )dTwdL
over all the paths that at T reach the same distance R and
then we change the integration variables from L and Tw to R.
Once again, it is convenient to study separately the processes
performing a different number of reflections and evaluate the
contribution that each process gives to B(R, T ). We obtain the
scaling form described in Eq. (31) with

Iα (r) =
∞∑

n=0

fn,α (r), (34)

where the functions fn,α (r) describe the processes with n
reflections; see Appendix A for details. In particular, if the
walker does not perform any reflection, then we have

f0,α (r) = Lα
0

v1+ατ
α

1+α

0

1

(1 − r)
1

1+α rα
if 0 < α < 1

f0,α (r) = Lα
0

v1+ατ
1
2

0

1

(1 − r)
1
2 rα

if 1 � α, (35)

while for an odd number and an even number n > 0 of
reflections we get, respectively,

fn,α (r) = Lα
0 (n + 1)αα

v1+ατ
α

1+α

0

θ (1 − nr)
∫ 1−nr

0

dtw

t
1

1+α
w (1 + r − tw )1+α

if 0 < α < 1

fn,α (r) = Lα
0 (n + 1)αα

v1+ατ
1
2

0

θ (1 − nr)
∫ 1−nr

0

dtw

t
1
2
w (1 + r − tw )1+α

if 1 � α

when n is odd, (36)

fn,α (r) = Lα
0 nαα

v1+ατ
α

1+α

0

θ [1 − (n + 1)r]
∫ 1−(n+1)r

0

dtw

t
1

1+α
w (1 − r − tw )1+α

if 0 < α < 1

fn,α (r) = Lα
0 nαα

v1+ατ
1
2

0

θ [1 − (n + 1)r]
∫ 1−(n+1)r

0

dtw

t
1
2
w (1 − r − tw )1+α

if 1 � α

when n is even. (37)
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The integral defining fn,α (r) can be evaluated numerically.
Due to the θ -functions in fn,α (r), for any value of r only
a finite number of terms gives a non zero contribution to
the sum in Eq. (34). In particular, as r → 0 the number of
terms must be increased, while for r > 1/3 only two terms are
needed. This means that Iα (r) is nonanalytic (the derivatives
are discontinuous) when

r = 1

2m + 1
with m = 1, 2, . . . (38)

This is a consequence of the non analytic dynamics at the
reflections in 0 and L.

In Appendix A we also analyze the behavior of Iα (r) at
small r showing that Iα (r) ∼ r−(1+α) for r → 0. This means
that Iα (r) is not an integrable function in r = 0 and therefore
it is an infinite density as in previous cases.

C. Numerical results

Let us now compare the analytical results with numeri-
cal simulations. In Fig. 7 the PDF is rescaled according to
Eq. (34) and the theoretical scaling function Iα (r) is plotted
with a thick magenta line. Here we used the same simulation
data of Fig. 6, introducing only a different scaling procedure.
Iα (r) has been evaluated summing up to 100 terms in Eq. (34)
so that the numerical error on the analytic result is negligible
at least for r > 0.01. The curves scale quite well and they
collapse on the predicted function. Clearly numerical results
are closer to the analytical prediction for large times and
large r. Indeed our result is exact in the limit R � �(T )
and T � �(T ). The figure shows the nonanalytic behavior
of Iα (r) with a discontinuity in its derivative for r = 1

2m+1
with m = 1, 2, . . . . Also these nonanalyticities in simulations
are observed only in the long asymptotic regime when the
reflection time is negligible with respect to the evolution time,
giving rise to instantaneous nonanalytic reflections.

We also remark that at small α (i.e., α < 1) the numerical
simulations converge to the scaling function at very long
times, indeed in this case �(T ) grows faster and the condition
�(T ) 	 vT is realized at larger T . However, for small α large
time simulations can be numerically afforded quite easily, as
the computational times grows with the number of scattering
events and not with T . However, for large α (i.e., α > 2)
the curves converge at small times but simulations are very
demanding: They require an average over a huge number of
disorder realizations, since in this case the ballistic stretch
with L ∼ vT are extremely rare events (see the number of
realizations for data at α = 2.2 which are still very noisy).

In Fig. 9 using a logarithmic scale we show that Iα (r) ∼
r−(1+α) at small R/(vT ), i.e., one has to consider to be valid
both the regimes R � �(T ) and R 	 vT . We notice that in
simulations the timescales are too small to sample this power-
law regime.

V. CORRELATED LÉVY WALKS

The Lévy-Lorentz gas can be considered a peculiar exam-
ple of a correlated Lévy walk. Indeed, jumps in the spatial
region which has not been yet reached by the walker are
renewals of the motion, i.e., one can say that step lengths are

randomly extracted from λ(L). On the contrary, in regions
which have been already visited by the walker, the motion
is strongly correlated. Indeed, in the same framework, the
length of the jumps is fixed by the previous evolution of the
walker which determines the position of the scattering points.
Therefore, one can argue that the big-jump argument can be
applied in a wide range of correlated random walks with
memory characterized by subexponential big jumps. Let us
introduce an example clarifying this possibility.

We consider a random walk that at each step covers with
probability (1 − p)/2 at velocity v a distance L extracted
from λ(L) defined in Eq. (2); with the same probability
it covers the same distance L but at velocity −v; finally,
with probability p the walker makes a jump of the same
length of the jump in the previous step, but it moves with
opposite velocity, i.e., its reflected to the starting point of the
previous step. This dynamical rule gives rise to a correlation
in the motion of the walkers and an analytic study of the
PDF P(R, T ) is non trivial due to memory effects. However,
correlations decays exponentially with the number of steps
as pn; therefore, the universal behavior is the same of the
standard Lévy walks. In particular, as we show in Appendix B
at short distances for α > 1 one recovers the same behavior
of standard Lévy walk provided that time is rescaled by a
factor (1 − p) and space is rescaled by (1 + p)1/2 for α > 2
and by (1 + p)1/α for 1 < α < 2. Numerical simulations in
Fig. 10 show indeed that for α > 2 the PDF is Gaussian and
it has a diffusive scaling. For 1 < α < 2 we show that after
rescaling space and time the scaling length becomes �(T ) ∼
[(1 − p)/(1 + p)T ]1/α so that the PDF scales according to
a typical Lévy behavior P(R, T ) = �(T )−1Lα[R/�(T )] where
Lα (·) is this is the symmetric stable Lévy density indepen-
dently of p. Finally, for α < 1 the ballistic motion dominates
and P(R, T ) = T −1 fα,p(R/T ) where fα,p(T ) is a nonuniversal
scaling function depending both on α and p.

Let us show that, for α > 1, one can use the single jump
approach to calculate the behavior of the PDF at large R
[i.e., R ∼ T � �(t )]. We introduce the probability at time
Tw ptot (L, Tw )dLdTw of making a jump of length L, with
L0/v 	 Tw < T . For α > 1 the average duration of a step 〈τ 〉
is finite, so that the jump rate at Tw is 1/〈τ 〉 independently
of Tw and we have: ptot (L, Tw ) = (1 − p)λ(L)/〈τ 〉; where the
factor (1 − p) takes into account the reflection probability.
Also in this case we have to consider all the path driving
the walker in R at time T . In this framework, apart the big
jump, all other steps can be neglected. Therefore, the effective
motion can be described as follows: the walker at Tw performs
a jump of length L with probability ptot (L, Tw )dLdTw. At the
end of this jump the walker is reflected with probability p or it
remains stuck in L with probability 1 − p; after the reflection
the walker returns to the origin where again it can be reflected
with probability p or it halts with probability 1 − p, and so
on. That is, the origin of the walker and the point at distance
L act as scattering points where the walker is reflected or
absorbed with probability p or 1 − p, respectively. In analogy
with Lévy walks and Lévy Lorentz gas one can evaluate the
contribution of the different processes to the PDF P(R, T ).
In this case, once Tw and L are fixed, the final position
at T is not fully determined and one have to consider the
probabilities of different paths depending on p. In particular,
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FIG. 9. The same data of Fig. 7 plotted in a log-log scale. Here the approach of the scaled solution to the nonnormalizable R−1−α pole on
the origin is visible.

if L > T − Tw the walker is still covering the big jump at T
and the contribution of this process is

B̃0(r, T ) = 1

T α

(1 − p)Lα
0

v1+α〈τ 〉
1

rα
, (39)

where r = R/vT . The probability to be in motion at the
position R after n reflections is

B̃r
n(r, T ) = pn 1

T α

(1 − p)Lα
0 (n + 1)α

v1+α〈τ 〉 θ (1 − nr)

×
{

1

[(n + 1)r]α
− 1

1 + r

}
, (40)

if n is odd and

B̃r
n(r, T ) = pn 1

T α

(1 − p)Lα
0 nα

v1+α〈τ 〉 θ [1 − (n + 1)r]

×
{

1

(nr)α
− 1

1 − r

}
(41)

if n is even. Eqs. (40) and (41) are analogous to Eqs. (36)
and (37) since both describes reflection of the walker in a
gap of length L integrated over all possible lengths. In this

second case, integrals can be evaluated exactly since the jump
rate is independent of Tw providing a more simple integrand
function. Moreover, here we have the factor pn representing
the probability that n reflections occur during the evolution
and the walker does not halt before time T . Finally, one has
to consider the contributions when the walker remain stuck
in L or in 0 at the n-th scattering event. For n odd (i.e., the
scattering occurs in L) we have

B̃s
n(r, T ) = (1 − p)pn−1 1

T α

(1 − p)Lα
0 α

v1+α〈τ 〉 · θ (1 − nr)
1 − nr

rα+1
.

(42)

Equation (42) is analogous to Eq. (13) for Lévy walks since in
both cases they describes a walker that halts in L = R. Clearly
in Lévy walks reflections are not possible so p = 0 and n = 1.
The factor (1 − p)pn−1 is the probability that the walker is
reflected for the first n − 1 scattering events and absorbed at
the nth event. The θ -function takes into account that if there
are n scattering the distance cannot be larger of vT/n. Finally
if the walker halts at the n-th scattering event with n even, i.e.,
it halts in the origin, the process does not give any contribution
to P(R, T ) since it is not a big jump. This means B̃s

n(r, T ) = 0
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FIG. 10. Scaling at short distances for the PDF in the correlated Lévy walk model. The case α = 1.7 shows that for α > 1 a suitable
rescaling of space and time allows to rescale data relevant to different values of p, while the case α = 0.5 clarifies that for α < 1 the scaling
function is not universal depending both on α and p. Finally, for α > 2 the standard Gaussian behavior is recovered due to central limit
theorem.

for n even. The rescaled PDF P(R, T ) can then be evaluated
by summing Eqs. (39)–(42), i.e.,

P(R, T ) = 1

T α
Iα,p

(
R

vT
, T

)

= B̃0

(
R

vT
, T

)
+

∞∑
n=1

B̃r
n

(
R

vT
, T

)
+ B̃s

n

(
R

vT
, T

)

(43)

Iα,p(r) is an infinite density since it diverges for r → 0 as
r−1−α . We notice that Iα,p(r) is nonanalytic for r = 1

2m+1 with
m = 1, 2, . . . i.e., the same values of the Lévy Lorentz gas.
In Fig. 11 we compare the analytical results with numerical
simulations finding a good agreement. In the case α = 1.7
we show that Iα,p(r) depends explicitly on the parameter p;
therefore it is not an universal scaling function. For α = 1.7
and p = 0.9 we also show the nonanalytic points of Iα,p(r)
which are in general less pronounced than in Lévy Lorentz
gas. Since this points are originated, also in this dynamics,
by the reflections they become more visible when p is closed

to 1, i.e., when these reflections are more probable. As in the
previous cases, at large α, since rare events are always less
probable, simulations become computationally very demand-
ing (see the huge number of realizations).

VI. DISCUSSION AND OPEN PROBLEMS

The single-big-jump principle is a statement about the
origin of rare events in fat-tailed processes: It allows us
to identify the mechanisms that lead to the rare fluctua-
tions. Then, we can use different techniques to calculate the
contribution of the big jump and we showed that several
approaches can be applied. For the Lévy walk, we used a
heuristic argument that matches the results for the calculation
of rare events obtained from the moment generating function
and infinite densities approach. For more complex cases, we
applied a rate approach, that consists in splitting the problem
in short-time and long-time dynamics. We first calculated
the PDF of performing a jump of length much larger than
the characteristic length of the process, by determining the
effective rate reff at which jumps are made. Then we summed
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FIG. 11. Scaling at large distances for the PDF in the correlated
Lévy walk model. Data are obtained considering 5 × 106 realization
of the process for α = 1.2 and α = 1.7; while 2 × 108 realizations
have been considered for α = 2.3.

over all paths that reached that distance. In this way, the
short-distance dynamics is condensed in the rate, while the
role of correlations is resumed in the sum over the different

paths. Within this scheme, the big-jump principle allows for a
direct physical interpretation of the processes reaching large
distances, and at the same time it provides an effective tool
for calculations. Interestingly, for the Lévy Lorentz gas the
short-time dynamics is unknown, however an estimate of the
rate reff is enough to apply the principle and calculate the non
trivial shape of the PDF at large L.

For the cases under study in this work, we observe a
nonuniform description of the PDF: typical and rare events
do not scale with time in the same manner. More precisely,
from central limit theorem the bulk of the PDF of random
walks is described in term of a single characteristic scaling
length which grows with time T as �(T ) ∼ T γ , where γ

smaller, equal or larger than 1/2 stands for sub-, normal, and
super-diffusion, respectively. The study of the far tail requires
a different picture since the spatiotemporal correlations in the
single step give rise to a new scaling length, which determines
the behavior of the single big-jump regime. We have shown
that the competition between these two scaling lengths pro-
duces a dual scaling of the moments, which has been termed
by Vulpiani and coworkers as strong anomalous diffusion
[55]. This means that for q > qc we have 〈|x(T )|q〉 �∼ �(T )q:
large moments are not determined by the bulk distribution
but by its far tail. This in turn implies that the single jump
is needed, at least in some cases, for the investigation of the
mean-square displacement of the spreading process, which
is easily considered the main quantifier of diffusion. Since
strong anomalous diffusion is observed in a wide range of
systems, we believe the principle of large jump has wide
spread applications [56–60].

Further, for the simpler models under investigation, i.e.,
Lévy walks and cold atom system, the single big jump allows
a new insight on nonnormalized covariant densities [28,34].
As mentioned, the far tails of the density, obtained from
the big-jump principle, controls the behavior of moments of
interest. These in turn can be calculated from certain nonnor-
malized densities, so the principle used here explains precisely
the physical origin of these mathematical tools: They stem
from one big jump.

Interestingly, in the physical literature the single-big-jump
principle has also been related to condensation in probability
space: The probability of the sum x = ∑N

i=1 xi condenses
to the probability of a single variable [15,61–63], which is
the maximum value of xi. In condensation problems, the
phenomenon where a large macroscopic portion of particles
occupies a single state is well known. For example, distribu-
tion of masses occupying lattice sites in a system can contain,
in certain conditions, one region where a vast majority of
mass is located, while other regions are sparsely populated.
In practice, the summands we consider do not have to be
displacements, instead they can be masses condensing on a
lattice, so that N would be the system size, or it could be
energy, etc. Therefore, the approach could be extended to
systems interacting with a reservoir of particles and energy,
so that the total mass, energy, etc. can fluctuate, providing
therefore a general background for large fluctuations estimates
in different frameworks.

There are still many open problems, and we briefly discuss
some of them.

(1) For the case of summation of IID random variables the
principle of big jump works for any N . It is therefore natural
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to ask, for the more general case: Does the principle hold
for all times? For intermediate or short times the analytical
predictions presented in this manuscript are not valid, since
we have used the long-time limit. Clearly this does not mean
that the principle is not valid at all times, but rather that
the analytical formulas are not elegant or attainable at short
times. For short times the initial conditions play a special
role, however this holds both for the maximal displacement
and the total displacement. We leave it for future work to
check the principle, and this could be done numerically, for
example, for the Lévy walk, by a calculation of the far tail of
the total displacement and comparing with the statistics of the
biggest jump. Our first simulations presented in Fig. 3 show
that in the tail the two distributions agree for all times we have
considered.

(2) For the Lévy walk, we focused our attention on the
case when α > 1. Hence, the mean time between collision
events or zero crossings for all the models was finite. It is
expected that the big-jump principle holds also for 0 < α < 1,
however the explicit formulas for the far tails of the density
need to be analyzed with different tools than those presented
here. Work in this direction is required to further establish the
generality of the principle.

(3) Biscaling of moments was observed for tracer particles
diffusing in the cell [64]. Can we use the principle in the
context of diffusion of particles in that case? Active transport
mediated by ATP, i.e., the pumping of energy to the system is
responsible for this behavior. From data analysis one can see
many small displacement of the tracer particle, and a few large
jump events. Importantly, when removing the large jumps
from the data set, one can see monoscaling, thus the observed
strong anomalous diffusion is clearly related to large jumps
(we cannot say if a few or a single jump). We believe that
rare events in this system will be described by the big-jump
principle. In principle, this is easy to check, considering the
distribution of the sum of displacement of the particle and
comparing it to the distribution of the maximum of the dis-
placements. In turn, the characterization of the tails of density
of particles diffusing in the cell, is clearly important, since this
helps in the understanding of active transport, and also since
these rare events are important for the exploration of the cell
environment. Imagine a particle diffusing some time in the
cell, looking for a target (a reaction center): If the target is not
found within some time interval, then it might be beneficial
for the particle to relocate and start its search yet again.
However, the efficiency of such search is controlled by the
large jumps, and hence quantification and verification of the
big-jump principle, in the context of diffusion of molecules in
the cell, might turn out to be important.

(4) The principle of biggest jump is related to the cal-
culation of distribution of forces in long ranged interacting
systems, governed by Coloumb or gravitational fields, like
plasma and astrophysics [65,66]. For example, the distribution
of the force acting on a unit mass (or charge) embedded in
a sea of masses (or charges). Considering the former case,
with the masses uniformly distributed in space, the force
acting on a single element is a sum many forces, and for long
range gravitational or Coulomb forces this leads to the well
known Holtsmark distribution for the forces [67–71]. This
problem in different variants appears in many systems [72].

One can argue that the influence of the nearest neighbor is
most important, namely instead of summing over all forces,
we need to consider only the nearest neighbor, and this is
certainly in spirit of the big-jump principle. When the masses
(charges) are uniformly distributed, the problem is related
to summation of IID random variables, and indeed Lévy
central limit theorem is known to describe the statistics of this
problem. It would be interesting to check the fluctuations of
the forces, in the limit of large forces, based on the biggest
jump/force for cases where the masses are arranged more
realistically in space. On an operational level, the big-jump
principle suggests that, for the sake of the large fluctuations
of the forces, we need only partial information on the system,
namely the random distance to nearest neighbor.

(5) Of course an interesting topic is the estimation of the
big-jump statistics from data, for example, when we follow a
trajectory of a single molecule in the cell, or when we sample
the trajectory with a given rate, for finite time, and the number
of trajectories might not be very large. Another important step
is how to extract the big jump from time series of events, and
this could be done by analyzing a correlation plot, analogous
to the one presented in Fig. 4 of Sec. II.B for the Lévy walk.
These sampling effects should be further investigated.

VII. PERSPECTIVES

The big-jump principle applied to physical modeling is an
extremely powerful tool that can be used to estimate proba-
bilities of rare events in a wide range of interesting problems,
in the presence of fat-tailed distributions. The principle was
reformulated, extended, and tested far beyond the case of a
sum of IID random variables. It was extended to correlated
processes, continuous processes, systems with quenched dis-
order and processes with a finite upper speed, all of which
lead to important modifications of the principle of big jump
in its original form. Simply said, the mentioned effects make
the subexponential tail far from trivial, while the case of IID
random variables leads to a simple power law tail, which is
not applicable as we have shown.

Given the fact that extreme events are model specific, we
find it very encouraging that we can at all formulate a general
principle to describe their behavior. Thus, while the shape of
the packet density in its far tails varies from one model to the
other, all of them are described by the statistics of the biggest
jump. At the same time, this is a warning sign to any one
dealing with predictions of rare events. If one events is con-
trolling the statistics of extremes, then we might understand
better the inherent difficulties in predictions, but at the same
time understand how to quantify these extremes better. For
example, consider the accumulated rain fall in say one month
in some region. The accumulated rain fall is important, for
example, if we plan a reservoir which holds the water, or if
the total rain fall per fixed time (say one month) is of critical
importance. There are strong experimental evidences that the
statistics of rain falls could be a test bed for our theory [73].
First, with the principle at hand we can use records, or models
to see if the principle works. For example, comparing the total
rain fall within a month to the maximum of rainfall per day.
Then we may determine if a systems behavior is close or not
to the principle of big jump. At least in principle, policy takers
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could reach educated decisions, as the answer to the following
question could be tackled with wisdom: Do we get prepared
for one big event (one day of massive water fall) or do we
prepare for many accumulated events?

While this demands further work, our theory is already
shedding light on important physical processes, beyond the
IID case [24]. We have recently worked on models of active
particles propagation and contamination spreading in the field
of Hydrology. Here deep traps in the spirit of the trap model
and continuous time random walks are extensively used. In
this case all the spatial jumps are small, and narrowly dis-
tributed, so there is no spatial big jump. However, one can
apply our principle to the concept of time jumps, namely
look for the longest stalling time in these processes. This,
as we will show in a later publication, gives insight on the
mentioned processes, shedding new light on the far tails of
the spreading phenomenon. Thus, while we dealt with models
where the particles are always in motion, and never trapped,
we can extend our work to model trapping events, where the
motion is typically considered slower than normal. These in
turn are widely applicable, in a vast number of systems, hence
we know that the principle of big jump can be a turning point
in the analysis of rare events in many systems.
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APPENDIX A: SINGLE BIG JUMP IN THE LÉVY
LORENTZ GAS

Let us call Bn(R, T ) the contribution to B(R, T ), which is
obtained integrating ptot (L, Tw ) over all the processes that in a

time T arrives in R after n reflections. If L > v(T − Tw ), then
no reflection occurs and R = v(T − Tw ), i.e., L > R, Tw =
T − R/v and dTw = dR/v. Clearly, all the jumps of length
L > R contribute to the process ending in R, so B0(R, T ) is

B0(R, T )dR = reff (T − R/v)dR/v

∫ ∞

R
λ(L)dL

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dR
(

L0
R

)α

vτ
α

1+α
0 (T −R/v)

1
1+α

if 0 < α < 1

dR
(

L0
R

)α

vτ
1
2

0 (T −R/v)
1
2

if 1 � α

. (A1)

Introducing the rescaled adimensional variables r = R/(vT )
(0 < r < 1) and the rescaled function B̃0, we get

B̃0(r, T ) =
⎧⎨
⎩

1

T
1+α+α2

1+α

f0,α (r) if 0 < α < 1

1

T
1
2 +α

f0,α (r) if 1 � α
, (A2)

where f0,α (r) is given by Eq. (35).
If L < v(T − Tw ), then the walker is reflected in L then it

moves in the opposite direction, and if v(T − Tw ) < 2L, then
the second reflection in R = 0 does not occur before T . Let
us call D the distance covered by the walker after the reflec-
tion in L. We have L + D = v(T − Tw ) and R = L − D, so
we get 2L = R + v(T − Tw ). Imposing v(T − Tw )/2 < L <

v(T − Tw ) we get v(T − Tw )/2 < R + (T − Tw )/2 < v(T −
Tw ). The first inequality is trivially satisfied while the second
gives the condition Tw < T − R/v. To get the probability
of reaching R, we can integrate over the processes that for
different Tw arrive at the same position:

B1(R, T )dR = dR

2

∫ T − R
v

0
reff (Tw )λ

[
R + v(T − Tw )

2

]
dTw,

(A3)

where we use the fact that dL = dR/2. We can then evaluate
B1(R, T ) in the rescaled variable r = R/(vT ):

B̃1(r, T ) =

⎧⎪⎨
⎪⎩

1

T
1+α+α2

1+α

2ααLα
0

v1+ατ
α

1+α
0

∫ 1−r
0

dtw

t
1

1+α
w (1+r−tw )1+α

= 1

T
1+α+α2

1+α

f1,α (r) if 0 < α < 1

1

T
1
2 +α

2ααLα
0

v1+ατ
1
2

0

∫ 1−r
0

dtw

t
1
2

w (1+r−tw )1+α

= 1

T
1
2 +α

f1,α (r) if 1 � α
, (A4)

where we introduced the integration variable tw = T/Tw.
If L < v(T − Tw )/2 and v(T − Tw )/3 < L, then the motion displays two reflections and the final position satisfies the

equation: 2L + R = v(T − Tw ), so that v(T − Tw )/3 < (v(T − Tw ) − R)/2 < v(T − Tw )/2. The second inequality is trivial,
while the first gives Tw < T − 3R/v. The inequality cannot be satisfied if R > vT/3; indeed this process does not give
contributions to distances larger than vT/3. Taking into account that dL = dR/2, we calculate the contribution of the process
with two reflections obtained in the rescaled variables:

B̃2(r, T ) =

⎧⎪⎨
⎪⎩

1

T
1+α+α2

1+α

2ααLα
0

v1+ατ
α

1+α
0

θ (1 − 3r)
∫ 1−3r

0
dtw

t
1

1+α
w (1−r−tw )1+α

= 1

T
1+α+α2

1+α

f2,α (r) if 0 < α < 1

1

T
1
2 +α

2ααLα
0

v1+ατ
1
2

0

θ (1 − 3r)
∫ 1−3r

0
dtw

t
1
2

w (1−r−tw )1+α

= 1

T
1
2 +α

f2,α (r) if 1 � α
, (A5)

where the θ function takes into account that this process does
not give contributions for R > vT/3.

The case with a generic number n of reflections occurs if
v(T − Tw )/(n + 1) < L < v(T − Tw )/n. For n even we have
n/2 reflections in R = L and n/2 in R = 0. Then nL + R =

v(T − Tw ), L = (v(T − Tw ) − R)/n, Tw < T − (n + 1)R/v

and R < vT/(n + 1). Taking into account that dL = dR/n
one can evaluate the contribution of this process obtaining for
fn,α (r) the result in Eq. (37). For odd n we have (n + 1)/2
reflections at R = L and (n − 1)/2 reflection in R = 0. Then
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(n + 1)L − R = v(T − Tw ), L = (v(T − Tw ) − R)/(n + 1),
Tw < T − nR/v and dL = dR/(n + 1). In this case we obtain
Eq. (36). We can now sum all the contributions recovering
Eq. (34).

Let us analyze the behavior of Iα (r) at small r. First we
notice that for r ∼ 0 the integrals in Eqs. (36) and (37) display
the following behavior:∫ 1−(n+1)r

0

dtw

t
1

1+α
w (1 − r − tw )1+α

∼
∫ 1−(n+1)r

0

dtw

t
1
2
w (1 − r − tw )1+α

∼ 1

α(nr)α
(A6)

for even n, while for odd n,∫ 1−nr

0

dtw

t
1

1+α
w (1 + r − tw )1+α

∼
∫ 1−nr

0

dtw

t
1
2
w (1 + r − tw )1+α

∼ 1

α[(n + 1)r]α
. (A7)

So that for small r,

fn,α (r) ∼
{

θ[1−(n+1)r]
rα if n is even

θ (1−nr)
rα if n is odd

. (A8)

Letting r → 0 in Eq. (35) we get for f0,α (r) the same
expression of Eq. (A8) (n even). Summing over n we get
Iα (r) ∼ r−αI (r); where I (r) represents the largest odd inte-
ger smaller than r−1. Since for small r, I (r) ∼ r−1, we get
Iα (r) ∼ r−(1+α) and hence

B̃(r, T ) ∼
{

T − 1+α+α2

1+α r−(1+α) if 0 < α < 1
T − 1

2 −αr−(1+α) if 1 � α
, (A9)

which is the same equation obtained in Ref. [27] using a
simple heuristic argument. Our calculation shows that the
r−(1+α) behavior at small r is given by two factors: the infinite
density of a single reflection process diverges at small r as
r−α , but the number of processes (reflections) arriving in r
grows as r−1 for r → 0. This means that the density gets
smoother close to the small r limit, which is totally expected
since it needs to match the smooth bulk statistics.

APPENDIX B: CORRELATED LÉVY WALKS
IN THE SHORT-TIME REGIME

Let us call Q(R, T ) the probability of making a jump at
position R and time T and extracting at T a new length from
λ(L). One can write

Q(R, T ) = δ(R)δ(T ) + (1 − p)

2

∫
[Q(R − L, T − L/v) + Q(R + L, T − L/v)]λ(L)dL

+ (1 − p)p
∫

Q(R, T − 2L/V )λ(L)dL + (1 − p)

2
p2

∫
[Q(R − L, T − 3L/v)

+ Q(R + L, T − 3L/v)]λ(L)dL + (1 − p)p3
∫

Q(R, T − 4L/V )λ(L)dL + · · · (B1)

In the first term of the second member, the δ function takes into account that at time T = 0 the walker is in R = 0 and it makes a
step choosing a new step length. The second term represents processes where a new step length is extracted immediately before
T without any reflection; the third term represents events where the walker makes a reflection before T notice that in this case
the length extraction occurs exactly in R since in two steps the walker returns to the starting point; the fourth term represent
events where the walker makes two reflections and so on.

Now we can sum over all the possible scattering events, obtaining

Q(R, T ) = δ(R)δ(T ) + (1 − p)

2

∞∑
n

p2n
∫

{Q[R − L, T − (2n + 1)L/v] + Q[R + L, T − (2n + 1)L/v]}λ(L)dL

+ (1 − p)
∞∑
n

p2n+1
∫

Q[R, T − 2(n + 1)L/V ]λ(L)dL. (B2)

The probability P(R, T ) can be reconstructed from Q(R, T ), taking into account that a walker can arrive in R only with a step of
length L′ > R − L, where R − L is the position where L′ has been extracted form λ(L′). We have

P(R, T ) =
∞∑
n

p2n
∫

dL[Q(R − L, T − L/v − 2nL′/v) + Q(R + L, T − L/v − 2nL′/v)]
∫ ∞

L
dL′λ(L′)

+
∞∑
n

p2n+1
∫

dL[Q(R − L, T + L/v − 2nL′/v) + Q(R + L, T + L/v − 2nL′/v)]
∫ ∞

L
dL′λ(L′). (B3)

The first sum represents all processes performing an even number 2n of reflections between the extraction of the step length
L′ and time T ; while the second term describes the events where an odd number 2n + 1 of reflections occurs. T − L/v − 2nL′/v
and T + L/v − 2nL′/v are the starting times for getting in R at time T after 2n or 2n + 1 reflections, respectively.
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Let us consider Q̃(k, ω), i.e., the Fourier transform with
respect R and T of Q(R, T ). From Eq. (B2) we get

Q̃(k, ω) = 1 + Q̃(k, ω)
(1 − p)

2

∞∑
n

p2n{λ̃(ω(2n + 1)/v + k)

+ λ̃[ω(2n + 1)/v − k]}

+ Q̃(k, ω)(1 − p)
∞∑
n

p2n+1λ̃[ω(2n + 2)/v],

(B4)

where λ̃(·) is the Fourier transform of λ(·). Now we can
expand λ̃(·) for small ω and k; keeping only the leading terms
in Eq. (B4) for α > 2 we have

Q̃(k, ω) = 1 + Q̃(k, ω)(1 − p)

×
∞∑
n

p2n[1 + (2n + 1)iω〈L〉/v − k2〈L2〉/2]

+ Q̃(k, ω)(1 − p)
∞∑
n

p2n+1[1 + (2n + 2)iω〈L〉/v].

(B5)

Summing over n we have

Q̃(k, ω) = 1 + Q̃(k, ω)

[
1 + iω〈L〉

(1 − p)v
− k2〈L2〉

2(1 + p)

]
, (B6)

i.e.,

Q̃(k, ω) = 1
k2〈L2〉
2(1+p) − iω〈L〉

(1−p)v

. (B7)

For 1 < α < 2 we get

Q̃(k, ω) = 1 + Q̃(k, ω)(1 − p)

×
∞∑
n

p2n
[
1 + (2n + 1)iω〈L〉/v − |k|αCαLα

0

]

+ Q̃(k, ω)(1 − p)
∞∑
n

p2n+1[1 + (2n + 2)iω〈L〉/v],

(B8)

where Cα is a number depending only on α and L0 is the cut-
off in Eq. (2). Then summing we have

Q̃(k, ω) = 1
kαLα

0 Cα

(1+p) − iω〈L〉
(1−p)v

. (B9)

Fourier transforming Eq. (B3) after some algebra one obtain
that for α > 1 we have P̃(k, ω) = Q̃(k, ω)〈L〉/[v(1 − p)], so
that for α > 2,

P̃(k, ω) =
〈L〉

(1−p)v

k2〈L2〉
2(1+p) − iω〈L〉

(1−p)v

, (B10)

and for 1 < α < 2,

P̃(k, ω) =
〈L〉

(1−p)v
kαLα

0 Cα

(1+p) − iω〈L〉
(1−p)v

. (B11)

From Eqs. (B10) and (B11) we immediately have that intro-
ducing the new variables ω′ = ω/(1 − p), k′ = k/(1 + p)1/2

for α > 2 and ω′ = ω/(1 − p), k′ = k/(1 + p)1/α for 1 <

α < 2 we obtain the standard PDF functions for a Lévy walks.
In particular, we get a Gaussian scaling function for α > 2
and a Lévy-like scaling function depending only on α for
1 < α < 2. In this framework, we can introduce the scal-
ing length �(T ) ∼ [(1 − p)/(1 + p)T ]1/2 and �(T ) ∼ [(1 −
p)/(1 + p)T ]1/α for α > 2 and 1 < α < 2, respectively; in
this way, we obtain a perfect rescaling of the PDF for different
values of the parameter p as shown in Fig. 10(c).

Let us finally consider the case α < 1; if we expand
Q̃(k, ω) at small k and ω, then we get

Q̃(k, ω) = 1 + Q̃(k, ω)(1 − p)

×
∞∑
n

p2n{1 + [|(2n + 1)ω/v − k|α

+ |(2n + 1)ω/v + k|α]CαLα
0

} + Q̃(k, ω)(1 − p)

×
∞∑
n

p2n+1
[
1 + |(2n + 1)ω/v|αCαLα

0

]
, (B12)

where Cα are suitable complex coefficients. Since ω and k
always appears in a linear combination linear ballistic relation
between space and time is expected in this case. However,
a simple summation of the different terms corresponding
to different n is not possible and a scaling function which
depends nontrivially on p is clearly expected from Eq. (B12).
Moreover, in this case also the relation between P̃(k, ω) and
Q̃(k, ω) is not a simple proportionality.
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