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Finite-power performance of quantum heat engines in linear response
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We investigate the finite-power performance of quantum heat engines working in the linear response regime
where the temperature gradient is small. The engine cycles with working substances of ideal harmonic systems
consist of two heat transfer and two adiabatic processes, such as the Carnot cycle, Otto cycle, and Brayton
cycle. By analyzing the optimal protocol under maximum power we derive the explicitly analytic expression
for the irreversible entropy production, which becomes the low dissipation form in the long duration limit.
Assuming the engine to be endoreversible, we derive the universal expression for the efficiency at maximum
power, which agrees well with that obtained from the phenomenological heat transfer laws holding in the
classical thermodynamics. Through appropriate identification of the thermodynamic fluxes and forces that a
linear relation connects, we find that the quantum engines under consideration are tightly coupled, and the
universality of efficiency at maximum power is confirmed at the linear order in the temperature gradient.
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I. INTRODUCTION

For heat engines working between two heat reservoirs
of constant inverse temperatures βr

h and βr
c > (βr

h ) with
(kB ≡ 1) βr = 1/T r , their efficiency is bounded above by the
Carnot value ηC = 1 − βr

h/β
r
c which, however, is achieved in

an infinite long time and is of limited practical significance.
It is therefore of great necessity to determine the efficiency of
engine cycles consisting of finite time state transformations.
Under the endoreversible condition, where the irreversibility
arises only from the imperfect heat conduction between the
system and heat reservoir, Curzon and Ahlborn [1] found that
the efficiency of a nonideal Carnot cycle at maximal power is
given by

η∗ = ηCA ≡ 1 −
√

βr
h

βr
c

= 1 −
√

1 − ηC, (1)

which we call the CA efficiency. The tradeoff between the
power and efficiency was subsequently investigated in vari-
ous engine models working with a system that ranges from
nanoscale to macroscale, within different physical frame-
works such as endoreversible thermodynamics [2–9], finite
time (quantum and classical) thermodynamics [10–15], and
irreversible thermodynamics [4,13,16–23]. In the linear re-
sponse regime where the temperature gradient is small, it has
been shown that a universal efficiency

η∗ = ηC/2 + η2
C/8 + O

(
η3

C

)
, (2)

exactly the same as one derived by expanding CA efficiency
(1) up to the second order, holds for many engines under
maximum power under certain conditions. The universal be-
havior of the optimal efficiency has been found in various

*ylma@fudan.edu.cn
†wangjianhui@ncu.edu.cn

classical and quantum heat engines, such as heat engines
obeying phenomenological transfer laws [3,4,6], classical par-
ticle transport [24], particle transport via Kramers escape
[25], quantum optomechanical engines [26], two-level and
multilevel quantum engines [7,13,27–35], and quantum-dot
engines [36,37].

While the efficiency of physically different systems ex-
hibits a certain universal behavior in certain limits, it varies
quite a lot between the lower and upper bounds if these limits
are removed. Chen and Yan [3] showed that, for heat engines
obeying linear phenomenological heat transfer law, the effi-
ciency at maximum power for the endoreversible engines has
the form of

η∗ = ηC

2 − γplηC
, (3)

where γpl ≡ (1 +
√
C pl

c /C pl
h )−1, with the heat transfer coeffi-

cient C pl
h,c along the hot or cold “isothermal” contact. Alter-

natively, the low dissipation assumption [38] in which phe-
nomenological heat transfer laws are avoided was introduced
to analyze the finite time performance of heat engines. Under
the low dissipation condition, the entropy production caused
by the dissipation can be assumed to be �α/τα , where �α is
the dissipation constant for the hot (α = h) or cold (α = c)
“isothermal” process. In what follows, the word “isothermal”
merely indicates that the system is in contact with a heat reser-
voir of constant temperature. The change in system entropy
along the isothermal contact is then given by [38–40]

�Sα = βr
αQα − �α

τα

, (4)

with α = h, c. Optimizing the power output, P =
(Qh + Qc)/(τh + τc), with respect to the time allocation
τc and τh, leads to the expression of efficiency at maximum
power (3) by replacing γpl with γld ≡ (1 + βr

h�c/β
r
c�h)−1.
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In the symmetric case when Cpl
h = Cpl

c or �c = �c, the
efficiency at maximum power (3) can be approximated by
the universal form as given in Eq. (2). The lower and upper
bounds of the efficiency at maximum power are achieved,

η∗
− = ηC

2
, η∗

+ = ηC

2 − ηC
, (5)

in the two extremely asymmetric cases, �h/�c → 0
(Ch/Cc → 0) in which the hot isotherm approaches the re-
versible limit and �h/�c → ∞ (Ch/Cc → ∞) where the cold
contact tends to be reversible, respectively. Remarkably, the
universal bounds for the optimal efficiency are also found
from different engine models under maximum power, for
example, a trapped Brownian particle undergoing an Otto
cycle [41] or electron transport in a quantum dot [37].

By exploring the finite-power performance, attempts were
made to discuss the physical origin [37] of the low dissipation
model and to investigate the relationship between the low
dissipation and endoreversible models [4–6,8]. Among them,
the role of the contact times of the working system with
the external heat baths and their symmetries or asymmetries
for both heat engines and refrigerators [5,8] were investi-
gated, showing that the equivalence between these two models
goes beyond the maximum power regime and also holds in
compromise-based figures of merit. The minimally nonlinear
irreversible heat engines (refrigerators), in which internal
dissipations along the isothermal processes are involved, have
been mapped into low dissipation models via appropriate
identification of thermodynamic fluxes and forces [23].

These studies are important since they contribute towards
constituting a bridge between finite time and irreversible ther-
modynamics [4,7,13]. In these studies, however, specific heat
transfer laws were used for classical endoreversible models
and a two-level system (obeying Fermi-Dirac statistics) was
used for a low dissipation limit. Here, rather than applying
a specific model and a given heat transfer law, we consider
cyclic heat engines working with harmonic systems and
consisting of two adiabatic processes and two heat transfer
processes. For these engines, we obtain the expressions for
the power output and efficiency in which the time duration is
involved via analyzing the dynamics of the engines, with no
use of any specific heat transfer laws. Optimization on these
engines will be done via three different approaches, namely,
the Euler-Lagrange equation, endoreversible assumption, and
Onsager linear relation within linear irreversible thermody-
namics. We recover many of the well-known expressions of
efficiency at maximum power for these engine models, with
emphasis on the (dis)similarities of physical origin between
the approaches.

In this paper, the expressions of the power and efficiency
are derived on the basis of the quantum master equation that
describes the time evolution of the systems. When optimized
with respect to power output by the scheme based on the
Euler-Lagrange equation, these engines can be referred to as a
specific example in the low dissipation engine model. We then
apply endoreversible thermodynamics to these engines within
the linear response regime. We find that the efficiency at
maximum power derived from the Euler-Lagrange method is
recovered for these endoreversible engines and thus coincides
with the result (3) obtained for the classical engines. The

Onsager coefficients are calculated via appropriate identifica-
tion of thermodynamic fluxes and forces, and the universal
behavior of the efficiency at maximum power is verified for
these engines that are proved to be tightly coupled.

The paper is organized as follows. In Sec. II we optimize
with respect to power to determine the corresponding effi-
ciency in the three different approaches: (1) optimization by
means of the Euler-Lagrange equation, (2) the endoreversible
thermodynamic approach, and (3) the linear irreversible ther-
modynamic method. Discussions and conclusions are then
made in Sec. III.

II. OPTIMIZATION ON CYCLIC QUANTUM
HEAT ENGINES

A. Dynamical description of an isothermal process

The cyclic quantum heat engines under consideration,
which work between a hot and a cod heat bath and consist
of two isothermal and two isentropic adiabatic processes, may
be the Carnot cycle, the Brayton cycle, the Otto cycle [42],
etc. For these engines, a harmonic system obeying the Bose
quantum statistics is employed as the working substance. By
assuming the ground state energy to be zero for simplicity of
notation, the harmonic system Hamiltonian is described by
Ĥ = ω(t )N̂ = ω(t )â†â, where N̂ is the number operator and
â† (â) is the bosonic creation (annihilation) operator. All of
these consist of the following four consecutive steps.

(1) Along the hot isothermal branch, the system is coupled
to the hot reservoir at constant temperature βr

h in a time period
τh which starts at t = t0

h and ends at t = t f
h , and the control

variable ω(t ) changes from ω0
h to ω

f
h .

(2) The adiabatic expansion is realized by decoupling the
system from the hot and cold reservoirs in a time period τhc.
In this step, the working system expands to produce work via
changing the control variable ω(t ) from ω

f
h to ω0

c .
(3) Along the cold isothermal process, the system is cou-

pled to the cold reservoir of constant temperature βr
c in time

duration τc, and the control variable ω(t ) varies from ω0
c

to ω
f
c .

(4) For the adiabatic compression with time duration τch,
the system is compressed consuming work while isolated
from the hot and cold reservoirs.

On this branch, the control variable is explicitly time
dependent since it changes back to its initial value ω0

h

from ω
f
c to close a cycle. Since the entropy of sys-

tem reads S = Trρ̂ ln ρ̂, where the density operator is ρ̂ =
exp(−βĤ )/Tr[exp −(βĤ )], with β being the inverse tem-
perature of the system, it is a function of the parameter βω

only. Therefore, the constancy of entropy S indicates that the
population n = Tr(ρ̂N̂ ) = [exp(βω) − 1]−1 is kept constant
in these isentropic adiabatic processes. In what follows, the
adiabatic expansion and compression of these engines satisfy
the sudden limit, in which the time spent on the two adiabatic
processes τch and τhc can be negligible compared to the time
taken for the isothermal processes, namely, τch + τhc → 0.
That is, the total cycle time is given by τcyc ≡ τc + τh.

Using a dot to denote the differentiation with respect to
time t , the time evolution for an operator X̂ for the system can
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be described by the quantum master equation [7,13,29–31]:

˙̂X = i[Ĥ, X̂ ] + ∂X̂/∂t + LD(X̂ ), (6)

where LD(X̂ ) = ∑
i ki(V̂

†
i [X̂ , V̂i] + [V̂ †

i , X̂ ]V̂i) is Liouville
dissipation along the thermalization process. Here V̂ †

i and V̂i

are operators in the Hilbert space of the system and Hermitian
conjugates, and ki are positive coefficients. The quantum
version of the first law of thermodynamics dE = δW + δQ is
obtained by substituting X̂ = Ĥ into Eq. (6), Ė = Ẇ + Q̇ =
〈∂H/∂t〉 + 〈LD(Ĥ )〉, with Ẇ = 〈∂H/∂t〉 and Q̇ = 〈LD(Ĥ )〉.
We emphasize that such dissipative term LD, unlike the in-
ternal dissipation [13] denoting the degree of nonequilibrium
and irreversibility, indicates the heat dissipated into (from) the
system due to the thermal interaction with a heat reservoir.
Note that along the adiabatic process, in which the working
system is decoupled from the hot and cold reservoirs, the
Liouville dissipative form LD(X̂ ) in Eq. (6) must be vanishing.

For an isochoric process, substituting V̂ †
i = â† (V̂i = â) and

X̂ = â†â into the master equation (6), the time evolution of
the instantaneous mean population n(t ) = 〈N̂ (t )〉 at any time
t can be obtained:

ṅ(t ) = −C[n(t ) − n0(t )], (7)

where C = k− − k+ denotes the relaxation rate of reaching
thermal equilibrium for the harmonic system and n0(t ) ≡
k+/(k− − k+) = 1/[eβr

αω(t ) − 1] is the mean population for
the system at local thermal equilibrium with the heat bath.
Here the detailed balance k+/k− = e−βr

αω(t ) is assumed to be
valid at time t , such that, if the control variable ω is frozen,
i.e., ω(t ) = ω = const, the (global) thermal equilibrium state
with neq

α = (eβr
αω − 1)−1 is reached in the quasistatic limit

[7]. Considering the boundary condition neq = n(t → ∞), we
solve Eq. (7) to obtain the mean population of the working
system at time t :

n(t ) = neq
α + [

n
(
t0
α

) − neq
α

]
e−Cαt , (8)

where α = h, c is used for the hot and cold isothermal pro-
cesses, respectively. The population n remains constant during
the adiabatic process, which implies that

n
(
t0
h

) = n
(
t f
c

)
, n

(
t f
h

) = n
(
t0
c

)
. (9)

Substituting the relation (9) into Eq. (8), we find that the
difference of the initial and final populations along the hot or
cold heat exchange takes the form

n
(
t f
α

) − n
(
t0
α

) = ∓(
neq

h − neq
c

)
F (τc, τh), (10)

where F (τc, τh) ≡ (1−e−Chτh )(1−e−Ccτc )
(1−e−Chτh−Ccτc )

and 0 � F � 1. Here the
plus sign (+) should be applied to the hot isothermal contact,
in which the particles are excited to higher energy levels
and the mean population is raised to approach its asymptotic
(thermal equilibrium) value, and the minus sign (−) is used
for the cold isothermal process.

B. Optimizing protocol method

The heat absorbed by the system along such a process of
duration of τα is obtained as

Qα =
∫ t f

α

t0
α

ω(t )ṅ(t )dt . (11)

Since for each cycle 〈H (0)〉 = 〈H (τcyc)〉 and W = −Q, the
power output can be determined according to P = −W/τcyc =
Q/τcyc. To proceed with an analytical analysis, in the first step
we optimize the power output by fixing the variables τc and τh.
In this case, since maximizing the power output is equivalent
to maximizing heat or minimizing work, we determine the
optimal protocol that maximizes heat via the strategy based
on the Euler-Lagrange equation [30,37]. We search for the
optimal schedule n(t ) and ṅ(t ), both of which are variables of
the control variable ω(t ). Form Eqs. (7) and (11), we can find

βr
αQα =

∫ t f
α

t0
α

L(n, ṅ)dt, (12)

where

L = ṅ ln

(
ṅ + Cα + Cαn

ṅ + Cαn

)
. (13)

Integrating the Euler-Lagrange equation gives L −
ṅ∂L/∂ ṅ = Kα , where Kα is the constant of integration, we
obtain

Cα ṅ2

(ṅ + Cαn)(Cα + ṅ + Cαn)
= Kα. (14)

The solution of the quadratic equation for ṅ(t ) is obtained as

ṅ

Cα

= Kα (1 + 2n) ∓ √
Kα

√
Kα + 4Cαn(1 + n)

2(Cα − Kα )
, (15)

where the plus sign (+) refers to the upward process with
raising quantum level, and the plus sign (−) refers to the
downward process [37]. Equation (15), together with Eq. (7),
gives rise to the explicit expression for instantaneous mean
population:

n(t ) = n0(t )

[
1 +

√
Kα

Cα

(
1 + 1

n0(t )

)]
, (16)

where n0(t ) is defined in Eq. (7). When Kα = 0, the system
achieves the thermal equilibrium state and n(t ) tends to be
neq = n(t → ∞), thereby implying that Kα = 0 represents
the quasistatic limit. If Kα 
= 0, the system evolves in finite
time and it is not able to reach the (global) thermal equilibrium
state. This means that the mean population cannot reach
the thermal equilibrium value, namely, n < neq (n > neq) for
the hot (cold) isothermal process. Therefore, the constant
Kα indicates how far the process that the system undergoes
deviates from the quasistatic limit.

We can solve Eq. (15) via separation of the variables n and
t , leading to

Cαt = G[n(t );Kα] − G
[
n
(
t0
α

)
;Kα

]
, (17)
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where

G[n;Kα] ≡ − ln(n + 1) +
√

Cα

Kα

ln {Cα + 2Cαn +
√
Cα[Kα + 4Cαn(1 + n)]}

+ 1

2
ln

−2Cα (1 + n) + Kα + √
Kα[Kα + 4Cαn(1 + n)]

Kα + 2Cαn + √
Kα[Kα + 4Cαn(1 + n)]

. (18)

Equation (18) is so complicated that its exact solution can
be found by numerical method only. Fortunately, since our
analysis is restricted to the weak dissipation case, in which the
duration of the process is very long (though it is not infinite),
we can adopt a perturbative solution via assumption that Kα

is small. For very small Kα , we expand G[n;Kα] with respect
to

√
Kα via keeping the first order:

G[n;Kα] =
√

Cα

Kα

ln [Cα (1 + 2n + 2
√

n + n2)]. (19)

For the process of duration τα , we find from Eq. (17) that there
is a constraint, Cατα = G[n(t f

α );Kα] − G[n(t0
α );Kα], which

simplifies to

√
Cατα = 1√

Kα

ln

⎡⎣1 + 2n
(
t f
α

) + 2
√

n
(
t f
α

) + n2
(
t f
α

)
1 + 2n

(
t0
α

) + 2
√

n
(
t0
α

) + n2
(
t0
α

)
⎤⎦,

(20)

in the low dissipation limit where the duration τα is very long.
For given heat transfer process, we use this condition
(20) to determine the integration constant Kα . In the
linear response regime, where the difference between the
temperatures of two heat baths is small, the difference
of the equilibrium populations, �neq = neq

h − neq
c , must

be small. With consideration of Eq. (10), we can obtain
the quadratic approximation to the right-hand side of

Eq. (20) about neq
c via making Taylor series expansion,

leading to
√
KαCατα = �neq/[neq

α (1 + neq
α )]1/2F (τc, τh) +

(�neq)2(1+2neq
α )/[8neq

α (1+neq
α )]3/2F2(τh, τc)+ O[(�neq)3].

Since the exponential function F (τc, τh) decreases (with
increasing τc,h) much more fast than the linear functions
toward their maximum value 1, the long (contact) time limit
finally leads to

ln

⎡⎣1 + 2n
(
t f
α

) + 2
√

n
(
t f
α

) + n2
(
t f
α

)
1 + 2n

(
t0
α

) + 2
√

n
(
t0
α

) + n2
(
t0
α

)
⎤⎦ = , (21)

which implies the approximation to Eq. (20):√
Cατα = √

Kα

. (22)

Here we have defined  ≡ �neq/[neq
α (1 + neq

α )]1/2 +
(�neq)2(1 + 2neq

α )/[8neq
α (1 + neq

α )]3/2.
The entropy flow due to heat exchange, βr

αQα =∫ t f
α

t0
α

βr
αω(t )ṅdt , can be expressed as βr

αQα = ∫ n(t f
α )

n(t0
α ) βr

αω(t )dn.
According to Eq. (16), by use of βr

αω = ln[(Kα + 2Cαn +
2Cαn2 +

√
Kα

2 + 4nCαKα + 4n2CαKα )/(2Cαn2)], we can
derive the expression of entropy flow as

βr
αQα = S̃

[
n
(
t f
α

)
;Kα

] − S̃
[
n
(
t0
α

)
;Kα

]
, (23)

where

S̃[n;Kα] =
√
Kα

Cα

ln[Cα (1 + 2n) +
√
KαCα + 4Cα

2n(1 + n)] + ln
[
2Cα (1 + n) − Kα −

√
K2

α + 4CαKαn(1 + n)
]

+ n ln

[
Kα + 2Cαn(1 + n) +

√
K2 + 4CαKn(1 + n)

2Cαn2

]
. (24)

It follows, making the first-order Taylor expansion of
S̃[n;Kα] with respect to

√
Kα , that the entropy flow for the

low dissipation process of time duration τα becomes

�S̃α = �Sα − �Sirr
α , (25)

where

�Sirr
α =

√
Kα

Cα

ln

⎡⎣1 + 2n
(
t f
α

) + 2
√

n
(
t f
α

) + n2
(
t f
α

)
1 + 2n

(
t0
α

) + 2
√

n
(
t0
α

) + n2
(
t0
α

)
⎤⎦ (26)

denotes the irreversible entropy production, and �Sα =
S(t f

α ) − S(t0
α ) is the entropy change, with S = n0 ln(1 +

1/n0) + (1 + n0) [43] being the system entropy. In the given

process, �Sα (α = c, h) is a preassigned state variable and
�Sirr

α is a protocol-dependent quantity. For our engine model,
the two isothermal processes linking two adiabatic isentropic
processes, there exists the relation �S ≡ �Sh = −�Sc. It
follows, inserting Eq. (21) into Eq. (26) and using Eq. (22),
that the entropy flow due to heat exchange along an isothermal
process takes the low dissipation form [38]:

�S̃α = �S − 2

Cατα

, (27)

where  was defined in Eq. (22). Equation (27) confirms
the low dissipation assumption that the irreversible entropy
production in an isothermal process is inversely proportional

012105-4



FINITE-POWER PERFORMANCE OF QUANTUM HEAT … PHYSICAL REVIEW E 100, 012105 (2019)

to the time duration. Accordingly, the heat transfers along
the hot and cold isothermal contact of the engine cycle are
given by

Qh = �S

βr
h

− 2

Chβ
r
hτh

, Qc = −�S

βr
c

− 2

Ccβr
cτc

. (28)

Following Refs. [37,38], the optimal efficiency for the engines
under maximum power can be expressed by a form similar to
Eq. (3):

η∗ = ηc

2 − γelηC
, (29)

where γel ≡ (1 + √
Chβ

r
h/Ccβr

c )−1. The efficiency at maxi-
mum power is thus bounded by Eq. (5) and reaches the
upper bound ηC/(2 − ηC ) when Ch/Cc → 0 and lower bound
ηC/2 when Ch/Cc → ∞, and it is exactly the same as CA
efficiency ηCA (1) for Ch = Cc. Note also that the quadratic
approximation to η∗ about ηC is obtained via Taylor series
expansion:

η∗ = ηC

2
+ η2

C

4
(
1 + √

βr
hCh/βr

cCc
) + O

(
η3

C

)
, (30)

which reduces to formula (2) when βr
hCh = βr

cCc. In the
quasistatic limit (τα → ∞), the irreversible entropy produc-
tion is vanishing [�Sirr

α = 2/(Cατα ) = 0]. In this case, the
fact that the entropy change after a cycle is zero, namely,
�S = �S̃cyc = βhQh + βcQc=0, reproduces the Carnot effi-
ciency η = ηC = 1 − βh/βc. We emphasize that, in deriving
the weak dissipation form (27), the condition that the quan-
tum heat engine is required to work in the linear responses
was used, as done in low dissipation quantum-dot Carnot
engines [37].

C. Endoreversible description

Since the irreversibility of the quantum heat engines under
consideration is exclusively coming from the thermal interac-
tion between the system and the heat reservoir, one can apply
an endoreversible thermodynamics approach to investigating
the performance of these engines. In view of the fact that our
analysis is restricted to the linear irreversible region, we ap-
proximate the instantaneous mean population n[βα (t ), ωα (t )]
given in Eq. (8) around the (global) thermal equilibrium point
βα (t ) = βr

α and ωα (t ) = ω
f
α ≡ ω(t f

α ), keeping only the first
nonzero term:

n(t ) = neq + 1

Cα

nβα

eq

[
βα (t ) − βr

α

] + 1

Cα

nωα

eq

[
ωα (t ) − ω f

α

]
,

(31)

where we have introduced nβα
eq ≡ Cα

∂n
∂βα

|
βα (t )=βr

α,ωα (t )=ω
f
α

and

nωα
eq ≡ Cα

∂n
∂ωα

|
βα (t )=βr

α,ωα (t )=ω
f
α
. Inserting Eq. (31) into Eq. (7)

leads to

ṅ(t ) = nβα

eq

[
βr

α − βα (t )
] + nωα

eq

[
ω f

α − ωα (t )
]
. (32)

Without loss of generality, βα (t ) and ωα (t ) can be written as

βα (t ) = βα

(
t0
α

) + γ (t )
[
βr

α − βα

(
t0
α

)]
, (33)

ωα (t ) = ωα

(
t0
α

) + g(t )
[
ω f

α − ωα

(
t0
α

)]
, (34)

where γ (t ) and g(t ) are the functions of time t only and
they must be restricted to the boundary conditions γ (t0

α ) =
g(t0

α ) = 0 and g(t f
α ) = γ (t f

α → ∞) = 1. Returning to the heat
exchange along the isothermal contact, we find by combina-
tion of Eqs. (11), (33), and (34)

Qα =
∫ t f

α

t0
α

[
ω f

α + g̃(t )
(
ω0

α − ω f
α

)][
nβα

eq γ̃ (t )
(
β0

α − βr
α

)
+ nωα

eq g̃(t )
(
ω0

α − ω f
α

)]
dt, (35)

where γ̃ (t ) ≡ 1 − γ (t ), g̃(t ) ≡ 1 − g(t ), ω0
α ≡ ω(t0

α ), and
β0

α ≡ β(t0
α ). In the linear response regime where �β/β0

α ≡
(β0

α − β
f
α )/β0

α � 1 and thus �ω/ω0
α ≡ (ω0

α − ω
f
α )/ω0

α � 1
[7], Eq. (35) can be approximated by

Qα = ω f
αnβα

eq ψα

(
β0

α − β f
α

)
τα + ω f

αnωα
eq Gα

(
ω0

α − ω f
α

)
τα

+ O(�2), (36)

where �2 = (�ω)2 + (�β )2 + �β�ω, Gατα = ∫ t f
α

t0
α

g̃(t )dt ,

and �ατα = ∫ t f
α

t0
α

γ̃ (t )dt . For these endoreversible engines,
here γ̃ (t ) and g̃(t ) are assumed to be constant during an
isothermal process, since in the linear response regime the
differences of both temperature and frequency are very small.
The relation ∂n(t )

∂βα (t )βα (t ) = ∂n(t )
∂ωα (t )ωα (t ) for any instant along

the isothermal contact leads to

ω f
α = nβα

eq

nωα
eq

βr
α, ω0

α = nβα
eq

nωα
eq

β0
α. (37)

Combining Eqs. (37) and (36), the heat exchange between the
system and heat bath can finally be written as

Qh = C̃h
(
β0

h − βr
h

)
τh, Qc = C̃c

(
βr

c − β0
c

)
τc, (38)

where C̃h ≡ 〈H〉βh
eq (�h + Gh) and C̃c ≡ 〈H〉βc

eq(�c + Gc) with
〈H〉βh

eq = ω
f
h nβh

eq , 〈H〉βc
eq = ω

f
c nβc

eq.
We assume the heat engine to be weak endoreversible [9],

which indicates that
∮

Q̇(t )β(t ) = 0 [3], which reduces to the
conventional endoreversible assumption [1] for fixed system
temperature β(t ) = β. Physically, this weak endoreversible
model, in which the irreversibility arises due to imperfect ther-
mal interaction between the system and the heat reservoirs,
can be understood from the context that the working substance
relaxes (to the internal equilibrium) much more quickly than
the heat exchange along the isothermal heat exchange. It
follows, using

∮
Q̇(t )β(t ) = 0, that the conventional endore-

versible condition

β0
h 〈Qh〉 + β0

c 〈Qc〉 + O(�2) = 0 (39)

holds in the linear response regime. Equation (39) shows that
the engine efficiency, η = (Qh + Qc)/Qh, is given by

η = 1 − β0
h

β0
c

. (40)

With consideration of Eqs. (38), (39), and (40), the power
output, P = (Qh + Qc)/τcyc, can be expressed in terms of η

and β0
h :

P = C̃cC̃hη
(
β0

h − βr
h

)[
(1 − η)βr

c − β0
h

]
C̃c

[
(1 − η)βr

c − β0
h

] + C̃h
(
β0

h − βr
h

)
(1 − η)2

. (41)
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Setting ∂P/∂β0
h = 0 and ∂P/∂η = 0, we find that the effi-

ciency at maximum power η∗ satisfies the expression similar
to Eq. (3) or (29), which reads

η∗ = ηC

2 − γ̃qnηC
, (42)

where we have used γ̃qn = 1/(1 +
√
C̃c/C̃h). The efficiency at

maximum power only depends on the ratio C̃c/C̃h. In the lim-
its C̃c/C̃h → 0 and C̃c/C̃h → ∞, the efficiency at maximum
power approaches the upper bound η∗

+ = ηC/(2 − ηC ) and
lower bound η∗

− = ηC/2 [as given in Eq. (5)], respectively.
The efficiency at maximum power is expanded with respect to
ηC up to the second order, leading to

η∗ = ηC

2
+ η2

C

4(1 +
√
C̃c/C̃h)

+ O
(
η3

C

)
. (43)

In the symmetric limit when C̃h = C̃c, we recover Eq. (2) for a
quantum cyclic engine, namely, η∗ = ηC/2 + η2

C/8 + O(η3
C ),

which thus shares the same universality with the CA efficiency
ηCA for the linear response regime where the temperature
gradient is small.

D. Irreversible thermodynamic analysis

The entropy production rate of the system σ̇ can be ex-
pressed as the sum of the entropy increase rates for the hot and
cold reservoir, σ̇ = −(Q̇hβ

r
h + Q̇cβ

r
c ), where Q̇h,c = Qh,c/τcyc

denotes the average heat current along the hot or cold process.
In the linear response regime where the temperature difference
of the two heat reservoirs is small, we apply the approximation
of β0

c � βr
c to writing the entropy production rate σ̇ as

σ̇ = (�h + Gh)Rβr
c 〈H〉βh

eq (�β − �βr )
�β

βr
c

+ (�h + Gh)R〈H〉βh
eq (�β − �βr )(−�βr ), (44)

where �β = β0
h − β0

c , �βr = βr
h − βr

c , and R = τh/τcyc. If

Jq = βr
c R〈H〉βh

eq (�h + Gh)(�β − �βr ) (45)

and

Js = R〈H〉βh
eq (�h + Gh)(�β − �βr ) (46)

are identified as the heat and entropy fluxes, respectively, their
conjugate affinities are then given by

Xq = �β/βr
c , Xs = −�βr . (47)

We therefore have σ̇ = JqXq + JsXs by using Eq. (44). Liner
relations between fluxes Jq,s and affinities Xq,s,

Jq = LqqXq + LqsXs, Js = LsqXq + LssXs, (48)

hold in the linear response regime. Here the Onsager coef-
ficients Lμ,ν with μ, ν = q, s should satisfy the conditions
Lqs = Lsq, Lqq, Lss � 0, and LqqLss � LsqLqs, such that the
second law of thermodynamics is valid, namely, σ̇ � 0.

Comparing Eqs. (45) and (46) to Eq. (48), and using
Eq. (47), we obtain the Onsager coefficients Lμν (μ, ν = q, s)

as

Lqq = R
〈
Hβh

eq

〉
(�h + Gh)

(
βr

c

)2
, Lqs = R

〈
Hβh

eq

〉
(�h + Gh)βr

c ,

(49)

Lsq = R
〈
Hβh

eq

〉
(�h + Gh)βr

c , Lss = R
〈
Hβh

eq

〉
(�h + Gh), (50)

which fulfill the Onsager reciprocity Lqs = Lsq and con-
firm that σ̇ � 0. Since the coupling strength fulfills q̃ ≡
Lqs/

√
LssLqq = 1 [16], the models under consideration are

proved to be tightly coupled. The power output, P = Q̇hη =
Jqη, can be expressed in terms of the Onsager coeffi-
cients: P = Jq

�β

β̄r = (LqqXq + LqsXs)Xq. Using the condition
∂P/∂Xe = 0, we obtain the corresponding efficiency η∗:

η∗ = −�βr

2β̄r
= ηC

2
+ O

(
η2

C

)
. (51)

It shows that the efficiency at maximum power, when accurate
to the first order of ηC , attains the upper bound ηCA, namely,
η∗ = ηCA + O(η2

C ), thereby supporting an argument in favor
of our approach.

III. DISCUSSIONS AND CONCLUSIONS

A natural extension of the present model based on a
multilevel system is to use a spin-1/2 (two-level) system
described by Fermi-Dirac statistics as the working substance
for the engines. Consider an engine with working system
composed of a spin-1/2 system. The Hamiltonian can be
parametrized by Ĥ = ω(t )a†

s âs, where a†
s and âs are the spin

creation and annihilation operators [13,30], respectively, and
they satisfy the anticommutation relation [as, a†

s ]+ = 1. Into
Eq. (6) we insert V̂ †

i = âs
† (V̂i = âs) and X̂ = â†

s âs, and we
obtain the time evolution of the instantaneous mean polar-
ization ṅs(t ) = −Cs[ns(t ) − n0

s (t )]. Here the heat conductivity
between the spin system and the heat bath is given by Cs =
k− + k+, and the mean polarization of the system at local
equilibrium takes the form n0

s = (k+ − k−)/[2(k− + k+)] =
−1/2 tanh[βω(t )/2], where the transition rates fulfill the de-
tailed balance k−/k+ = eβω. Given control variable ω(t ) =
ω = const, the system in the hot (α = h) or cold (α = c)
isothermal contact would relax to global thermal equilibrium
with the mean polarization ns,α = −1/2 tanh(βr

αω/2). Em-
ploying the same approach as was adopted for determining the
optimal protocol under maximum power, one can easily obtain
the low dissipation form of irreversible entropy production
as given in Eq. (20), but with the parameter  that merely
depends on �neq

s = neq
s,h − neq

s,c. Within the framework of en-
doreversible or irreversible thermodynamics, we investigated
the finite time performance of the engine that works with a
harmonic system, without using the concrete expression of
mean population n (system energy 〈H〉). Therefore, for spin-
1/2 engines, the expressions of the efficiency at maximum
power remain the same as the corresponding ones given by
Eqs. (42) and (51).

To conclude, we have examined the finite time perfor-
mance of quantum heat engines with emphasis on the univer-
sal behavior of efficiency at maximum power in certain limits.
The power and efficiency were evaluated via the dynamic
analysis of the engines, based on three different approaches.
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First, we optimized the engines (subject to finite time cycle
duration) with respect to the power output via the strategy
of optimization based on the Euler-Lagrange equation. The
results obtained in this way show that the engine operating in
the optimal protocol can be mapped into the low dissipation
engine model, and thus the efficiency at maximum power
recovers that obtained from the low dissipation case. Endore-
versible thermodynamic description was applied to the opti-
mization of power output for these engines in linear responses.
The expression for efficiency at maximum power is in nice
agreement with that obtained via classical thermodynamics,
where the phenomenological heat transfer laws were used.
We finally formulated the power and efficiency in the form
of linear irreversible thermodynamics, and showed that these

cyclic engines satisfy the tight-coupling condition, thereby
confirming the universality of efficiency at maximum power
for the engines in the linear response regime.
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