
PHYSICAL REVIEW E 100, 012103 (2019)

Heat capacity of simple liquids in light of hydrodynamics as U(1) gauge theory
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We investigate the heat capacity of simple liquids through a theoretical approach based on a quasiparticle
description. By interpreting the microscopic dynamics of particles in liquids in terms of quasiparticles, we
suggest a simplified understanding of the number of degrees of freedom in liquids. A equivalence between
hydrodynamics and U(1) gauge theory, which is proposed in the present paper, develops the quasiparticle
description to construct a new Lagrangian which correctly reproduces the number of modes at the melting points
and at the critical points. The heat capacity evaluated from this Lagrangian naturally interpolates between these
two points, and agrees with the phonon theory of liquids [Sci. Rep. 2, 421 (2012)].
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I. INTRODUCTION

The liquid phase of matter still remains one of the most
challenging subjects in statistical mechanics due to its irreg-
ular structure in contrast to the solid phase and its strong
intermolecular interactions unlike the gas phase [1,2]. As
opposed to the solid state where the statistical mechanics of
the Debye model correctly predicts thermodynamical prop-
erties, the intermediate nature of the liquid state prevents
us from constructing a general model for liquids. The heat
capacity of a liquid at constant volume decreases in general
from about 3NkB at the melting point to about 2NkB at
the critical temperature [3–6]. It has not been understood
adequately compared with solids, although it is an important
thermodynamical property to specify the degrees of freedom
of the system.

In spite of these difficulties, a phonon theory of liquids
was proposed [7–10], which quantitatively reproduces the
temperature dependence of heat capacities in various liquids
[7–11]. This theory is based on a physical insight into the
microscopic dynamics of particles in liquids, referred to as
Frenkel’s idea [10], that a particle in a liquid oscillates around
a local stable region during a characteristic time τF, and
after that the particle can escape from the local stable region
[12]. This idea allows us to define a characteristic frequency
ωF = 1/τF, which leads to a classification of the dynamics of
liquids into two regimes: one is the solidlike regime (ω > ωF)
where liquids support one longitudinal and two transverse
phonon modes, and the other is the hydrodynamic regime
(ω < ωF) where liquids retain only the longitudinal mode
[7–10,12]. Following this idea, the authors [7–10] estimate
the total energy of liquids, from which they give an analytical
expression for the heat capacity. The authors, however, neglect
the contribution from the diffusive jump to the total energy,
although such a process is regarded as one of the main
dynamical modes in their qualitative explanation [7–10].

The dynamics of particles in liquids is described by a com-
bination of the oscillation and the diffusive jump. These dy-
namical processes cannot be microscopically tractable since
we face a complicated many-body problem due to their in-
termolecular interactions. From the perspective of modern
condensed matter physics, quasiparticles or elementary exci-
tations play an important role in the description of strongly
correlated systems [13]. For liquids, the existence of an
elementary excitation different from phonons was recently
suggested [14,15], which motivates a theoretical approach
to the viscosity of liquids [16,17]. It is well known that
the heat capacity of solids reflects the number of degrees
of freedom associated with the quasiparticles, e.g., phonons.
Then, the quasiparticle description of liquids is expected to
be a key to construct a general theory for heat capacity of
liquids. To realize this strategy in a natural manner, we turn
our attention to the correspondence between hydrodynamics
and electromagnetism, whose clarifications and applications
have been done by several researchers [18–21]. This corre-
spondence suggests an application of statistical mechanics
on electromagnetism to the study of the heat capacity of
liquids.

Stimulated by the previous studies, we propose a theo-
retical approach to the heat capacity of simple liquids from
a standpoint of continuum mechanics. We show that there
exist quasiparticles inherent in the hydrodynamic Euler equa-
tion, and that these quasiparticles correspond to the diffu-
sive motion of particles and to the density fluctuations in
liquids. These quasiparticles are naturally incorporated into
a hydrodynamic Lagrangian through an equivalence between
hydrodynamics and U(1) gauge theory. Such an equivalence
is newly proposed in the present paper. Moreover, to take
into account the solidlike behavior in the high frequency
regime [7–10,12], we also propose a new Lagrangian for
liquids, which is composed of the hydrodynamic and the elas-
tic contributions in the frequency regimes lower and higher
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than a characteristic frequency. The transformation between
hydrodynamics and elasticity can be performed by the arbi-
trariness in the choice of gauge-fixing conditions. The heat
capacity calculated from our Lagrangian with an appropriate
temperature dependence of the characteristic frequency ωF

agrees with those of the phonon theory of liquid [7–10].

II. MICROSCOPIC DYNAMICS IN LIQUIDS

In this section, we begin by reviewing in detail the qualita-
tive picture of the microscopic dynamics of particles in simple
liquids explained in Refs. [7,8,10,12]. Following this picture,
we clarify the relationship between the dynamics of particles
in liquids and the dynamical modes retained in the continuum
mechanical equations, that is, the elastic and hydrodynamic
equations.

In simple liquids, a particle experiences many-body in-
teractions between neighboring particles due to the van der
Waals force or the Coulomb force [1], and the mean free path
is the same order of the particle spacing in solids [22], which
results in the complicated dynamical correlations in liquids.
According to Refs. [7–10,12], under such an environment,
a tagged particle undergoes solidlike oscillatory motion in
the effective potential barriers formed by the surrounding
particles. However, the tagged particle is not permanently
trapped in the potential, and undergoes hydrodynamic dif-
fusive motion by which the tagged particle escapes from
the potential well, on average, with a characteristic time
scale τF. In addition, the distances between local minima of
the potential also fluctuate as a consequence of the density
fluctuation of the surrounding particles. These motions are
illustrated in Fig. 1. The above picture is based on a single
characteristic relaxation time for liquids, which leads to the
viscoelastic model of liquids. We can identify τF as the
Maxwell relaxation time τM = η/G∞, where η is the viscosity
and G∞ is the high-frequency shear modulus. The dynamical
property of liquids is explained by the combination of these
modes, and the value of τF decides the relative weight of each
of these two contributions, which is a function of temperature.
In order to make our discussion clearer, we summarize the
dynamics of particles in each frequency regime separated by
the characteristic frequency ωF = 1/τF:

(1) In the higher frequency regime ω > ωF, which we
refer to as the elastic regime, the tagged particle oscillates in
the potential formed by the surrounding particles.

(2) In the lower frequency regime ω < ωF, which we refer
to as the hydrodynamic regime, the tagged particle escapes
from the potential well via the hydrodynamic diffusive mo-
tion, and the surrounding particles show the density fluctua-
tion as collective motions.

Now we propose the quasiparticle description of these
motions. The result presented in the following is basically
the same as the phonon theory of liquid in [8–10], but is
different from their theory especially in the interpretation of
the hydrodynamic regime. In the elastic regime, the motions
of particles are correctly captured by the same mechanism of
the elastic lattice vibration in the Debye model, which pro-
duces two transverse and one longitudinal modes of phonons.
Therefore, the dynamics of particles clearly obeys the elastic

x
Diffusion of particle

Compression of particle

Potential barrier

FIG. 1. A schematic pictures of the microscopic dynamics of
particles in liquids. In the time regime shorter than τF, a tagged
(dark green) particle oscillates in the potential barrier formed by the
surrounding (blue) particles. In the time regime longer than τF, on
the other hand, the tagged particle moves to one of the neighboring
local minima through diffusive motion. In both of these time regimes,
a density fluctuation of surrounding particles occurs. This mode is
intuitively understood as a change in the distances of local minima
of the potential.

wave equations as (
1

c2
s

∂2

∂t2
− ∇2

)
�um = 0, (1)

where cs is the sound speed and m = L or Tdenotes the
longitudinal or transverse mode. In the hydrodynamic regime,
it is important to understand the microscopic dynamical
modes retained in the hydrodynamic equations. To simplify
the problem, we adopt the ideal fluid. In hydrodynamics, the
equation of motion of the ideal fluid is expressed by the Euler
equation

∂

∂t
�v + (�v · ∇)�v = − 1

ρ
∇p (2)

and auxiliary conditions such as the equation of continuity of
density

∂

∂t
ρ + �v · ∇ρ + ρ∇ · �v = 0, (3)

where �v is the fluid velocity, ρ is the fluid density, and p is
the pressure. If we assume an isentropic flow, we can utilize
a simple thermodynamical relation among the deviations of
enthalpy h per a mass, pressure p, and density ρ from their
equilibrium values [20,23] as

�h = 1

ρ
�p = c2

s

ρ
�ρ, (4)
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In the following, the variables stand for the deviations from
their equilibrium values. By using Eq. (4) and linearizing
Eqs. (2) and (3) with respect to �v and h, we finally obtain
the linearized Euler equation as

∂

∂t
h + c2

s ∇ · �v = 0, (5)

∂

∂t
�v + ∇h = 0. (6)

In Eqs. (5) and (6), there exist two dynamical independent
modes: the one is the enthalpy field h and the other is the
velocity potential �, which is defined by �v = ∇� [24]. The
vorticity is now conserved through Eq. (6). The enthalpy field
reflects the density fluctuation via Eq. (4), which corresponds
to the fluctuation of distances of local minima of the potential.
The velocity potential, on the other hand, represents the
diffusive flow of particles in and out of the local region, which
corresponds to the diffusion motion among the local minima
of potential. These quasiparticles can be associated with a
gauge field in U(1) gauge theory, as in the next section.

In the above discussion, we clarified the number of modes
in each regime: three modes in the elastic regime and two
modes in the hydrodynamic regime. This fact enables us to
immediately guess a form of the partition function in each
regime:

(1) In the elastic regime,

Ze
total =

⎛
⎝∏

�k
e−β h̄ω�k

⎞
⎠

3

for �k s.t. ωF < ω�k < ωD. (7)

(2) In the hydrodynamic regime,

Zh
total =

⎛
⎝∏

�k
e−β h̄ω�k

⎞
⎠

2

for �k s.t. 0 < ω�k < ωF. (8)

Here, we define that h̄ is the reduced Planck constant,
β = kBT is the inverse temperature, T is the temperature,
kB is the Boltzmann constant, �k is the wave number, ωD is
the Debye frequency, and h̄ω�k = h̄cs|�k| is the energy of the
mode specified by �k. By taking into account the temperature
dependence of the Frenkel frequency ωF, which is related to
that of viscosity through the relation

ωF = ωM = G∞
η

, (9)

we obtain from the partition function the total energy as

〈Ĥ〉 = NkBT

(
1 + αT

2

)

×
(

3D(xD) −
(

ωF

ωD

)3

D(xF)

)
, (10)

where D(x) is the Debye function

D(x) ≡ 3

x3

∫ x

0

y3dy

ey − 1
, (11)

N is the number of particles in the system, and α is the thermal
expansion coefficient. The derivation of Eq. (10) is explained

FIG. 2. Heat capacity of a liquid mercury per atom as a function
of temperature. The solid red curve is the experimental data in
Ref. [25]. The dashed blue curve is calculated by using Eq. (10).
The set of parameters used here is based on [7]. The deviation
the experimental data from the theoretical prediction is within the
experimental error shown in Ref. [25].

in Appendix A. This expression depends on the ratio ωF/ωD,
which reduces to ωF/ωD ≈ 0 at the melting temperature, and
also reduces to ωF/ωD ≈ 1 at the critical temperature by
taking into account the temperature dependence of the Frenkel
frequency [7–10]. The heat capacity evaluated from Eq. (10)
quantitatively agree with the experimental data, as shown in
Fig. 2. Although the total energy obtained from our discus-
sion is the same as in the phonon theory of liquid [7–10], the
key idea in our approach is that the heat capacity reflects the
change in the number of quasiparticles in each regime, which
reproduces the proper behavior that interpolates between the
number of modes at the melting point and at that of the critical
point. The decrease in heat capacity from 3NkB to 2NkB when
lowering the temperature from the melting point to the critical
point can be associated with the reduction of the number of
quasiparticles from 3N to 2N modes. By understanding the
dynamical modes via quasiparticles, we can derive the total
energy much more easily than by using the phonon theory
of liquid in [7–10]. We can also appropriately incorporate
the contribution from hydrodynamic diffusion neglected in
their theory [7–10]. This treatment, however, is not based
on the single Hamiltonian or Lagrangian which a physical
system is expected to fundamentally possess. In the following
section, we present a possible way to construct a unified single
Lagrangian which reproduces the number of quasiparticles
at the melting temperature and at the critical point, and to
interpolate between them.

III. LAGRANGIAN THEORY FOR LIQUIDS

For the purpose mentioned in the last section, we demon-
strate in this section that the hydrodynamic Euler equation is
equivalent to U(1) gauge theory with a specific gauge-fixing
condition. We define a hydrodynamic Lagrangian based on
this equivalence. This Lagrangian constitutes the basis of our
theory for heat capacity of liquids. In addition, we add to the
hydrodynamic Lagrangian a neutral scalar field to incorporate
the elastic contribution explained in the last section.
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We start by considering the dynamics of the electromag-
netic fields through the U(1) gauge Lagrangian

LA = −1

4
FμνFμν, (12)

where Fμν = ∂μAν − ∂νAμ. In the present paper, we define
xμ = (ct, �x), xμ = ημνxν, Aμ = (A0, �A) and adopt a nota-
tion ημν = ημν = diag(1,−1,−1,−1), Aμ = ημνAν , where
greek indices run over space-time coordinates and the re-
peated greek index is summed over the space-time coordinates
0,1,2,3. The Euler-Lagrange equation for this Lagrangian
leads to Maxwell’s equations in vacuum,

∇ · �E = 0, ∇ × �B − 1

c

∂

∂t
�E = 0, (13)

where

�E = −1

c

∂

∂t
�A − ∇A0, �B = ∇ × �A, (14)

and c is the speed of light. By combining Eqs. (13) and (14),
we obtain

∂

∂t
h + c2∇ · �v‖ = 0, (15)

∂

∂t
�v‖ + ∇h + ac

(
1

c2

∂2

∂t2
− ∇2

)
�A = 0, (16)

where

h ≡ ac∇ · �A, �v‖ ≡ a∇A0. (17)

where a is the constant with appropriate dimension. Now, we
introduce a following gauge-fixing condition:

∇ ·
(

1

c2

∂2

∂t2
− ∇2

)
�A = 0. (18)

This gauge-fixing condition corresponds to the conservation
of the vorticity in the hydrodynamics. We give a detailed
explanation for this gauge-fixing condition in Appendix B. We
also define �v⊥ as

∂

∂t
�v⊥ ≡ ac

(
1

c2

∂2

∂t2
− ∇2

)
�A, (19)

and we finally obtain the following equations:

∂

∂t
h + c2∇ · �v = 0, (20)

∂

∂t
�v + ∇h = �0, (21)

where �v ≡ �v‖ + �v⊥. These equations are obviously equivalent
to Eqs. (5) and (6) by replacing c with cs. Therefore, we have
establish the equivalence between hydrodynamics and U(1)
gauge theory with a specific gauge-fixing condition. From this
equivalence, we can immediately define the hydrodynamic
Lagrangian using Eq. (12) with Eq. (17). This hydrodynamic
Lagrangian, however, cannot be applied to evaluate the ther-
modynamical property of liquids because the elastic behavior
of liquids in high frequency regime, which was explained
in the last section, is not incorporated yet. To recover the
contribution from the phonons in high frequency regime, we

add the neutral scalar field φ with its mass mF, and we propose
a Lagrangian for liquids as follows:

L = LA + 1

2
∂μφ∂μφ − m2

Fc2
s

2h̄2 φ2, (22)

where mF ≡ h̄ωF/c2
s . The equations of motion derived from

this Lagrangian are expressed as

∂μFμν = 0,
(
∂μ∂μ + m2

Fc2
s /h̄2

)
φ = 0. (23)

By adopting the Coulomb gauge, A0 = 0 and ∂iAi = 0, the
equations of motion are rewritten as(

1

c2
s

∂2

∂t2
− ∇2

)
Ai = 0, (24)

(
1

c2
s

∂2

∂t2
− ∇2 + m2

Fc2
s

h̄2

)
φ = 0. (25)

In the high frequency regime, that is, the high energy regime
mFc2

s � h̄ω, we can neglect the mass term of the scalar field
φ. Here, we define

(uL)i ∝ ∂iφ, (uT)i ∝ Ai. (26)

It is noted that the constant with appropriate dimension in
Eq.(26) can be recovered without difficulty. We finally obtain
the following equations:(

1

c2
s

∂2

∂t2
− ∇2

)
�uL = 0,

(
1

c2
s

∂2

∂t2
− ∇2

)
�uT = 0, (27)

where ∇ · �uT = 0 and ∇ × �uL = 0 are satisfied. Conse-
quently, Eq. (23) becomes the wave equations for the longi-
tudinal mode �uL and the transverse modes �uT. On the other
hand, in the low energy regime h̄ω � mFc2

s , the scalar field
φ becomes dynamically ineffective, because Eq. (25) can
be approximated as (m2

Fc2
s /h̄2)φ  0, which results in the

recovery of hydrodynamics in this energy regime by adopting
the gauge-fixing condition, Eq. (18). It is noted that the La-
grangian, Eq. (22), can be transformed from the elastic regime
to the hydrodynamic regime by choosing the gauge-fixing
condition, which is the consequence of a gauge symmetry
in this theory. Therefore, this Lagrangian appropriately re-
produces the change in the number of modes depending on
temperature between the melting point and the critical point.
The relative weight of each mode in the Lagrangian can be
now controlled by the mass mF, which decides whether or
not the field φ is dynamically effective depending on the
temperature.

Now, we discuss heat capacity of liquids based on the
Lagrangian, Eq. (22). This Lagrangian allows us to evaluate
the partition function by means of a procedure similar to the
Debye model or finite-temperature field theory in statistical
physics [23,26]. As a result, we obtain a unified partition
function

Ztotal =
⎛
⎝∏

�k
e−βEA

�k

⎞
⎠

2⎛
⎝∏

�k
e−βEφ

�k

⎞
⎠, (28)

where we define two energies of the quasiparticles, EA
�k =

csh̄|�k| and Eφ

�k = √
(csh̄�k)2 + (mFc2

s )2. According to this par-
tition function, we obtain the internal energy of liquids in
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equilibrium, which approximately reproduces Eq. (10) up to
the first order in β h̄ωF. We give a detailed derivation of
the heat capacity from the partition function, Eq. (28), in
Appendix A.

As mentioned above, the expression obtained by our
Lagrangian qualitatively reproduces the continuous decrease
in the heat capacity from 3NkB to 2NkB, and each limit
corresponds to the number of quasiparticles at the melting
point and at the critical point, respectively. Our theoretical
standpoint is the hydrodynamic equation as opposed to the
phonon theory of liquid [7–10], which approaches the liquid
phase from the solid phase. Our theory, however, does not
need any estimation for the contributions to the total energy
from each mode [7–10]. A clear derivation of the heat ca-
pacity crucially originates from the quasiparticle description
of liquids that specifies the number of modes at the melting
temperature and at the critical temperature. A unified treat-
ment of the hydrodynamic and the elastic behaviors with a
correct interpolation between them is realized through the
gauge symmetry, which allows the natural transformation of
the dynamical equation into each regime. We constructed
a general, thermodynamically accessible model for liquids,
which incorporates the qualitative behaviors at the melting
point and at the critical point with natural interpolation. This is
as if the Debye model properly predicts the T 3 law at the lower
temperature limit, and the Dulong-Petit law at the higher
temperature limit, with interpolation between two limiting
cases.

IV. CONCLUSIONS

In the present paper, we propose a thermodynamical model
for evaluating the heat capacity of simple liquids. We suggest
a microscopic interpretation of the hydrodynamic equations
and introduce a quasiparticle picture for the dynamics of
particles in liquids. With the aid of a proposed equivalence
between hydrodynamics and U(1) gauge theory, this inter-
pretation allows us to construct a hydrodynamic Lagrangian
whose thermodynamic property is easily calculated by ap-
propriate procedures in statistical mechanics. By taking the
elastic behavior in liquids into account by means of a neutral
scalar field, we also propose a new Lagrangian for liquids
as a possible way to calculate the heat capacity of simple
liquids. It should be emphasized that the gauge symmetry of
our theory enables us to establish a unified treatment of the
hydrodynamic and the elastic equations, which appropriately
reproduces the number of modes at the melting point and at
the critical point. Our theory can be regarded as the coun-
terpart in liquids to the Debye model in solids. In the future
study, we will apply our theory to other thermodynamical
properties of simple liquids.
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APPENDIX A: THE EVALUATION OF THE
TOTAL ENERGY OF LIQUIDS

Let us evaluate the total energy of liquids. We consider the
total energy of liquids for partition functions, Eqs. (7) and
(8). From these partition functions, the energy of liquids in
higher frequency regime is expressed as follows. We consider
the total energy of liquids for partition functions, Eqs. (7)
and (8):

〈Ĥ〉(ωF < ω < ωD) = E0(ωF < ω < ωD)

+ 3V

(2π )3

∫ ωD

ωF

dω4π
ω2

c3
s

h̄ω

eβ h̄ω − 1
,

(A1)

where V is a volume of the system and E0(ωF < ω < ωD) is
the zero-point energy:

E0(ωF < ω < ωD) = 3V

(2π )3

∫ ωD

ωF

4π
ω2

c3
s

dω
h̄ω

2
. (A2)

By using the Debye function, we express Eq. (A1) in the
following form:

〈Ĥ〉(ωF < ω < ωD) = E0(ωF < ω < ωD)

+ V

2π2c3
s

kBT
[
ω3

DD(xD) − ω3
FD(xF)

]
.

(A3)

The Debye function D(x) is often expressed as

D(x) ≡ 3

x3

∫ x

0

y3dy

ey − 1
, (A4)

where we define as x ≡ β h̄ω. Similar to the high frequency
regime, we can evaluate the energy of liquid in the lower
frequency regime as

〈Ĥ〉(0 < ω < ωF) = E0(0 < ω < ωF)

+ 2V

(2π )3

∫ ωF

0
dω4π

ω2

c3
s

h̄ω

eβ h̄ω − 1
(A5)

= E0(0 < ω < ωF) + V

3π2c3
s

kBT D(xF),

(A6)

where E0(0 < ω < ωF) is the zero-point energy:

E0(0 < ω < ωF) = 2V

(2π )3

∫ ωF

0
4π

ω2

c3
s

dω
h̄ω

2
. (A7)

Combining Eqs. (A3) and (A7), we obtain the total energy of
liquids:

〈Ĥ〉 = 〈Ĥ〉(0 < ω < ωF) + 〈Ĥ〉(ωF < ω < ωD) (A8)

= E0 + V
kBT

6π2c3
s

ω3
D

(
3D(xD) −

(
ωF

ωD

)3

D(xF)

)
,

(A9)

where E0 is the total zero-point energy, E0(0 < ω < ωF) +
E0(ωF < ω < ωD). If we take the heat expansion effect
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V → V (1 + αT/2) into account, we finally obtain

〈Ĥ〉 =
(

1+ αT

2

)[
E0+ NkBT

(
3D(xD) −

(
ωF

ωD

)3

D(xD)

)]
,

(A10)

where we used the relation N = V ω3
D/6π2c3

s with the number
of atoms N . This result is consistent with [10].

Next, we estimate the total energy of liquids from the
partition function, Eq. (28). By definition of the total energy,
we obtain

〈Ĥ〉 =
∑

�k

[(
Eφ

�k
2

+
Eφ

�k
eβEφ

�k − 1

)
+ 2

(
EA

�k
2

+
EA

�k
eβEA

�k − 1

)]
.

(A11)

For convenience, we define two energies, 〈Ĥ〉φ and 〈Ĥ〉A

as

〈Ĥ〉A = 2
∑

�k

[
EA

�k
2

+
EA

�k
eβEA

�k − 1

]
, (A12)

〈Ĥ〉φ =
∑

�k

[
Eφ

�k
2

+
Eφ

�k
eβEφ

�k − 1

]
. (A13)

Substituting summations to integrations, we obtain the follow-
ing forms:

〈Ĥ〉A = EA
0 + 2V

(2π )3

∫ ωD

0
dω 4π

ω2

c3
s

h̄ω

eβ h̄ω − 1
, (A14)

〈Ĥ〉φ = Eφ

0 + V

(2π )3

∫ ωD

ωF

dω 4π
ω2

c3
s

h̄
√

ω2 − ω2
F

eβ h̄ω − 1
, (A15)

where EA
0 and Eφ

0 are the zero-point energies: Similar to the
Debye model in solids, in order to obtain a suitable interpolat-
ing function of the heat capacity of liquids which behaves as
3NkBT and 2NkBT in the low and high temperature regimes,
respectively, we adopt the cutoff scale of the energy, ωD, in
Eqs. (A14) and (A15):

EA
0 = 2V

(2π )3

∫ ωD

0
dω 4π

ω2

c3
s

h̄ω

2
, (A16)

Eφ

0 = V

(2π )3

∫ ωD

ωF

dω 4π
ω2

c3
s

h̄
√

ω2 − ω2
F

2
. (A17)

By using the Debye function, we express Eq. (A14) in the
following form:

〈Ĥ〉A = EA
0 + 2V

kBT

6π2c3
s

ω3
DD(xD). (A18)

Besides, Eq. (A15) is calculated as

〈Ĥ〉φ = Eφ

0 + V

(2π )3

∫ ωD

ωF

dω 4π
ω2

c3
s

h̄ω
√

1 − (ωF/ω)2

eβ h̄ω − 1
(A19)

= Eφ

0 + V

(2π )3

∫ ωD

ωF

dω 4π
ω2

c3
s

h̄ω

eβ h̄ω − 1

× [1 + O((h̄ωFβ )2)] (A20)

= Eφ

0 +V
kBT

6π2c3
s

ω3
D

(
D(xD)−

(
ωF

ωD

)3

D(xF)

)

+O((h̄ωFβ )2). (A21)

Combining Eqs. (A18) and (A21), we obtain

〈Ĥ〉 = E0 + V
kBT

6π2c3
s

ω3
D

(
3D(xD) −

(
ωF

ωD

)3

× D(xF) + O((h̄ωFβ )2)
)

, (A22)

By taking the heat expansion effect into account, we obtain
the total energy:

〈Ĥ〉 =
(

1 + αT

2

)[
E0 + NkBT

(
3D(xD) −

(
ωF

ωD

)3

× D(xF) + O((h̄ωFβ )2)
)]

, (A23)

where E0 is the zero-point energy, EA
0 + Eφ

0 .

APPENDIX B: THE EQUIVALENCE BETWEEN
HYDRODYNAMICS AND U (1) GAUGE THEORY

In this section, we first discuss the possibility of our gauge-
fixing condition. In general, gauge vectors can be expressed as

�A = ∇χA + ∇ × �XA. (B1)

In the equivalence between hydrodynamics and U(1) gauge
theory, we adopt the following gauge-fixing condition:

∂μ∂μχA = 0. (B2)

Even if ∂μ∂μχA �= 0 is satisfied, we can obtain a suitable
gauge vector A′μ as

�A′ = ∇χ ′
A + ∇ × �XA, ∂μ∂μχ ′

A = 0, (B3)

where we define

χ ′
A = χA − α (B4)

by the gauge transformation

Aμ → A′μ = Aμ + ∂μα. (B5)

Therefore, for a given gauge vector Aμ, we can always choose

α(x) = χA(x) +
∫

d3k α̃(�k)eik·x, (B6)

where α̃ is an arbitrary function of �k and we define kμ =
(c|�k|, �k). This means that our gauge fixing is possible at all
times. Then, we obtain following relations:

∂μ∂μ �A′ = ∇ × (∂μ∂μ �XA), (B7)

∇ · �A′ = ∇ · ∇χ ′
A =

∫
d3k �k2α̃(�k)eik·x, (B8)

which is generally nonzero. Thus, we define following quan-
tities:

h ≡ ac∇ · �A′, (B9)

�v‖ ≡ a∇A′0, (B10)
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∂

∂t
�v⊥ ≡ ac∂μ∂μ �A′, (B11)

where ∇ × �v‖ = 0 and ∇ · �v⊥ = 0 are satisfied. As a result,
we can obtain the equations of the motion of the hydrody-
namics from the equation of motion of the U(1) gauge theory.
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