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Periodic thermodynamics of the parametrically driven harmonic oscillator
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We determine the quasistationary distribution of Floquet-state occupation probabilities for a parametrically
driven harmonic oscillator coupled to a thermal bath. Since the system exhibits detailed balance, and the
canonical representatives of its quasienergies are equidistant, these probabilities are given by a geometrical
Boltzmann distribution, but its quasitemperature differs from the actual temperature of the bath, being affected
by the functional form of the latter’s spectral density. We provide two examples of quasithermal engineering, i.e.,
of deliberate manipulation of the quasistationary distribution by suitable design of the spectral density: We show
that the driven system can effectively be made colder than the undriven one, and demonstrate that quasithermal
instability can occur even when the system is mechanically stable.
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I. INTRODUCTION

If a quantum system governed by a time-independent
Hamiltonian possessing eigenstates with energies En is cou-
pled to a thermal reservoir having the temperature Tbath,
and is given time to equilibrate, after a while each state
will be populated with probability proportional to its respec-
tive Boltzmann factor exp(−βEn), where β = 1/(kBTbath ),
with kB denoting the Boltzmann constant [1–3]. If a time-
periodically driven quantum system possessing Floquet states
with quasienergies εn is coupled to such a reservoir it will
likewise approach a quasistationary state characterized by
certain occupation probabilities pn of its Floquet states, but
such distributions of Floquet-state occupation probabilities
are lacking the universality of their equilibrium counterpart.
The determination of such distributions is a major task of
what may be termed periodic thermodynamics, as it has
been formulated in a programmatic manner by Kohn [4],
and approached constructively by Breuer et al. [5]. So far,
knowledge about such quasistationary Floquet-state distribu-
tions is quite limited, although some statements have been
derived for special classes of systems [6,7]. Remarkably, a lin-
early driven harmonic oscillator interacting with a harmonic-
oscillator heat bath retains the Boltzmann distribution of
the bath; that is, the Floquet states of the linearly driven
harmonic oscillator are occupied according to a Boltzmann
distribution with the bath temperature [5,8]. On the other
hand, the Floquet substates of a spin s exposed to a circularly
polarized driving force while being coupled to a heat bath
develop a Boltzmann distribution with an effective quasitem-
perature which differs from the actual temperature of the
bath [9]. In the case of strongly driven anharmonic oscillators
the quasistationary Floquet-state distributions can be signifi-
cantly influenced by phase-space structures of the correspond-
ing classical system [5,10]. Intriguingly, the quasistationary
distributions of driven-dissipative ideal Bose gases allow
for Bose-Einstein condensation into multiple states [11,12].
These somewhat random snapshots indicate that the subject of

quasistationary Floquet-state distributions merits systematic
further investigation.

In the present work we explore the periodic thermody-
namics of a model system which is substantially richer than
the linearly driven harmonic oscillator but still retains much
of its analytical simplicity, namely, the harmonic oscillator
with a periodically time-dependent spring function. The para-
metrically driven harmonic oscillator with an arbitrary time
dependence of its spring function has been the subject of
several seminal studies, among others by Husimi [13], by
Lewis and Riesenfeld [14], and by Popov and Perelomov
[15], on the grounds of which it is a relatively straightforward
exercise to derive the Floquet states which emerge when
the spring function depends on time in a periodic manner
[16–18]. Nonetheless, we sketch the construction of the Flo-
quet states in some detail in Sec. II below, as the precise
knowledge of these states is necessary for specifying their
coupling to the bath, and for computing the bath-induced
transition rates. In Sec. III we then provide typical numeri-
cal examples for the variation of the system’s quasienergies
with the driving strength, focusing on the archetypal case
for which the classical equation of motion reduces to the
well-known Mathieu equation. The central Sec. IV outlines
the calculation of corresponding quasistationary distributions;
this calculation is greatly facilitated by the fact that the
system exhibits detailed balance. We also consider the en-
ergy dissipation rate pertaining to the nonequilibrium steady
state for various spectral densities of the bath. One of the
noteworthy benefits of this elemental model of periodic ther-
modynamics lies in the fact that it also provides a particu-
larly transparent, analytical access to the question how the
quasistationary distribution is affected if the spectral density
is modified or, phrased the other way around, how the spectral
density has to be designed in order to obtain quasistation-
ary distributions with certain desired properties; this option
of quasithermal engineering is discussed in the concluding
Sec. V.
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II. FLOQUET STATES OF THE PARAMETRICALLY
DRIVEN HARMONIC OSCILLATOR

Consider a quantum particle of mass M moving in
a one-dimensional harmonic-oscillator potential with time-
dependent spring function k(t ), as described in the position
representation by the Hamiltonian

H0(t ) = p2

2M
+ 1

2
k(t )x2. (1)

Later on we focus on spring functions which depend
periodically on time t , but at this point we still admit an arbi-
trary variation of k with t , requiring only the existence of the
solutions to the corresponding classical equations of motion;
the significance of this requirement will soon become obvious.
For solving the time-dependent Schrödinger equation(

H0(t ) − ih̄
∂

∂t

)
ψ (x, t ) = 0 (2)

we follow a strategy devised by Brown [18], and apply a
sequence of two unitary transformations to Eq. (2) which
bring the Hamiltonian (1) into a more convenient form. In-
tending to replace the time-dependent potential k(t )x2/2 by a
more tractable one, we perform a first transformation which is
implemented by [18]

U1 = exp(−iη(t )x2/h̄), (3)

where the function η(t ) is suitably specified below. Using the
familiar Lie expansion formula [19]

eABe−A = B + [A, B] + 1

2
[A, [A, B]] + · · ·

+ 1

n!
[A, . . . , [A, B]](n) + · · · (4)

for operators A and B, which reduces to

eABe−A = B + [A, B] (5)

if [A, [A, B]] = 0, one finds

U1x U †
1 = x,

U1 pU †
1 = p + 2η(t )x,

U1(−ih̄∂/∂t )U †
1 = −ih̄∂/∂t + η̇(t )x2. (6)

Taken together, these relations yield

U1

(
p2

2M
+ 1

2
k(t )x2 − ih̄

∂

∂t

)
U †

1

= p2

2M
+

[
2

M
η2(t ) + 1

2
k(t ) + η̇(t )

]
x2 − ih̄

∂

∂t

+ η(t )

M
(px + xp). (7)

For constructing the required counterterm to the coefficient
k(t )/2 of x2 appearing in the square brackets here, we resort
to a solution ξ (t ) ≡ ξ to the classical equation of motion

M ξ̈ + k(t )ξ = 0; (8)

for ease of notation, the time dependence of ξ will not be
indicated explicitly. If we demand that ξ be complex, its
conjugate ξ ∗ is a second, linearly independent solution to

Eq. (8). It is easy to show that the Wronskian of these two
solutions is time independent, and purely imaginary, so that
we may write ∣∣∣∣ξ̇ ξ̇ ∗

ξ ξ ∗

∣∣∣∣ = 2i�, (9)

where

� = Im(ξ̇ ξ ∗); (10)

without loss of generality (that is, interchanging ξ and ξ ∗ if
necessary), we may stipulate � > 0. Given these classical
solutions ξ and ξ ∗, we now set [18]

η(t ) = M

4

(
ξ̇

ξ
+ ξ̇ ∗

ξ ∗

)
= M

4

d

dt
ln |ξ |2, (11)

providing

η̇(t ) = M

4

(
ξ̈

ξ
− ξ̇ 2

ξ 2
+ ξ̈ ∗

ξ ∗ − ξ̇ ∗2

ξ ∗2

)
= M

4

(
−2k(t )

M
− ξ̇ 2ξ ∗2 + ξ̇ ∗2ξ 2

|ξ |4
)

. (12)

This is how the counterterm comes into play, but in view of
Eq. (7) we also need to account for a further contribution to
the transformed quadratic potential, given by

2

M
η2(t ) = M

8

1

|ξ |4 (ξ̇ 2ξ ∗2 + 2ξ ξ̇ ξ ∗ ξ̇ ∗ + ξ 2ξ̇ ∗2). (13)

Adding up, and making use of the Wronskian (9), one finds

2

M
η2(t ) + 1

2
k(t ) + η̇(t ) = 1

2
M�2 1

|ξ |4 . (14)

At this point, it may be appropriate to point out that the con-
struction still leaves us with some indeterminacy: The classi-
cal equation (8) is homogeneous, so that ξ may be taken to be
dimensionless, and we are free to multiply any solution ξ by
an arbitrary constant. Thus, � is not well defined, but �/|ξ |2
is. Note also that this multiplicative freedom does not affect
the function η(t ), as a consequence of its definition [Eq. (11)],
implying that the transformation (7) indeed is unique.

At a first glance, it seems that this transformation (7) with
the particular choice (11) for the function η(t ) has not brought
us any further. On the contrary: Effectively, the spring func-
tion k(t ) with its known time dependence has been replaced
by M�2/|ξ |4, the time dependence of which still needs to
be determined by solving the classical Eq. (8). However, the
actual progress achieved by the operation (3) stems from
the last term on the right-hand side of Eq. (7). Namely, one
evidently has[

i

h̄

xp + px

2
, x

]
= x,

[
i

h̄

xp + px

2
, p

]
= −p, (15)

so that the application of the transformation formula (4) to the
unitary operator

Sλ = exp

(
i

h̄
ln λ

xp + px

2

)
(16)
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with arbitrary λ > 0 results in both

Sλx S†
λ =

∞∑
n=0

(ln λ)n

n!
x = λx (17)

and

Sλ p S†
λ =

∞∑
n=0

(− ln λ)n

n!
p = 1

λ
p. (18)

Thus, Sλ implements a scale transformation, leaving the
product px invariant. If we now admit a time-dependent
scaling parameter λ = λ(t ), we also have

Sλ(t )

(
− ih̄

∂

∂t

)
S†

λ(t ) = −ih̄
∂

∂t
− λ̇(t )

λ(t )

xp + px

2
. (19)

Returning to Eq. (7), this allows us to achieve two goals
simultaneously: Equating

λ̇(t )

λ(t )
= 2

η(t )

M
, (20)

which by Eq. (11) is equivalent to

d

dt
ln λ(t ) = d

dt
ln |ξ |, (21)

we may set

λ(t ) = |ξ | (22)

and define a second unitary transformation

U2 = S|ξ |, (23)

effectuating

U2U1

(
H0(t ) − ih̄

∂

∂t

)
U †

1 U †
2

= U2

(
p2

2M
+ 1

2
M�2 x2

|ξ |4 − ih̄
∂

∂t
+ η(t )

M
(px + xp)

)
U †

2

= 1

|ξ |2
[

p2

2M
+ 1

2
M�2x2

]
− ih̄

∂

∂t
. (24)

Thus we have both scaled the momentum p by 1/|ξ | and
the position x by |ξ |, allowing us to take a time-dependent
factor 1/|ξ |2 out of the square brackets, and have removed the
annoying last term that had appeared on the right-hand side of
Eq. (7).

Observe also that there is a further unexploited freedom:
Integration of Eq. (21) leaves us with an arbitrary constant
ln c, so that we might have chosen λ(t ) = c|ξ | instead of
Eq. (22). This would have led to a renormalization of the
mass in the last line of Eq. (24), shifting M to Mc2. As will
become evident below, this freedom again has no observable
consequences.

Now the result of the two-step transformation (24) prompts
us to solve the modified Schrödinger equation

ih̄
∂

∂t
χ (x, t ) = 1

|ξ |2 Hoscχ (x, t ), (25)

instead of Eq. (2), where

Hosc = p2

2M
+ 1

2
M�2x2 (26)

is the Hamiltonian of a time-independent harmonic oscillator
[13–15], possessing the eigenfunctions

χosc
n (x) = π−1/4

√
2nn! L

Hn(x/L) exp(−(x/L)2/2) (27)

with integer quantum numbers n = 0, 1, 2, . . ., Hermite poly-
nomials Hn, and oscillator length L = √

h̄/(M�), yielding the
energy eigenvalues En = h̄�(n + 1/2). Inserting the natural
ansatz

χn(x, t ) = exp(−iγn(t )/h̄) χosc
n (x) (28)

into Eq. (25), one finds

γ̇n(t ) = 1

|ξ |2 En. (29)

This equation for the desired phase γn(t ) can be brought into
a more transparent form: Introducing the phase ϕ(t ) of the
complex trajectory ξ according to

ξ = |ξ | exp(iϕ(t )) (30)

or
ξ

ξ ∗ = exp(2iϕ(t )), (31)

one derives

d

dt

ξ

ξ ∗ = ξ̇ ξ ∗ − ξ ξ̇ ∗

ξ ∗2
= 2iϕ̇(t ) exp(2iϕ(t )). (32)

Again invoking the Wronskian (9), this becomes

ϕ̇(t ) = �

|ξ |2 ; (33)

recall that this expression is not affected by the freedom to
scale ξ by an arbitrary factor. Hence, Eq. (29) takes the form

γ̇n(t ) = En

�
ϕ̇(t ); (34)

observe that the frequency � of the auxiliary oscillator (26)
drops out here. Integrating, we have fully determined the
solutions (28) to Eq. (25):

χn(x, t ) = exp(−i(n + 1/2)[ϕ(t ) − ϕ(0)])χosc
n (x), (35)

having stipulated γ (0) = 0. The appearance of ϕ(0) makes
sure that these solutions (35) remain invariant under a constant
shift of the phase of ξ , as does the effective Hamiltonian
Hosc/|ξ |2.

Next, we need to invert the two transformations (23) and
(3) in order to obtain the solutions of the original Schrödinger
equation (2). Utilizing the identity

Sλ f (x) =
√

λ f (λx), (36)

which may be verified by differentiating both sides with
respect to λ, one finds

ψn(x, t ) = U †
1 U †

2 χn(x, t )

= exp(−i(n + 1/2)[ϕ(t ) − ϕ(0)])uosc
n (x, t ), (37)

where

uosc
n (x, t ) = exp

(
iM

2h̄
x2 d

dt
ln |ξ |

)
1√|ξ |χ

osc
n

(
x

|ξ |
)

; (38)
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of course, this expression agrees with the known solutions
obtained by other approaches [13–15]. Had we utilized the
freedom to choose λ(t ) = c|ξ | for the second transformation
(23), leading to the replacement of M by Mc2 in the last line
of Eq. (24), the oscillator length L would have been rescaled
to L/c in the eigenfunctions (27), so that the final results (37)
and (38) remain unchanged.

So far, these considerations apply to an arbitrary variation
of the spring function with time. Now we require that k depend
periodically on time with period T ,

k(t ) = k(t + T ), (39)

so that the classical equation of motion (8) becomes Hill’s
equation, which underlies the theory of parametric resonance,
and therefore has been intensely studied [20,21]. This equa-
tion possesses Floquet solutions, i.e., solutions of the form

ξ (t ) = v(t ) exp(iνt ), (40)

where the function v(t ) is periodic in time with the same
period T as the spring function,

v(t ) = v(t + T ). (41)

The characteristic exponent ν can either be real, in which case
ξ and ξ ∗ both constitute linearly independent stable solutions,
or purely imaginary, in which case one of the two Floquet
solutions grows without bound and therefore is unstable,
causing instability of the general solution [20,21]. Here we
restrict ourselves to the stable case, as this case allows one
to construct normalized Floquet states of the parametrically
driven quantum mechanical oscillator [16–18], that is, a com-
plete set of solutions to the Schrödinger equation (2) with
time-periodic spring function (39) having the particular guise

ψn(x, t ) = un(x, t ) exp(−iεnt/h̄), (42)

where the Floquet functions

un(x, t ) = un(x, t + T ) (43)

again acquire the T -periodic time dependence imposed by the
spring function; the real quantities εn are known as quasiener-
gies. Indeed, inserting a stable classical Floquet solution (40)
into the wave functions (37) obtained above, their factors
uosc

n (x, t ) become T periodic in time, since |ξ | = |v|. More-
over, writing

v(t ) = |v(t )| exp(iα(t )), (44)

we necessarily have exp(iα(t )) = exp(iα(t + T )), and hence
α(t + T ) = α(t ) + 2π� with some integer winding number �.
We then introduce

α̃(t ) = α(t ) − 2π�
t

T
, (45)

implying that α̃(t ) actually is T periodic, α̃(t ) = α̃(t + T ),
and reexpress Eq. (40) in the form

ξ (t ) = |v(t )|eĩα(t ) exp(i(ν + �ω)t ), (46)

where ω = 2π/T . This representation [Eq. (46)] brings out
the content of the above steps more clearly: The factorization
(40) does not determine the characteristic exponent uniquely,
but only up to an integer multiple of ω,

ν ≡ {ν + mω | m ∈ Z}. (47)

Imposing the requirement that v(t ) = |v(t )| exp(ĩα(t )) with
T -periodic phase function α̃(t ) then explicitly singles out one
particular representative of this equivalence class (47); this
representative is referred to as the canonical representative
in the following. Adding the appropriate multiple of ω to the
given ν, we may henceforth adopt the convention that this
canonical representative be labeled by m = 0.

By the same token, instead of Eq. (42) we could have
written

ψn(x, t ) = un(x, t ) eimωt exp(−i(εn + mh̄ω)t/h̄) (48)

with integer m and properly T -periodic Floquet functions
un(x, t ) exp(imωt ), signaling that a quasienergy likewise has
to be regarded as a class of equivalent representatives,

εn ≡ {εn + mh̄ω | m ∈ Z}. (49)

After these preparations, the phase function ϕ(t ) appearing in
the solutions (37) is identified as ϕ(t ) = α̃(t ) + νt in the case
of a T -periodic spring function, with ν denoting the canonical
representative of the characteristic exponent. Therefore, the
T -periodic Floquet functions postulated by Eq. (42) now
coincide with the functions uosc

n (x, t ) up to a T -periodic phase
factor,

un(x, t ) = exp(−i(n + 1/2)[̃α(t ) − α̃(0)])uosc
n (x, t ), (50)

while their quasienergies are given by

εn = h̄ν(n + 1/2) mod h̄ω, (51)

again writing ω = 2π/T . Note that here the requirement
that the phase function α̃(t ) of the periodic part v(t ) of the
Floquet solutions (40) itself be T periodic selects particular,
“canonical” representatives of the quasienergy classes (49).
Thus, the quasienergy spectrum of the parametrically driven
harmonic oscillator (1) does not depend on the parameters
of the auxiliary oscillator (26), which would be ill defined
anyway, but solely on the characteristic exponent ν of the
classical Floquet solution (40), an observation which goes
back to Popov and Perelomov [16].

III. NUMERICAL EXAMPLE: THE MATHIEU
OSCILLATOR

In order to construct Floquet solutions (40) we rewrite
the classical equation of motion (8) with T -periodic spring
function (39) as a system of two coupled first-order equations,

d

dt

(
ξ

ξ̇

)
=

(
0 1

−k(t )/M 0

)(
ξ

ξ̇

)
, (52)

and consider two solutions ξ (1)(t ), ξ (2)(t ) to this system with
the particular initial conditions(

ξ (1)(0)

ξ̇ (1)(0)

)
=

(
1

0

)
,

(
ξ (2)(0)

ξ̇ (2)(0)

)
=

(
0

1

)
. (53)

By numerical integration we then obtain the one-cycle evolu-
tion matrix

M =
(

ξ (1)(T ) ξ (2)(T )

ξ̇ (1)(T ) ξ̇ (2)(T )

)
, (54)
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the eigenvalues of which constitute a pair of Floquet multipli-
ers exp(±iϑ ) [21]. In the stable case, that is, when ϑ turns out
to be real, these Floquet multipliers both lie on the unit circle,
giving the characteristic exponent

ν = ±ϑ/T mod ω, (55)

leaving the selection of the canonical representative still open.
Moreover, with (y1, y2)t denoting an eigenvector of M belong-
ing to one of the eigenvalues exp(±iϑ ), the required Floquet
solutions (40) are given by

ξ (t ) = y1 ξ (1)(t ) + y2 ξ (2)(t ). (56)

We now apply this machinery to the particular function

k(t ) = M�2
0 − M�2

1 cos(ωt ). (57)

Invoking the dimensionless time variable ωt = 2τ , Hill’s
equation (8) then becomes equal to the Mathieu equation in
its standard form [22],

d2

dτ 2
ξ + [a − 2q cos(2τ )]ξ = 0, (58)

with parameters

a = 4�2
0

ω2
, q = 2�2

1

ω2
. (59)

Among others, this Mathieu equation (58) underlies the con-
ception of mass spectrometers without magnetic fields [23],
and the design of the Paul trap [24,25]. Thus, the parametri-
cally driven harmonic oscillator with the spring function (57)
is referred to as the Mathieu oscillator.

This particular example now allows us to substantiate the
choice of the canonical representative of the characteristic
exponent. Namely, when the scaled driving strength q defined
by Eq. (59) goes to zero, Hill’s equation reduces to the
equation of motion for a classical harmonic oscillator with
frequency �0, providing solutions ξ (t ) = exp(±i�0t ) and,
hence, ν(q = 0) = �0 mod ω. In order to make sure that the
canonical representatives of the quasienergies (51) actually
connect to the quantum mechanical energy eigenvalues En =
h̄�0(n + 1/2) of such an undriven oscillator, we impose the
condition that ν → �0 in this limit q → 0. Starting from
the eigenvalues exp(±iϑ ) = exp(±i�0T ) of M(q = 0), with
0 < ϑ < π , and denoting the integer part of the ratio �0/ω

by int(�0/ω) = �0, we have

ν(q = 0)

ω
=

{
�0 + ϑ

2π
if 0 < �0

ω
− �0 < 1

2 ,

�0 + 1 − ϑ
2π

if 1
2 < �0

ω
− �0 < 1.

(60)

Thus, the function α̃(t ) appearing in Eq. (45) is identically
equal to zero for q = 0. This assignment (60), unambiguously
made at q = 0, is then extended to the entire zone of stability
connected to the parameters a = 4�2

0/ω
2 and q = 0 by

continuity.
Figures 1 and 2 visualize the variation of the characteristic

exponent with the scaled driving strength q for a = 8.0 and
a = 8.2, respectively; in view of Eq. (51) for the quasiener-
gies, these figures likewise depict the ac Stark shift exhibited
by the quantum mechanical Mathieu oscillator.

It is of interest to observe that the classical Mathieu os-
cillator becomes mechanically unstable upon variation of q in

0.0 2.0 4.0 6.0 8.0 10.0q
1.0

1.1

1.2

1.3

1.4

1.5

ν 
/ ω

FIG. 1. Canonical representative of the characteristic
exponent ν for the Mathieu oscillator with parameter a = 8.0,
that is, for �0/ω = √

2, as a function of the scaled driving strength
q = 2�2

1/ω
2. The oscillator becomes unstable for q ≈ 6.49, where

ν/ω = 1, then reenters a regime of stability at q ≈ 8.91, and
becomes unstable again at q ≈ 9.97, where ν/ω = 3/2.

two different ways: Two complex eigenvalues z± = exp(±iϑ )
of M collide on the unit circle and become real either when
z± = +1, so that ϑ = 0 and ν/ω is an integer, or when z± =
−1, giving ϑ = π and half-integer ν/ω. In the first case all
quasienergies (51) of the corresponding quantum system are
degenerate (mod h̄ω) at the transition point, whereas there are
two separate groups of degenerate quasienergies, differing by
h̄ω/2, in the second case, thus providing an elementary model
for a Floquet time crystal [26,27]. In fact, the transition from a
stable to an unstable classical Mathieu oscillator corresponds
to a transition from a pure point quasienergy spectrum to an
absolutely continuous one for its quantum mechanical coun-
terpart [28–30]. In a regime of stability each wave function
possesses a representation as a superposition of the Floquet
states constructed in Sec. II, and therefore evolves in time
in a strictly quasiperiodic manner. In a regime of instability
the solutions to the time-dependent Schrödinger equation are
still associated with classical trajectories ξ , but these wave
functions absorb an infinite amount of energy from the drive
if their trajectories are unstable; such unbounded growth of
energy is traced to the continuous quasienergy spectrum [31].

0.0 2.0 4.0 6.0 8.0 10.0q
1.0

1.1

1.2

1.3

1.4

1.5

ν 
/ ω

FIG. 2. As Fig. 1, but for a = 4�2
0/ω

2 = 8.2. Here the oscillator
becomes unstable for q ≈ 9.48, where ν/ω = 3/2.
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IV. COUPLING TO A THERMAL HEAT BATH

Now let the parametrically driven “system” (1) with T -
periodic spring function k(t ) be weakly coupled to a “bath”
consisting of infinitely many harmonic oscillators with a
prescribed temperature, causing transitions among the sys-
tem’s Floquet states; our goal is to find the corresponding
quasistationary distribution [5,8–10]. Following the general
theory of open quantum systems [32], we then require, besides
the Hilbert space Hsystem that the driven part H0(t ) is acting
on, the Hilbert space Hbath pertaining to the bath Hamiltonian
Hbath, and construct the composite space Hsystem ⊗ Hbath.
Accordingly, the total Hamiltonian now takes the form

H (t ) = H0(t ) ⊗ 1 + 1 ⊗ Hbath + Hint, (61)

with

Hint = V ⊗ W (62)

specifying the system-bath interaction. Here we choose a
simple but plausible coupling mediated by

V = γ x, (63)

where the constant γ carries the dimension of energy per
length, and

W =
∑

ω̃

(bω̃ + b†
ω̃ ), (64)

effectuating annihilation and creation processes in the bath,
with the sum ranging over all bath oscillators [5]. Within a
perturbative approach based on the golden rule for Floquet
states [5,8], a bath-induced transition from an initial Floquet
state i of the driven system to a final one labeled by f does not
correspond to only one single transition frequency, but rather
to an infinite ladder of frequencies ω

(�)
f i differing from the

expected frequency (ε f − εi )/h̄ by positive or negative integer
multiples of the driving frequency ω = 2π/T ,

ω
(�)
f i = (ε f − εi )/h̄ + �ω with � = 0,±1,±2, . . . . (65)

Note that a precise specification of the chosen quasienergy
representatives is essential at this point. Hence, the rate � f i of
such transitions is obtained as a sum,

� f i =
∑

�

�
(�)
f i , (66)

where the partial rates �
(�)
f i are given by

�
(�)
f i = 2π

h̄2

∣∣V (�)
f i

∣∣2
N

(
ω

(�)
f i

)
J
(∣∣ω(�)

f i

∣∣). (67)

Here the quantities V (�)
f i denote the Fourier coefficients of the

system’s transition matrix elements,

〈u f (t )|V |ui(t )〉 =
∑

�

ei�ωt V (�)
f i . (68)

The transition frequencies (65) can either be positive, as
corresponding to processes during which the driven system
absorbs energy from the bath, or negative, so that the system
loses energy to the bath. Accordingly, the thermal averages
N (ω̃) appearing in the partial rates (67) either refer to the

deexcitation of a bath oscillator, that is, to the annihilation of
a bath phonon,

N (ω̃) = 〈n(ω̃)〉 = 1

exp(β h̄ω̃) − 1
(69)

when ω̃ > 0, or to the creation of such a phonon,

N (ω̃) = 〈n(−ω̃)〉 + 1 = 1

1 − exp(β h̄ω̃)
(70)

when ω̃ < 0. Here we have written n(ω̃) = b†
ω̃bω̃ for the

occupation number of a phonon mode, have employed angular
brackets to indicate thermal averaging, and have used the
familiar symbol β = 1/(kBTbath ) with the Boltzmann constant
kB to indicate the inverse of the bath temperature Tbath. Finally,
the factor J (ω̃) contributing to the partial rates (67) denotes
the spectral density of the oscillator bath.

Having computed the matrix of transition rates (66) in this
manner, the desired quasistationary distribution {pn}n=0,1,2,...

which quantifies the system’s Floquet-state occupation prob-
abilities in the nonequilibrium steady state is obtained as
solution to the Pauli master equation [5]

ṗn = 0 =
∑

m

(�nm pm − �mn pn). (71)

The decisive system-specific input data determining this
quasistationary Floquet-state distribution are the Fourier coef-
ficients of the transition matrix elements (68). With the dipole-
type coupling (63), and again writing the decomposition of
the T -periodic factor v(t ) of the classical Floquet solutions
(40) as

v(t ) = |v(t )| exp(ĩα(t )) (72)

with T -periodic phase function α̃(t ), the quantum mechanical
Floquet functions (50) of the parametrically driven harmonic
oscillator provide the expression

〈um(t )|x|un(t )〉

= |v(t )|
〈
um(t )

∣∣∣∣ x

|v(t )|
∣∣∣∣un(t )

〉

=
√

h̄

2M�
|v(t )|(√n exp(−ĩα(t ) + ĩα(0))δm,n−1

+√
n + 1 exp(ĩα(t ) − ĩα(0))δm,n+1)

=
√

h̄

2M�

(√
nv∗(t )eĩα(0)δm,n−1

+√
n + 1v(t )e−ĩα(0)δm,n+1

)
. (73)

Therefore, the required coefficients V (�)
f i of the expansion (68)

are proportional to the Fourier coefficients of v(t ), which
are easy to compute. Moreover, the transition matrix (66)
becomes tridiagonal, having nonvanishing entries for f = i±1
only. Thus, the master equation (71) simplifies considerably,
reducing to

(�n,n−1 pn−1 − �n−1,n pn) + (�n,n+1 pn+1 − �n+1,n pn) = 0

(74)

for n � 1; for n = 0 the first bracket disappears. This tridi-
agonal form implies detailed balance [9], meaning that both
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brackets vanish individually for n � 1: Setting the second
bracket to zero gives the forward relation

pn+1

pn
= �n+1,n

�n,n+1
(75)

which already fixes the distribution {pn}n=0,1,2,... up to its
normalization; shifting n to n − 1 in relation (75) shows that
Eq. (74) indeed is satisfied. Moreover, since �n+1,n and �n,n+1

both are proportional to n + 1 by virtue of Eq. (73), their ratio

�n+1,n

�n,n+1
= r (76)

actually is independent of n, resulting in the geometric
Floquet-state distribution

pn = (1 − r) rn (77)

with the proviso that r < 1, that is, provided the rate �n+1,n

for each “upward” transition remains smaller than the rate
�n,n+1 of the matching “downward” transition. As in the
case of a spin driven by a circularly polarized field [9], the
existence of such a geometric distribution (77), combined
with equidistantly spaced canonical representatives (51) of
the system’s quasienergies, now allows one to introduce a
quasitemperature τ for the periodically driven nonequilibrium
system: Setting

r = exp

(
− h̄ν

kBτ

)
, (78)

one finds
τ

Tbath
= − h̄ν

kBTbath

1

ln r
. (79)

This definition of the quasitemperature formally yields neg-
ative τ when r > 1. While such negative quasitemperatures
are quite natural and physically meaningful in systems with a
finite-dimensional Hilbert space, such as periodically driven
spin systems [9], here they signal quasithermal instability,
implying �n+1,n > �n,n+1, so that the particle tends to climb
the oscillator ladder to infinite height.

Writing the Fourier series of v(t ) as

v(t ) =
∑

�

ei�ωt v(�), (80)

one has, more explicitly,

r =
∑

�|v(�)|2 N (+ν + �ω) J (|ν + �ω|)∑
�|v(�)|2 N (−ν − �ω) J (|ν + �ω|) . (81)

Let us now assume that the system approaches a mechan-
ical stability border, such that ν/ω tends to the integer
l0 from above, ν/ω → �0. In that case the Bose occupa-
tion numbers N (+ν − �0ω) = N (0+) and N (−ν + �0ω) =
N (0−) both become singular according to their respective
definition (69) or (70), with N (0−) = N (0+) + 1. Hence,
assuming further that the Fourier coefficient labeled −�0 is
of appreciable magnitude, and the spectral density J (|ω̃|)
smoothly approaches a nonvanishing value J (0), both the nu-
merator and the denominator of expression (81) are practically
exhausted by the term � = −�0 alone, resulting in

r ≈ N (0+)

N (0+) + 1
(82)

and, hence, r → 1, implying τ → ∞: If the (smooth) spectral
density of the oscillator bath does not vanish at ω̃ = 0, the
onset of mechanical instability for integer ν/ω necessarily is
accompanied by quasithermal instability.

Actually this link between mechanical and quasithermal
instability is even closer: If the spring function k(t ) admits
symmetric or antisymmetric functions v(t ) at the mechanical
stability border, as it happens in the Mathieu case (57), one
finds ∣∣v(+�−�0 )

∣∣2 = ∣∣v(−�−�0 )
∣∣2

if ν/ω → �0, (83)

or ∣∣v(+�−�0 )
∣∣2 = ∣∣v(−�−�0−1)

∣∣2
if ν/ω → �0 + 1/2. (84)

In both limiting cases the sums in the numerator and denom-
inator of the ratio (81) become identical, so that the onset of
mechanical instability entails τ = ∞, even regardless of the
bath density.

For illustrating these deliberations we resort once again to
the Mathieu oscillator (57), and now stipulate that the spectral
density has the power-law form

J (ω̃) = J0

(
ω̃

ω̃0

)s

. (85)

The case s = 1 is designated as Ohmic [32], so that exponents
0 < s < 1 and s > 1 indicate, respectively, sub-Ohmic and
super-Ohmic densities. In Fig. 3 we display the scaled inverse
quasitemperature h̄ω/(kBτ ) as a function of the scaled driving
strength q for all three cases, considering an oscillator with
a = 8.0 as in Fig. 1, while the bath temperature has been set
to β h̄ω = 1.0. We also plot the ratio p0/P0 of the quasithermal
occupation probability

p0 = 1 − r (86)

of the Floquet state n = 0 to the thermal occupation probabil-
ity of the undriven oscillator’s ground state,

P0 = 1 − exp(−β h̄�0). (87)

Here the scaled inverse quasitemperature falls below the in-
verse bath temperature in both stable regions, implying that
the driven system with q > 0 effectively is hotter than the
undriven one with q = 0, so that the occupation probability
of the Floquet state n = 0 is lower than the occupation proba-
bility of the oscillator ground state in the absence of the drive,
as might be expected naively on intuitive grounds. Moreover,
each border of mechanical stability identified before in Fig. 1
precisely marks an onset of quasithermal instability, i.e., a
driving strength for which r = 1, or h̄ω/(kBτ ) = 0.

The corresponding data for a = 8.2 are shown in Fig. 4.
Here the sub-Ohmic density gives rise to a regime in which the
inverse quasitemperature increases notably with increasing
driving strength, similar to the second zone of stability in
Fig. 3, indicating that the system can effectively become
colder though the drive is made stronger, reflecting the be-
havior of the characteristic exponent depicted in Fig. 2.

Since a Floquet transition of the system with negative (or
positive) frequency ω(�)

mn is accompanied by the addition (or
subtraction) of the energy −h̄ω(�)

mn to (or from) the bath, the
rate of energy dissipated in the quasistationary state is given
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0.0 2.0 4.0 6.0 8.0 10.0q
0.0

0.5

1.0
h-- ω

 / 
k B

τ

0.0 2.0 4.0 6.0 8.0 10.0q
0.0

0.5

1.0

p 0 / 
P 0

FIG. 3. Scaled inverse quasitemperature h̄ω/(kBτ ) (upper panel)
and ratio p0/P0 (lower panel) of the occupation probability p0 of
the Floquet state n = 0 to the occupation probability P0 of the
undriven system’s ground state for a Mathieu oscillator with a = 8.0,
as functions of the scaled driving strength q. The bath temperature
corresponds to β h̄ω = 1, while the spectral density of the bath is
Ohmic (s = 1, solid lines), sub-Ohmic (s = 0.5, dashed lines), and
super-Ohmic (s = 2, dotted lines). Observe that one has infinite
quasitemperature at each mechanical stability border seen in Fig. 1.

by [8]

R = −
∑
mn�

h̄ω(�)
mn �(�)

mn pn. (88)

Utilizing m = n ± 1 together with ω
(�)
n±1,n = ±ν + �ω, and

introducing the constant

c = πγ 2

h̄M�
(89)

which carries the dimension of squared inverse time, this
dissipation rate (88) can be written as

R = R1 + R2, (90)

where

R1 = cr

1 − r

∑
�

h̄|ν + �ω||v(�)|2J (|ν + �ω|) (91)

does not depend on the Bose occupation numbers (69) and
(70), while the second contribution does not depend on r,

R2 = −c
∑

�

h̄(ν + �ω)|v(�)|2N (ν + �ω) J (|ν + �ω|). (92)

In the Appendix we provide a formal proof of the intuitively
expected but nonobvious fact that this steady-state dissipation

0.0 2.0 4.0 6.0 8.0 10.0q
0.0

0.5

1.0

h-- ω
 / 

k B
τ

0.0 2.0 4.0 6.0 8.0 10.0q
0.0

0.5

1.0

p 0 / 
P 0

FIG. 4. As Fig. 3, but for a = 8.2. Observe that the sub-Ohmic
density of states gives rise to a nonmonotonic variation of the
quasitemperature with the driving strength.

rate (88) is positive, so that the energy flow always is directed
from the driven system into the bath, regardless of the sys-
tem’s quasitemperature. In Fig. 5 we plot the dimensionless
rate R/R0, where the reference rate is taken as

R0 = h̄ωcJ0

∑
�

|v(�)|2, (93)

for the situations previously considered in Figs. 3 and 4. Ev-
idently the total dissipation rate is duly positive and diverges
at the borders of quasithermal stability, as predicted by the
prefactor of the sum (91).

V. DISCUSSION: QUASITHERMAL ENGINEERING

The numerical examples worked out in the preceding sec-
tion all rely on the proposition that the bath-specific input
determining the partial rates (67) and, hence, the quasista-
tionary Floquet-state distributions {pn}n=0,1,2,..., namely, the
spectral density J (ω̃) be given by the models (85). With a view
towards future applications of periodic thermodynamics this
assumption may not be realistic; a given system may interact
with its environment preferentially at certain distinguished
frequencies. As demonstrated now, spectral densities struc-
tured in this manner may have remarkable physical effects.
Consider, for instance, a Gaussian density

J (ω̃) = J0 exp

(
− (ω̃ − ω̃0)2

(�ω̃)2

)
. (94)
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FIG. 5. Scaled dissipation rates R/R0 for a Mathieu oscillator
with a = 8.0 (upper panel) and a = 8.2 (lower panel) as functions
of the driving strength. As in Figs. 3 and 4, the bath temperature
corresponds to β h̄ω = 1, while the spectral density of the bath is
Ohmic (s = 1, solid lines), sub-Ohmic (s = 0.5, dashed lines), and
super-Ohmic (s = 2, dotted lines). The reference frequency entering
the spectral densities (85) here is ω̃0/ω = 1.0.

Given a sufficiently narrow width �ω̃, and a central fre-
quency ω̃0 detuned not too far from one of the system’s
positive “upward” transition frequencies ω

(�1 )
n+1,n = ν + �1ω,

this density (94) will essentially reduce the numerator and the
denominator of the ratio (81) to the single contribution � = �1,
provided the accompanying squared Fourier coefficient is not
too small, that is, if the drive is sufficiently strong. Since the
transition frequencies enter into the density with their absolute
value only, J (|ν + �1ω|) then cancels out of the remaining
ratio, leaving us with

r ≈ N (+ν + �1ω)

N (−ν − �1ω)
. (95)

Now the Bose occupation number N (+ν + �1ω) ≡ N+ is
given by Eq. (69), whereas N (−ν − �1ω) = N+ + 1 is ob-
tained from Eq. (70). If then additionally N+ � 1, one de-
duces r ≈ N+/(N+ + 1) � 1, meaning that the “downward”
transitions can be strongly favored over the upward ones,
even to the extent that the Floquet state n = 0 is populated
with higher probability than the oscillator ground state in
the absence of the drive, or, expressed differently, that the
quasitemperature of the driven system is lower than the tem-
perature of the bath it is coupled to [33].

0.0 2.0 4.0 6.0 8.0 10.0q
0.0

1.0

2.0

FIG. 6. Scaled inverse quasitemperature h̄ω/(kBτ ) (dashed line)
and occupation probability p0/P0 (solid line) for the Mathieu oscilla-
tor with parameter a = 8.0 coupled to a heat bath with β h̄ω = 1.0
as in Fig. 3, but with a Gaussian spectral density (94) centered
around ω̃0/ω = 3.2, with squared width (�ω̃/ω)2 = 0.1. Observe
that the quasitemperature of the driven system is lower than the
bath temperature for 0 < q � 3.89. (Both lines bend sharply at small
q unresolved here, and connect to the ordinate 1.0 for q = 0; see
Fig. 7.)

To provide a working example of this counterintuitive
“cooling by driving” mechanism, let us fix both the Mathieu
parameter a = 8.0 and the scaled bath temperature β h̄ω = 1.0
to the values employed before, and let us select the parameters
(�ω̃/ω)2 = 0.1 and ω̃0/ω = 3.2 for the above density (94).
In view of Fig. 1, showing that the canonical representative of
the characteristic exponent then varies in the interval

√
2 �

ν/ω � 1.0 within the first zone of stability, this selection
tends to favor the contributions with � = �1 = +2 to the
ratio (81), but to an extent depending on the scaled driving
strength because of the ac Stark shift of ν with q. Numerical
data corresponding to this scenario are displayed in Fig. 6.
Indeed, for 0 < q � 3.89 one finds h̄ω/(kBτ ) > 1, implying
τ < Tbath: The driven system effectively is cooled.

Seemingly, the lines drawn in Fig. 6 do not connect to the
ordinate 1.0 for vanishing q, as they should. But actually, they
do: In Fig. 7 we magnify the behavior of both h̄ω/(kBτ ) and
p0/P0 for very small q, confirming the expected continuity
for q → 0. The plateau values adopted here are perfectly
explained by Eq. (95) with �1 = 1, as the higher Fourier coef-
ficients are still too small to yield sizable contributions. This
case study indicates that “cooling by driving” may work even
with fairly low driving strengths, although the corresponding
relaxation times to the quasithermal nonequilibrium steady
state may be quite long if the rates are small.

The possibilities to shape a quasistationary Floquet-state
distribution with the help of the spectral density of the bath
are by no means exhausted by this inaugural example of
“quasithermal engineering.” Shifting the peak position from
ω̃0/ω = 3.2 to ω̃0/ω = 3.0, but leaving all other parameters
at their values already used for Fig. 6, one obtains the data
visualized in Fig. 8: Here the onset of thermal instability al-
ready occurs for significantly lower driving strength q ≈ 3.87
than the mechanical instability spotted in Fig. 1 at q ≈ 6.49,
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0.0 0.0005 0.001q

1.0

1.5

2.0

FIG. 7. As Fig. 6, for small scaled driving strengths. The almost
constant values of h̄ω/(kBτ ) (dashed line) and p0/P0 (solid line)
attained here are determined by Eq. (95) with �1 = 1.

and the system does not become quasithermally stable in the
second regime of mechanical stability. This is no contradiction
to our previous finding that r → 1 at a mechanical stability
border, since r raises to values higher than 1.0 already at
q ≈ 3.87, and then approaches unity from above.

Thus, the fact that quasistationary Floquet-state distribu-
tions do depend on the precise form of the system-bath
coupling [4,5] allows one to achieve unexpected effects by
deliberately designing this coupling, that is, by quasithermal
engineering. The phenomenon of “cooling by driving,” which
reflects one particular application of this concept, bears in-
teresting promises: If it were possible to decouple a driven
system with a quasitemperature τ lower than the temperature
Tbath of its bath from that bath, and then switch off the drive
in an adiabatic manner so that the Floquet-state occupation
probabilities would be preserved, the system would end up in
state with a genuine temperature τ < Tbath [8].

0.0 2.0 4.0q
0.0

1.0

2.0

FIG. 8. As Fig. 6, but with the Gaussian density (94) now being
centered around ω̃0/ω = 3.0. All other parameters have remained
unchanged. Observe that the onset of quasithermal instability here
has been decoupled from the mechanical instability identified in
Fig. 1, occurring already at q ≈ 3.87.

The model system we have employed in the present study,
the parametrically driven Mathieu oscillator, still is exception-
ally simple from the Floquet point of view, not showing fea-
tures which are characteristic for more generic nonintegrable
systems [10,34]. When dealing with such generic systems,
one has to compute the Floquet states fully numerically in
order to obtain the transition matrix elements (68) and their
Fourier components, and then requires a numerical solution of
the master equation (71), thus obstructing a clear view on the
underlying physics. This is why simplicity is an outstanding
virtue here. The only “hard” data required for converting
predictions made by our model into numbers are the Fourier
coefficients of the periodic parts (80) of the solutions to the
classical equation of motion (8); even these coefficients can
be obtained with fairly modest numerical effort. Therefore,
the parametrically driven harmonic oscillator coupled to a
thermal bath in various manners may serve as a valuable
source of inspiration in the further exploration of periodic
thermodynamics.
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APPENDIX: POSITIVITY OF THE DISSIPATION RATE

In this Appendix we demonstrate that the dissipation rate
(88) is always positive, which implies that the energy flows
from the driven oscillator into the bath when the system is
in a quasistationary state, regardless of whether the system’s
quasitemperature is higher or lower than the temperature of
the bath it is coupled to. Accounting for m = n ± 1 and
ω

(�)
n±1,n = ±ν + �ω, one has

R = −
∑

n�

h̄(+ν + �ω)�(�)
n+1,n pn

−
∑

n�

h̄(−ν + �ω)�(�)
n−1,n pn. (A1)

The proof of the positivity of R rests on the observation that
the contribution to this expression which is proportional to ν

vanishes: We find

−h̄ν
∑

n�

(
�

(�)
n+1,n − �

(�)
n−1,n

)
pn

= −h̄ν
∑

n

(�n+1,n pn − �n,n+1 pn+1)

= 0, (A2)

where, successively, definition (66) and the detailed-balance
relation (75) have been exploited. This allows us to re-
place ν in Eq. (A1) by ν + χ , with arbitrary χ . There-
fore, the previous representation (90) involving the two
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expressions (91) and (92) can be cast into the form

R = h̄c
∑

ν+�ω>0

(ν + �ω + χ )|v(�)|2J (|ν + �ω|)
(

r

1 − r
− N (ν + �ω)

)

+ h̄c
∑

ν+�ω<0

(|ν + �ω| − χ )|v(�)|2J (|ν + �ω|)
(

r

1 − r
+ N (ν + �ω)

)
. (A3)

Now consider the last factor of the contributions to the first sum, namely,

r

1 − r
− N (ν + �ω) = r exp(β h̄[ν + �ω]) − 1

(1 − r)(exp(β h̄[ν + �ω]) − 1)
. (A4)

Since ν + �ω is positive here, both factors appearing in the denominator on the right-hand side are positive for a quasistationary
state with 0 < r < 1, while the numerator, which increases monotonically with �, may change its sign, being negative for � < �0

and non-negative for � � �0. Let us then select χ � 0 such that the factor ν + �ω + χ is negative for � < �0, but positive for
� � �0. Then all terms contributing to the first sum in Eq. (A3) are non-negative, while the second sum is manifestly positive
for χ � 0. This concludes the proof.
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