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Bose-Einstein-like condensation in scalar active matter with diffusivity edge
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Due to their remarkable properties, systems that exhibit self-organization of their components resulting from
intrinsic microscopic activity have been extensively studied in the last two decades. In a generic class of
active matter, the interactions between the active components are represented via an effective density-dependent
diffusivity in a mean-field single-particle description. Here, a class of scalar active matter is proposed by
incorporating a diffusivity edge into the dynamics: when the local density of the system surpasses a critical
threshold, the diffusivity vanishes. The effect of the diffusivity edge is studied under the influence of an external
potential, which introduces the ability to control the behavior of the system by changing an effective temperature,
which is defined in terms of the single-particle diffusivity and mobility. At a critical effective temperature, a
system that is trapped by a harmonic potential is found to undergo a condensation transition, which manifests
formal similarities to Bose-Einstein condensation.
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Dense active matter provides an enthralling paradigm as its
emergent properties are determined by competition between
opposing tendencies that originate from both equilibrium and
nonequilibrium processes [1,2]. In particular, the proximity of
the active agents—through various nonequilibrium processes
such as hydrodynamic interactions [3], chemical signaling
[4–7], etc.—might lead to a collective enhancement of ac-
tivity [8,9] and triggering of instabilities [10–12], whereas
short-ranged physical interactions such as those arising from
stickiness and excluded volume effects (and possibly some
nonequilibrium processes as well) inhibit the collective activ-
ity [13–17], ultimately leading to the formation of globally
ordered dense structures [18–20] or dynamic arrest [21,22].
In the absence of long-range orientational ordering, which
can be caused by alignment interactions between polar agents
in sufficiently dense systems [23,24], the activity of indi-
vidual particles can be described by effective enhanced dif-
fusion coefficients beyond the timescale of rotational dif-
fusion [25]. In this regime, the system can be generically
described using dynamical equations for the density field at
the mean-field level. Here, we study such a description of
scalar active matter with a generic density dependence in
the diffusivity that incorporates a finite threshold: above a
critical density the diffusivity vanishes. We demonstrate that
the existence of this diffusivity edge leads to a dynamical
phase transition that can be categorized as an analog of
Bose-Einstein condensation (BEC) despite the system being
classical and nonequilibrium in nature. The present work
builds on the recent surge in the development of general-
ized thermodynamic descriptions for nonequilibrium active
matter [26,27].

We formulate a mean-field description of the dynamics of
the colloidal system described by an effective single-particle
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density field ρ(r, t ) that satisfies a conservation law ∂tρ + ∇ ·
J = 0 where the flux is defined as J = −D(ρ)∇ρ + ρv in
terms of an effective density-dependent diffusivity D(ρ) and
the drift velocity v. Similar equations have been studied in
the context of generalized nonlinear Fokker-Planck equations
and their applications in biological problems [28,29]. We
assume that the drift originates from an external potential U (r)
and involves a density-dependent mobility M(ρ), namely,
v = M(ρ)(−∇U ). Using the single-particle diffusivity Ds =
D(ρ → 0) and the single-particle mobility Ms = M(ρ → 0),
we define an effective temperature Teff that by construction
satisfies the fluctuation-dissipation theorem (FDT), namely,
kBTeff ≡ Ds/Ms, and define β ≡ 1/(kBTeff ) for simplicity of
notation. It is important to note that this definition of effective
temperature is only meant as a symbolic representation of
the measure of activity of the individual particles that can be
used as a tuning parameter in our generalized thermodynamic
description below. It has been shown that in the presence
of external fields and orientational bias the single-particle
activity cannot be represented by a single scalar effective
temperature [30,31].

We incorporate a generic nonequilibrium character for the
system by assuming a breakdown of FDT at finite densities,
namely, D(ρ)/M(ρ) �= Ds/Ms. We assume that this occurs
due to density-dependent nonequilibrium effects, which could
materialize as a result of collective inhibition as well as
collective activation due to motility. Therefore, the diffusivity
D(ρ) and the mobility M(ρ) will start from their single-
particle values for dilute systems and can in general go up
or down as the density is increased. To complete the for-
mulation, we define a diffusivity edge at concentration ρc

as follows: D(ρ)/M(ρ) = 0 for ρ � ρc. We note that in this
work we ignore nonlocal effects that arise from hydrodynamic
interactions when FDT is broken [32] as well as long-range
nonequilibrium interactions [12]. Note also that the external
potential can also play the role of a diffusivity edge and
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FIG. 1. The effect of inhibition in the presence of a diffusivity edge. (a) The density-dependent diffusivity for an inhibited system where the
collective inhibition effects cause the diffusivity to decrease until it vanishes. (b) The fraction of particles in the Bose condensate as a function
of the effective temperature near the critical transition temperature Tc. (c) The stationary-state distribution for different values of ρc vs ρ0.
(d) The average internal energy for a d-dimensional system with a step function diffusivity profile. (e) The heat capacity of the system showing
an overshoot and a discontinuity. (f) The pressure isotherm as calculated from changing the typical confinement size λ = (2πkBTeff/k)1/2

through changing k−1.

this can generate a competition with the contributions to the
diffusivity edge that come from the interactions.

We then seek possible stationary states of the system as
obtained by setting the net flux J/Ds = −(D(ρ)/Ds)∇ρ −
(M(ρ)/Ms)ρ∇βU to zero. This yields dβU

dρ
= − MsD(ρ)

DsM(ρ)ρ , and
consequently

βU = −
∫ ρ

ρ0

dρ ′

ρ ′
D(ρ ′)

Ds

Ms

M(ρ ′)
, (1)

where ρ0 is defined as the density at which energy is at its
lowest value of zero (i.e., the ground state of the energy
spectrum) that will correspond to the highest density in the
spectrum (or profile if energy depends on position). The
stationary distribution ρ(U ) can then be obtained by inverting
Eq. (1). The energy can originate from gravity or an externally
applied trapping potential, say by using holographic optical
traps [2]. Note that henceforth, we are going to represent
MsD(ρ)/(DsM(ρ)) as D(ρ)/Ds to keep the presentation sim-
ple.

The normalization condition for a total of N particles in d
dimensions reads N = ∫

dd r ρ(U (r)) = ∫
Sd rd−1dr ρ(U (r))

assuming that the potential is spherically symmetric, where
Sd = 2πd/2/�(d/2) is the surface area of the unit sphere em-
bedded in d dimensions. If U (r) can be inverted (to a single-
valued function), the normalization condition can be written
as N = ∫ ∞

0 dUg(U )ρ(U ) where g(U ) ≡ Sd (r(U ))d−1 dr
dU is

the density of states. For example, a harmonic trap in the
form of U = 1

2 kr2 yields g(U ) = Sd
2 ( 2

k )
d/2

U (d/2)−1. Since U
is a monotonically decaying function of ρ, we can rewrite the
normalization condition as follows:

N = kBTeff

Ds

∫ ρ0

0
dρ D(ρ) g(U (ρ)) (ρ0 < ρc). (2)

This condition gives ρ0(Teff ), which we expect to be a de-
creasing function of temperature. However, it only applies

when ρ0 < ρc as noted. This is because when ρ0 � ρc, the
integrand in Eq. (2) vanishes identically and no longer con-
tributes, which makes it impossible for the normalization to
be satisfied. Therefore, the system develops a condensate with
Nc particles at the ground state, and the normalization reads

N = Nc + kBTeff

Ds

∫ ρc

0
dρ D(ρ) g(U (ρ)) (ρ0 � ρc). (3)

We can calculate the size of the condensate as a func-
tion of temperature below the transition temperature Tc,
which can be obtained by setting ρ0(Tc) = ρc. When
Teff � Tc (corresponding to ρ0 � ρc), Eq. (1) tells us that
βU (ρ) = u(ρ/ρc). Noting that D(ρ) = Dsγ (ρ/ρc) by def-
inition, we can recast Eq. (3) into the form N = Nc +
(kBTeff )d/2 Sd

2 ( 2
k )

d/2
ρc

∫ 1
0 ds γ (s)(u(s))(d/2)−1. Noting that Tc

corresponds to Nc = 0, this calculation yields the fraction of
particles in the condensate as

Nc

N
= 1 −

(
Teff

Tc

)d/2

. (4)

This result is plotted in Fig. 1(b). Below, we will examine
the behavior of systems that undergo such a condensation
transition more concretely, using a number of specific cases.

Consider a situation where inhibition causes the effective
diffusivity in this mean-field description to monotonically
decrease as a function of density, until it vanishes at ρ = ρc.
Figure 1(a) shows the density-dependent diffusivity, and the
resulting stationary distribution ρ(U ) is presented in Fig. 1(c).
For ρ0 � ρc the distribution approaches a Boltzmann weight
ρ0e−βU while increasing ρ0 with respect to ρc leads to pro-
gressively faster-than-exponential decay, until the slope of the
distribution diverges at U = 0 for ρ0 = ρc, which is the onset
of condensation. For ρ0 > ρc, the slope at U = 0 continues
to diverge, while the asymptotic value ρ(U → 0+) = ρc will
be systematically smaller than ρ0. This signals the presence
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of a condensate at U = 0, which populates Nc particles as
determined by Eqs. (3) and (4).

To better illustrate the properties of the condensation
transition let us consider a step function profile for diffu-
sivity, namely, D(ρ < ρc) = Ds and D(ρ > ρc) = 0. Then,
for the stationary distribution ρ we find ρ0e−βU for ρ0 <

ρc and ρce−βU for ρ0 � ρc. Using this explicit form, we
can use the normalization condition Eq. (2) to obtain the
value of ρ0, which for the harmonic potential yields ρ0 =
N (2πkBTeff/k)−d/2. Using this, we can find the transition
temperature as Tc = k

2πkB
(N/ρc)2/d by setting ρ0(Tc) = ρc.

We can also calculate the average energy of the system as
〈U 〉 = ∫ ∞

0 dU g(U )Uρ(U ). This yields

〈U 〉 =
{ d

2 NkBTeff , for ρ0 < ρc

d
2

(
2π
k

)d/2
ρc(kBTeff )(d/2)+1, for ρ0 � ρc,

(5)

which can be rewritten as

〈U 〉 = d

2
NkBTeff

{( Teff
Tc

)d/2
, for Teff � Tc

1, for Teff > Tc.
(6)

This result is plotted in Fig. 1(d). Consequently, we obtain the
following expression for the heat capacity of the system:

C = d〈U 〉
dTeff

= d

2
NkB

{(
d
2 + 1

)( Teff
Tc

)d/2
, for Teff � Tc

1, for Teff > Tc,
(7)

which is plotted in Fig. 1(e). We can construct other gener-
alized thermodynamic functions. We can define entropy via
dS = dU/Teff , and find

S =
{(

d
2 + 1

)
NkB

( Teff
Tc

)d/2
, for Teff � Tc(

d
2 + 1

)
NkB + d

2 NkB ln
( Teff

Tc

)
, for Teff > Tc.

(8)

The expression for Teff � Tc satisfies the Nernst rule and
can be written as S(Teff � Tc) = ( d

2 + 1)(N − Nc)kB, which
reveals that condensed particles carry zero entropy and that
there is a latent heat associated with the transition in a coexis-
tence. Although the system does not have a fixed volume, we
can calculate the average system size as λ = (2πkBTeff/k)1/2

and define an effective volume V = λd . It is possible to define
a Helmholtz free energy F = U − Teff S and use it to calcu-
late pressure via P = −( ∂U

∂V )Teff = ( 2
d ) k

V
∂F
∂k . For isotherms, the

transition happens at a critical stiffness kc = 2πkBTeff
(N/ρc )2/d . We find

P =
{

ρckBTeff , for k−1 � k−1
c

N/(2π )d/2

(kBTeff )d/2−1
1

k−d/2 , for k−1 > k−1
c ,

(9)

which is plotted in Fig. 1(f). This result can also be found
through a mechanical definition of pressure, by integrating
average force over a bounding surface area [33]. Eliminating
the effective temperature, we find that the critical point for
the pressure isotherms always lie on the curve defined by
Pc = 1

2π
N2/dρ

1−2/d
c /k−1

c . The isothermal compressibility can
be defined via κ−1

Teff
= −V ( ∂P

∂V )Teff . We observe that κTeff di-
verges for k−1 � k−1

c . Equations (4), (7)–(9) highlight a strong
analogy to the thermodynamics of BEC [34–36]. There are
also subtle differences. The discontinuity in the heat capacity
curve, which does not exist for dimensions less than five in

normal BEC [35], is a consequence of the discrete jump in
diffusivity at ρc. For a normal BEC, the divergence of the
isothermal incompressibility is connected to the existence of
off-diagonal–long-range order (ODLRO) via the FDT that
relates density correlations to the compressibility. We do not
have access to the density correlations at this level of descrip-
tion in our theory, since it is constructed at the mean-field
level. It will be interesting to generalize the present framework
to account for fluctuations and investigate the question of the
existence of ODLRO in our model.

We next consider a D(ρ) profile that contains collective
activation at intermediate densities before the inhibition at
higher level of crowding gives rise to a diffusivity edge, as
shown in Fig. 2(a). This type of enhancement of activity has
been observed to arise from hydrodynamic interactions [8,9]
and can arise also from alignment interactions—below the
onset of flocking, so that the system can still be described by a
scalar order parameter. In this case, the stationary distribution
that is shown in Fig. 2(b) shows a tendency for the particles
to occupy higher energy states more than the equilibrium
case, while the formation of the Bose condensate happens by
following the same stages as in the inhibited case, namely,
divergence of the slope of ρ(U ) at U = 0 when ρ0 = ρc and
the subsequent depletion that is accompanied by the formation
of the condensate at the ground state.

To further examine the effect of activity, we consider a
piecewise diffusivity profile

D(ρ) =

⎧⎪⎨
⎪⎩

Ds, for 0 � ρ < ρa

Da, for ρa � ρ < ρc

0, for ρc � ρ,

(10)

where Da is the diffusivity in the activated region. Let us
define α ≡ Da/Ds as the measure of activation. The behavior
of the system will depend on how the ground-state density
ρ0 compares with the density scales ρa and ρc. The different
categories are discussed below.

(a) Low-density regime ρ0 < ρa. The stationary solution
in this regime is found as the Boltzmann weight ρ0e−βU

with ρ0 = N (2πkBTeff/k)−d/2 and the average energy given
as 〈U 〉 = d

2 NkBTeff , which yields C = d
2 NkB. Setting ρ0 = ρa,

we find the transition temperature Ta = k
2πkB

(N/ρa )2/d below
which the system will start to be influenced by the activation.
The dilute regime corresponds to Teff > Ta.

(b) Intermediate-density regime ρa � ρ0 < ρc. In this range
of densities, which corresponds to Teff � Ta, the stationary
solution is found as follows:

ρ(U ) =
{
ρa(ρ0/ρa )αe−βU , for ρ < ρa

ρ0 e−βU/α, for ρa � ρ < ρ0,
(11)

which resembles a distribution with two different tempera-
tures for different ranges of energy. In this regime, we obtain
the particle number normalization condition as

N = ρa(2π/k)d/2

�(d/2)
(kBTeff )d/2Hd/2

(
α, ln

ρ0

ρa

)
, (12)

and the average internal energy content as

〈U 〉 = ρa(2π/k)d/2

�(d/2)
(kBTeff )(d/2)+1H(d/2)+1

(
α, ln

ρ0

ρa

)
, (13)
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FIG. 2. The effect of activation in the presence a diffusivity edge. (a) The density-dependent diffusivity for an activated system where
motility causes the diffusivity to increase initially until it starts to rapidly decrease due to inhibition and finally vanishes. (b) The resulting
stationary-state distribution for different values of ρc vs ρ0. (c) The average internal energy for a d-dimensional system as a function of
temperature near the activity temperature Ta, for ρc → ∞ (corresponding to Tc → 0). The activated case corresponds to α > 1 and the inhibited
case corresponds to α < 1. (d) The heat capacity of the system showing a dip for the activated case and an overshoot for the inhibited case,
at an intermediate temperature Tm < Ta, for ρc → ∞ (corresponding to Tc → 0). The intercept at Teff = 0 is equal to αd/2. (e) The average
internal energy for finite ρc, where a BEC appears at Teff < Tc. (f) The heat capacity for the case with finite ρc. The plot shows an example
where Tc < Tm. It is also possible to have the condensation before the temperature reaches the maximum or minimum.

in terms of the function Hz(α, p) ≡ epαz(�(z) − �(z, p)) +
epα�(z, αp), where �(z, p) = ∫ ∞

p dx xz−1e−x is the upper in-
complete gamma function. From the expression for average
energy, we can calculate the heat capacity as follows:

C

NkB
=

(
d

2
+ 1

)H(d/2)+1
(
α, ln ρ0

ρa

)
H(d/2)

(
α, ln ρ0

ρa

) −
(

d

2

)H(d/2)+1
(
α, ln ρ0

ρa

) + (α − 1)
(

ρ0

ρa

)α
�

(
d
2 + 1, α ln ρ0

ρa

)
Hd/2

(
α, ln ρ0

ρa

) + (α − 1)
(

ρ0

ρa

)α
�

(
d
2 , α ln ρ0

ρa

) . (14)

The average internal energy [shown in Fig. 2(c)] starts with
a negative curvature for activated particles (α > 1) and a
positive curvature for inhibited particles (α < 1). The slope
of this curve corresponds to the heat capacity, which is
shown in Fig. 2(d). It starts from αd/2 (in units of NkB)
at small effective temperatures and goes through a ripple
before asymptotically approaching d/2 at sufficiently large
effective temperatures. These results are valid at all effective
temperatures (or densities) when ρc → ∞.

(c) High-density regime ρc � ρ0. For finite ρc there exists
a regime at which the condensation happens when the density
surpasses ρc. The stationary distribution in this case, which
corresponds to Teff � Tc < Ta, is given as

ρ(U ) =

⎧⎪⎨
⎪⎩

ρa(ρc/ρa )αe−βU , for ρ < ρa

ρce−βU/α, for ρa � ρ < ρc

condensate, for ρc � ρ < ρ0,

(15)

using which we can calculate the average internal energy as

〈U 〉 = N
H(d/2)+1

(
α, ln ρc

ρa

)
Hd/2

(
α, ln ρc

ρa

) (
Teff

Tc

)d/2

kBTeff , (16)

and the heat capacity of the system as

C = NkB

(
d

2
+ 1

)H(d/2)+1
(
α, ln ρc

ρa

)
Hd/2

(
α, ln ρc

ρa

) (
Teff

Tc

)d/2

. (17)

The corresponding plots of energy and heat capacity in
this case are given in Figs. 2(e) and 2(f), respectively,
where the system develops the condensate at Teff � Tc,
with the resulting characteristic discontinuity in the heat
capacity.

(d) Relation to the quantum Bose gas. It is instructive
to make the connection between the present model and the
quantum statistics of bosons. The Bose distribution ρ(U ) =
ρQ/(eβ(U−μ) − 1) (where ρQ = 1/λd

dB is the so-called
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quantum concentration with λdB being the thermal de Broglie
wavelength, and μ is the chemical potential) can be rewritten
in the form of dβU

dρ
= −D(ρ)

Dsρ
, which yields D(ρ)

Ds
= 1

1+ρ/ρQ
.

This shows that for densities higher than the quantum con-
centration the system will effectively experience an inhibited
diffusivity in the language of our description. The fact that a
smooth decay that is not cut off by a diffusivity edge leads to
BEC is due to the divergence of ρ(U ) as U → 0 for bosons,
which contrasts from our model where a finite maximum
density of ρ0 is assumed. We also note that the nature of the
condensate in BEC is determined by the quantum mechanical
characteristics of the system: it is described by a complex
order parameter representing the macroscopic wave function
and a broken U(1) gauge symmetry, unlike our classical
nonequilibrium system.

We have thus shown that the existence of a diffusivity edge
leads to the formation of a condensate, through a transition
that has formal similarities to Bose-Einstein condensation.
An example of active matter with a diffusivity edge that

has been recently found in a system of magnetic bacteria
in shear flow [37,38] will be presented elsewhere [39]. Our
work has similarities with the formulation that is used to
describe motility-induced phase separation (MIPS), with the
key difference that the instability in MIPS is triggered by
the effective diffusivity changing sign thereby promoting
the formation of a dense cluster beyond a threshold density
[13]. Enforcing the diffusivity edge preempts that instability
and gives rise to a new behavior with formal similarities to
BEC. We also note that in quantum mechanics we are limited
to very specific forms of BEC, as the kinetic energy of
bosonic particles can adopt only a limited number of forms;
e.g., p2/2m for nonrelativistic massive bosons in dilute gases.
Our formulation allows us to explore countless new types
of BEC by designing appropriate forms of external trapping
potential.

I would like to acknowledge helpful discussions with
Benoît Mahault.
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