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Simulation of live-cell imaging system reveals hidden uncertainties
in cooperative binding measurements

Masaki Watabe,1,* Satya N. V. Arjunan,1,2 Wei Xiang Chew,1,3 Kazunari Kaizu,1 and Koichi Takahashi1,4,5,†

1Laboratory for Biologically Inspired Computing, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka 565-0874, Japan
2Lowy Cancer Research Centre, The University of New South Wales, Sydney, Australia

3Physics Department, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
4Institute for Advanced Biosciences, Keio University, Fujisawa, Kanagawa 252-8520, Japan

5Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522, Japan

(Received 4 October 2018; published 3 July 2019)

We propose a computational method to quantitatively evaluate the systematic uncertainties that arise from
undetectable sources in biological measurements using live-cell imaging techniques. We then demonstrate this
method in measuring the biological cooperativity of molecular binding networks, in particular, ligand molecules
binding to cell-surface receptor proteins. Our results show how the nonstatistical uncertainties lead to invalid
identifications of the measured cooperativity. Through this computational scheme, the biological interpretation
can be more objectively evaluated and understood under a specific experimental configuration of interest.
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Introduction. Recent progress in robotic and automated
techniques for sampling and analyzing complex biological
data can reduce statistical uncertainties, increasing precision
in measuring biological and physical properties in living
cells [1–4]. However, despite advances in computational tech-
niques, the measurement process has resisted the quantitative
evaluation of systematic uncertainties that arise from inaccu-
racies in experimental data acquisition and analysis [5,6]. An
absence and ignorance of the evaluation of such systematic
uncertainties often lead to excessive interpretations of the
measured properties.

A key challenge to evaluating the systematic uncertainties
is finding a meaningful and nonintuitive variance. There exist
a large number of systematic sources in the measurement
processes, but no well-defined procedure to evaluate system-
atic variance. Although experienced experimental biophysi-
cists are able to anticipate some systematic sources (e.g.,
the faulty calibration of measurement equipment) and ensure
that most systematic uncertainties are much less than the
required precision, other sources cannot even be detected
by empirical approaches. The systematic variance that arises
from undetectable sources in the measurement process can
cause erroneous identification and interpretation of measured
properties [5–8]. For example, structural uncertainties that
arise from various model assumptions in biological network
topologies cannot be directly extracted from experimental
data, introducing errors into analysis and potentially giving
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rise to misleading conclusions [9,10]. Thus, the measurement
processes require a nonexperimental evaluation method that
allows biophysicists to objectively interpret the measured
outputs and draw proper conclusions.

To better understand the origin of these hidden uncer-
tainties, we consider a process of data-driven (or inductive)
modeling in bioimaging. For the sake of simplicity, we assume
modeling the steady state behavior of a specific type of protein
(e.g., cell-membrane receptors) in a living cell of interest. In
this modeling, we also assume that a fluorescence microscopy
system measures the concentrations of the proteins tagged
with fluorescent emitters (e.g., green fluorescence proteins)
within the focal plane of the optics onto a digital camera
placed at the conjugated focal plane. Technical details of
extracting the protein concentrations from microscopy images
are also omitted in this simplification.

Here, as an example, we evaluate the systematic uncer-
tainties associated with a specific parameter (e.g., image ac-
quisition periods) in the simplified measurement process. We
first consider that the measured concentration of the observed
proteins is a function of time at the ith image frame C(ti ). For
m cell samples, the experimenters ensure the stability of the
concentration changes in an image acquisition period T . The
observed rate in the protein concentrations converges near 0
as ti → T ,

�Ci

�ti
→ 0 ± σC′, (1)

where �Ci = C(ti ) − C(ti−1) and �ti = ti − ti−1 are the con-
centration and time difference at the ith image frame, respec-
tively. σC′ represents the statistical deviations in the observed
rates. An “apparent” steady state of the protein concentrations
is then computed by the time-average integration C ± σC .

In the data-driven approach, the measured protein concen-
trations are typically fitted to the network model constructed
under the data interpretation that the measured concentrations
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fully converge to equilibrium within the acquisition period.
The rate of concentration changes in the observed proteins
interacting with N variables can be theoretically modeled in
the form of an ordinary differential equation. In equilibrium
modeling, the rate fully converges to 0 as t → ∞,

dR(t )

dt
= f (R(t ), x(t ), t ; θ ) → 0, (2)

where R(t ) is the observed protein concentration as a function
of time and model parameters θ (e.g., dissociation constants),
x(t ) = [x1(t ), . . . , xN (t )], and xi(t ) is the value of the ith
variable at t and θ . In the equilibrium modeling, the rate
of changes in the ith variable over time also fully con-
verges to 0 as t → ∞, dxi(t )/dt = fi(R(t ), x(t ), t ; θ ) → 0.
The full-equilibrium concentration in the observed proteins
is then computed by the time-average integration R̃(θ ) =
limτ→∞ 1

τ

∫ τ

0 R(t ; θ )dt . Fitting procedures (e.g., maximum-
likelihood method) directly compare the measured concen-
tration (C) to the theoretical full-equilibrium concentration
[R̃(θ )] binned into each histogram. The best-fit model parame-
ters (θ ) are those which minimize the discrepancies defined in
an optimization function M(R̃(θ ),C, σC ). Confidence levels
and correlations are also estimated in each fitting parameter.

Although the experimenters ensure the stability of the
measured protein concentration changes in time and show the
goodness of fit to the equilibrium model, actual biological
cells generally operate out of equilibrium. In Eq. (1), the
apparent state stability can be not only interpreted as the com-
plete convergence of the protein responses to full equilibrium
but also the incomplete convergence if the responses are so
slow that the protein concentration remains nonequilibrium
during the acquisition period. To split these double data inter-
pretations, the experimenters, however, must contend with the
experimental configuration and the state-transition speed in
the observed proteins. The data interpretation that gives rise to
the complete convergence requires not only maximizing event
samples in a shorter image acquisition period but also fastens
the observed rates of converging to the full equilibrium. The
configuration to reduce statistical uncertainties constrains the
limitation and sensitivity in measuring the state-transition
time. Because of these tradeoffs, it is unclear when or whether
the measured protein concentration actually converges to the
full equilibrium within the acquisition period T .

To see the effects of the double data interpretations in the
apparent steady states, we consider a Taylor expansion of
Eq. (2) at the model-true equilibrium concentration R = R̃(θ ),

f (R(t ; θ )) ≈ [R(t ; θ ) − R]
∂ f

∂R

∣∣∣∣
R(t ;θ )=R

+ · · · , (3)

where the zeroth-order term vanishes at the model-true equi-
librium f (R) = 0. At t = T , we evaluate the systematic vari-
ance that arises from the following model assumptions. If full
equilibrium is proper as a model assumption, then f (R(T ; θ ))
can fully converge to 0. No systematic variance can be gen-
erated in the fitting results, |R(T ; θ ) − R| � σC , implying a
successful restoration of the model-true equilibrium concen-
trations. However, if nonequilibrium is the proper assumption,
then the f (R(T ; θ )) can converge to a finite value near 0.
Under this assumption, measuring the model-true equilibrium
requires a limit excess of the experimental configuration,

thereby generating an undetectable gap in the fitting results,
|R(T ; θ ) − R| � σC . This implies the reconstruction failure
of the model-true equilibrium concentration at T , leading to
excessive interpretations of the measured protein concentra-
tion. Thus, the systematic variance that arises from the double
data interpretations cannot be evaluated without computing
the dynamical behavior of the equilibrium models.

A computational modeling approach for a whole experi-
mental system is more relevant to extract the impact of various
systematic uncertainties [11,12]. In this Rapid Communica-
tion, we introduce a comprehensive method to quantitatively
evaluate the systematic variance computed not only from a
computer simulation of live-cell imaging systems but also im-
age processing and pattern recognition algorithms for biolog-
ical images. In particular, we construct a bioimage simulation
module for an oblique illumination fluorescence microscopy
system configured to observe receptor proteins binding to
ligands on an apical surface of biological cells. We then show
how the nonstatistical variance leads to misidentification of
cooperativity in the binding system.

Evaluation method. A key insight into evaluating sys-
tematic variance is to estimate how well the ground-true
model properties can be restored through analytical proce-
dures, influencing the interpretation of biological properties
reconstructed (or extracted) from actual biological images
[6–8]. Such model-driven evaluation allows us to quantify
the restoration efficiency and defects (or failure) in the re-
construction processes. We cannot fully know the true model;
otherwise, there would not be any uncertainty in the biological
measurements. However, we can approximately know what
to expect either from earlier experimental results or from
the biological models derived from experimental knowledge.
Such approximations can function as a guide to compute
systematic variance in an organized manner from a specific
experimental configuration of interest.

Systematic variance generally causes the reconstructed
properties to be shifted in one direction from the ground-true
model properties [6–8]. Of particular importance is the quan-
tifying of systematic variance that arises from undetectable
sources in the measurement processes. If the ground-true
property is well restored through the reconstruction process,
then it is unchanged and has a weak influence on the bio-
logical interpretation. However, if the reconstruction process
poorly restores the true property, it may change significantly,
affecting the biological interpretation. For example, geometric
uncertainties imposed by the unobservable sources such as
complex and irregular shapes of membrane-enclosed cellular
compartments (e.g., endoplasmic reticulum) in fluorescence
recovery after photobleaching (FRAP) experiments lead to in-
valid measurements of molecular mobility and compartmental
connectivity [13,14].

A realistic ground-true model simulation that approx-
imately represents a whole experimental system can be
constructed for the model-driven evaluation. Biological mea-
surements using live-cell imaging techniques are generally
governed by various natural laws and principles of biochem-
istry and physics. Models of each imaging process can be
simulated within the limited range and dimensions of model-
parameter space. Various model-simulation studies exist in
physics simulations for molecular fluorescence and optical
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apparatus [15–18] and systems biology simulations aimed at
explaining and predicting biological phenomenon [19–21].
We integrate these model simulations into a unified model
corresponding approximately to a whole experimental system,
thus helping to explore the extended dimensions of model-
parameter space that can affect potential imaging and analyt-
ical outcomes [13,22–28]. In particular, we have developed
the bioimage simulation platform for handling a large range
of biochemical and physical parameters that govern image-
based measurement systems, generating computational pho-
tomicrographs that arise from the various systematic sources:
spatiotemporal models of biological cells, photophysics, and
imaging apparatus [25]. Through such simulation platforms,
the biological interpretation of measured properties can be
more objectively evaluated and understood under a specific
experimental configuration of interest.

Results. The computational method presented here enables
us to evaluate the systematic variance that arises from unde-
tectable sources in cooperative binding measurements using
fluorescence microscopy. There are two major parts in our
work.

First, we program a bioimage simulation module for a
single-molecule experimental system using an oblique il-
lumination fluorescence microscope configured to observe
biochemical reactions and the aggregation of ligand-induced
receptors on an apical region of a cell membrane [25,29–32].
Implementation details are described in Sec. A of the Supple-
mental Material (SM) [33]. Figure S6 represents the optical
arrangement and cell-surface geometry of the cell model
illuminated with an incident beam angle less than the critical
angle. Microscopy specifications and the operating conditions
are also shown in Table S3.

We then evaluate our analytical procedure (see SM
Sec. B [33]) to identify the cooperativity in the cell models:
simple binding of ligands to single receptors and dimer for-
mations of ligand-enhanced receptors [e.g., epidermal growth
factor (EGF) receptors [30,34,35], ErbB receptors [31,32],
and membrane-anchored receptors [36]]. There exist a large
number of systematic sources in the cooperative binding mea-
surements: for example, the local precision of single molecule
images, normalization procedure, and initial concentrations of
ligands and receptors. In particular, we focus on computing
the systematic uncertainties associated with the image acqui-
sition period and spot-detection efficiency in the measurement
process. The evaluation results are summarized in Fig. 1 (see
SM Sec. C for more details [33]).

Cooperative characteristics in the receptor aggregation sys-
tems can be generally seen in the concavity of the Scatchard
plot [37–40]. In simple ligand-receptor binding, the ground-
true and the reconstructed Scatchard plots exhibit a straight
line that represents no cooperativity, implying successful
restoration of the cooperative characteristics by the analyt-
ical procedure. A concave downward curve that represents
positive cooperativity in dimer formation I is also well
conserved by the analysis. However, the concavity of the
Scatchard plot for dimer formation II is violated by the
reconstruction process. While the ground-true plot is well
characterized as a concave upward curve that represents
negative cooperativity, the reconstructed plot exhibits posi-
tive cooperativity. Qualitative interpretation of the Scatchard
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FIG. 1. Summary of the evaluation results. The reconstructed
Hill coefficients are compared with the ground-true Hill coefficients.
The top row shows the molecular networks: the simple ligand-
receptor binding and the dimer formations of the ligand-induced
receptors. The Y-shaped object and black solid circle represent the
receptor and the ligand, respectively. Y-bar objects represent an
intermediate state of the receptor. The equilibrium binding curves
and the Scatchard plots are shown in the middle rows. Red and black
lines represent the reconstructed and the ground-true data points.
Blue solid lines indicate the best-fit curves. The best-fit values and
statistical uncertainties (1σ ) of the Hill coefficients are shown in the
bottom row. If the Hill coefficient is less than unity (n < 1), then
the receptor system exhibits negative cooperativity. If n > 1, then
cooperativity is positive. There is no cooperativity if n = 1.

plots thus implies misidentification of cooperativity in dimer
formation II.

Cooperative characteristics are also found in the shape
of the equilibrium binding curve [37–40]. In standard ap-
proaches to biological sciences, the Hill function can be fitted
to the binding curves to quantify cooperative characteristics in
binding systems. The Hill function can be generally written in
the form of

B(L) = B0Ln

Kn
A + Ln

, (4)

where L, B0, KA, and n represent the ligand concentration,
maximum area density of ligand binding, ligands occupying
half of the binding sites, and the Hill coefficient. The observed
area density binned in each ligand concentration input is com-
pared to the expected area density for the Hill function. The
best-fit parameters are these which minimize χ2 = −2 lnL
where L is the likelihood function,

χ2 =
Nbins∑
i=0

(Oi − Ei )2

σ 2
i

, (5)

where Oi and Ei are the observed and expected area densities
in the ith input, and σi is the statistical error in Oi. In addition,
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FIG. 2. More properties of dimer formation II. (a) The restora-
tion efficiency of the area density with respect to the concentration
range of 1.0 pM to 4.0 nM. The black dashed line represents 80%
efficiency. (b) Fractional occupancy of false spots (or defects) with
respect to the concentration range. The red dashed line represents
15% occupancy. (c) Time-course data for 0.300 nM ligand input.
The reconstructed data are shown by red crosses. Solid and dashed
pink lines represent the ground-true equilibrium state and 80% of
the true equilibrium state. The ground-true response of the binding
state is shown with black solid lines. The 80% restoration of the true
response is shown by the dashed black line. (d) Time-course data for
0.030 nM ligand input.

no penalty terms for nuisance parameters are introduced in
this minimization function.

In dimer formation I, the ground-true and the recon-
structed binding curves exhibit concave downward curves that
represent positive cooperativity (n > 1), implying successful
restoration of the cooperative characteristics. The unity value
of the ground-true Hill coefficient (n = 1) in the simple
binding is also well conserved by the analysis. However, in
the dimer formation II, positive cooperativity appears in the
reconstructed curves while the ground-true curve displays that
the Hill coefficient is less than unity (n < 1), representing
negative cooperativity. Hence, the cooperative characteristics
are violated by the analytical procedure.

To clearly understand what causes such a violation in
dimer formation II, we estimated the restoration efficiency and
defects of the analytical procedure. Figure 2(a) shows the ratio
of the reconstructed binding curve to the ground-true curve:
The shape of the true binding curve is partially restored in
the reconstructed curve. While the restoration efficiency of
the spot area density is about 80% and steady at relatively
higher ligand concentration inputs (�0.2 nM), the efficiency
significantly decreases in the lower ligand concentration re-
gion (<0.2 nM). Approximately 13% of detected spots are
false and quite steady with respect to the concentration range
[see Fig. 2(b)].

In the higher concentration range, the shape of the recon-
structed binding curves are unchanged from the ground-true
curves. Figure 2(c) shows that the reconstructed responses
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FIG. 3. The fitting results of dimer formation II. (a) The equilib-
rium binding curve. (b) Scatchard plot. Red and black lines represent
the reconstructed and the ground-true data points. Blue solid and
dashed lines indicate the best-fit curves and the curves shifted ±1σ

from the best fits, respectively. (c) Confidence levels of data fitting
in the full concentration range. (d) Confidence levels of data fitting
in the range of high concentration. Pink and black stars represent the
ground truth and the best fit, respectively. Black contours around the
best fit are allowed at 68%, 95%, and 99% confidence levels.

(red crossed lines) successfully converge to 80% of the
true-equilibrium state (pink dashed lines), reaching 80%
restoration of the true-equilibrium state. Therefore, imperfect
performance of the spot-detection algorithm can shift the
entire reconstructed binding curves up and down, implying a
weak influence on the identification of cooperativity.

However, in the lower concentration range, the recon-
structed responses still remain in a nonequilibrium state
within the image acquisition period, 0–5000 s [see Fig. 2(d)].
The responses are so slow that the binding system cannot
completely converge to an equilibrium state within the acqui-
sition period. Such a slow transition thus leads to the misiden-
tification of the system’s equilibration. Although the true-
nonequilibrium binding state (black line) is well restored by
the reconstruction procedure, the reconstructed binding state
(red crossed lines) fails to converge to the true-equilibrium
state (pink line), generating a gap between the reconstructed
binding state and the true-equilibrium state. Such gaps cannot
be detected even during the acquisition period, thereby lead-
ing to a violation of the cooperative characteristics.

Finally, we estimated statistical uncertainties in the fitting
parameters to numerically indicate the confidence of our fit-
ting results of dimer formation II [7,8]. Figure 3(c) shows the
confidence levels of the fitting result in the full concentration
range: The ground truth (pink star) is located outside of the
99% confidence level, implying a failure to restore the true
parameter values. In this analysis, the slow transition in the
lower concentration range is the major systematic source gen-
erating gaps between the reconstructed binding state and the
true-equilibrium state. This can cause the restoration failure of
the ground-true Hill coefficient. Such systematic gaps cannot
be eliminated by even increasing the number of cell samples.
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Cooperativity has been generally evaluated under the as-
sumption that the binding systems completely converge to the
equilibrium state during the image acquisition period [31,32].
Our results, however, imply the violation of this assumption
in dimer formation II. For a proper analysis and interpretation,
we performed a parameter fitting in a limited range of ligand
concentration, 0.2–4.0 nM (see Fig. 3). The best fit of the
Hill coefficient is 1.068 ± 0.36(stat.) while the ground truth
is 0.722. Figure 3(d) shows the confidence levels for the
fitting result: The ground truth (pink star) is located within
the 99% confidence level. While the ground truth of the dimer
formation exhibits negative cooperativity, the reconstructed
Hill coefficients largely fluctuate around unity. The coopera-
tive characteristics are thus less determinable in this analysis,
but the contour line successfully encloses the ground truth,
displaying a better result.

Conclusion. Major scientific activities in biological sci-
ences are dedicated not only to extracting laws and patterns
from experimental data but also experimentally validating
the biological models derived from experimental knowledge
[41,42]. Various model candidates can be either confirmed or
refuted by repeating these activities. The key to the successful
reporting of experimental results is to provide an objective
evaluation and representation of the uncertainties that arise
from imprecision and inaccuracies in the experimental pro-
cesses. The study and estimation of the experimental uncer-
tainties have been generally known as an error analysis, its
main function being to allow biophysicists to numerically
indicate the validity and confidence of their experimental
results [6–8].

In the error analysis, a statistical analysis of the exper-
imental data is only half the story. The other half is the
computation of the systematic uncertainties that affect the
sensitivity and limitation of a given experimental configura-
tion to the model parameters and, even more significantly,
to new advancements in biophysics and biology. An identi-
fication of the new findings in the experimental approaches
must always contend with those error estimations. For this
reason, we proposed the computational method to evaluate the
impact of various systematic uncertainties in the biological
measurements using live-cell imaging techniques. We then
presented examples of not only estimating the systematic
uncertainties in model assumptions and parameters (e.g., im-
age acquisition periods and spot-detection efficiency) that
can affect the cooperative binding measurements but also
reducing them to levels allowing for proper conclusions. In
the near future, we believe our computational scheme can help
bridge the gap between theory and experiment in biological
sciences.
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