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Critical excitation-inhibition balance in dense neural networks
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The “edge of chaos” phase transition in artificial neural networks is of renewed interest in light of recent
evidence for criticality in brain dynamics. Statistical mechanics traditionally studied this transition with
connectivity k as the control parameter and an exactly balanced excitation-inhibition ratio. While critical
connectivity has been found to be low in these model systems, typically around k = 2, which is unrealistic
for natural neural systems, a recent study utilizing the excitation-inhibition ratio as the control parameter found
a new, nearly degree independent, critical point when connectivity is large. However, the new phase transition
is accompanied by an unnaturally high level of activity in the network. Here we study random neural networks
with the additional properties of (i) a high clustering coefficient and (ii) neurons that are solely either excitatory
or inhibitory, a prominent property of natural neurons. As a result, we observe an additional critical point
for networks with large connectivity, regardless of degree distribution, which exhibits low activity levels that
compare well with neuronal brain networks.
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Between the ordered and chaotic regimes of threshold
neural networks lies the “edge of chaos,” a critical point
where the length and size distributions of activity avalanches
are governed by characteristic power laws. This dynamical
phase transition has been thoroughly studied in random neural
networks [1–4], nonsymmetric spin glasses [5], and random
Boolean networks [6–10]. Traditionally, threshold neural net-
works have been studied with precisely balanced excitation
and inhibition, usually by randomly assigning activating and
inhibiting links with equal probabilities. In these networks,
criticality occurs for small average degrees k [1]. However,
when allowing the fraction of excitatory links F+ as a second
control parameter of the phase transition, it was recently
discovered that there exist two critical lines in the k-F+-plane:
one almost parallel to the F+ axis at low k and one almost
independent of k at some F+ > 0.5 [11]; see Fig. 1.

The relevance of this new critical point becomes appar-
ent in the context of neural brain networks which exhibit
a high average degree (k ≈ 104 in human brains [12]) and
a characteristic imbalance between excitation and inhibition
(20–30% of neurons are inhibitory in monkey brains [13]).
There is a large amount of evidence suggesting that the
brain operates near a critical point, namely, avalanche sizes
and durations governed by power laws [14–19], the possibil-
ity of tuning from a subcritical regime through the critical
point to a supercritical regime [20], mathematical relations
between critical exponents, and collapsible avalanche shapes
[15,19,21]. Further, Fraiman et al. showed striking similarities
between correlation networks extracted from brains and the
Ising model at the critical point [22]. The interest in the role
of criticality in the brain is illustrated by the large amount of
research devoted to criticality in network models inspired by
biological networks [23–30].
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Unfortunately, the high-degree critical point of Fig. 1 ex-
ists in a high-activity regime which is unrealistic for brain
networks. We find, however, an additional critical point that
persists at low activities, at the left flank of the high sensitivity
region, when including additional network properties char-
acteristic of brain networks, thereby providing a more likely
network model candidate for describing the processes behind
brain criticality.

We use threshold networks consisting of N nodes con-
nected by kN directed edges, whose node states are updated
in parallel according to

σi(t + 1) =
{

1 if
∑N

j=1 wi jσ j (t ) > h

0 if
∑N

j=1 wi jσ j (t ) � h,
(1)

where σi(t ) is the node i’s state at time t and wi j is the
weight of the connection from node j to node i. The weights
wi j can be 0 if there is no connection between nodes i and
j, or ±1 otherwise. The weights of existing connections are
chosen randomly with excitatory links wi j = +1 chosen with
probability F+. Initial states of the nodes are chosen according
to a random initial activity A0 = 1

N

∑
i σi.

A simple quantity that we use to measure criticality is the
sensitivity λ [31,32]. Imagine switching one node’s state in
the current time step; then λ is defined as the average number
of nodes whose states will then be different in the next time
step from what they would have been otherwise. If sensitivity
is smaller or larger than 1, perturbations will quickly die out
or dominate the entire network, respectively. Hence, at λ = 1,
the network is in a critical state.

First, in order to establish whether the vertical white line
defined by λ = 1 seen in Fig. 1 indeed is a critical point, we
measure the averages of multiple quantities of interest, as well
as the average sensitivity for 103 time steps after letting the
network relax from its initial condition within 2 × 103 time
steps (tests show that increasing this time or waiting until
an attractor is reached—where possible, attractors cannot be
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FIG. 1. Sensitivity as a function of fraction of excitatory links
F+ and connectivity k in random neural networks, similar to
Fig. 1C in [11], for threshold h = 0 and N = 103 nodes. Lines
compare Eq. (3) (green solid line) and the numerical solution of
Eq. (2) (red dashed line) with the simulation results. Both lines
approximate the simulation’s critical line well for large k. Note that
the left flank of the sensitive region of the simulation does not exhibit
a (white) critical corridor, which is further discussed in the text.

found in a reasonable amount of time for λ � 1—does not
change the results) for different values of F+. Afterwards, we
can plot the measured quantities as a function of sensitivity.
The measured quantities are the network’s activity A, the
fraction of nodes which do not change their state within the
103 time steps NS, and the average number of state changes
per node and time step F/Nt . This measurement is shown in
Fig. 2.

For λ < 1, essentially all nodes are static (i.e., remaining
in one state, either active or inactive) and almost no flips
happen, whereas for λ > 1, the number of static nodes drops
and the number of flips increases, so λ = 1 is a boundary
between order and chaos. Also note that the network’s activity
is very high at the critical point. It seems, therefore, that
this critical point cannot underlie a mechanism that defines
criticality in the brain, as almost all neurons constantly firing
is not realistic.

Further, we measure avalanche sizes and durations at the
critical point, as described in the Supplemental Material [33];
see Fig. 3. We observe power laws in both avalanche size and
duration distributions.

FIG. 2. Activity A, static node fraction NS, and flips per node and
time step F/Nt as a function of the sensitivity λ for k = 80, N = 104,
and h = 1.

(a) (b)

(c) (d)
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FIG. 3. Distributions of avalanches. (a) Sizes and (c) durations
for networks with F+ ≈ 0.6, k = 80, N = 104, and h = 1. The slopes
shown in red are (a) −0.8 and (c) −1.4. Also, (b) attractor and
(d) transient length distributions for networks with 0.95 � λ � 1.05,
F+ ≈ 0.6, k = 80, N = 4444, and h = 1. The slopes shown in red
are (b) −1.3 and (d) −1.9. Logarithmic binning is used for all four
figures.

Finally, we measure the attractor and transient lengths, as
well as the average sensitivity within the attractor for a num-
ber of different network realizations for fixed parameters. We
only use parameter and attractor lengths of networks whose
average sensitivity λ is within 1 − δ � λ � 1 + δ with δ =
0.05. Attractor and transient length distributions are shown in
Fig. 3. Both the attractor lengths as well as the right flank of
the transient length distributions show clear power laws, as is
to be expected for critical networks [34].

All of the above discussed properties lead us to conclude
that this is indeed a critical point.

We use Derrida’s annealed approximation [6], adopted for
threshold networks [2], to estimate the critical F+ as a function
of k, and arrive at the equation

1

k
=

(
k

k+h+1
2

)
F

k+h+1
2+ (1 − F+)

k−h−1
2

k + h + 1

2k
. (2)

Under the assumption of large average degree k � h, k � 1,
this can be simplified to

F+ = 1

2

⎡
⎣1 +

{
1 −

(
2π

k

) k
2

} 1
2

⎤
⎦. (3)

See the Supplemental Material [33] for details. Figure 1 shows
a comparison of Eq. (3), as well as the numerical solution of
Eq. (2), with our simulation results.

Let us now focus on the the left flank of the central high
sensitivity region in Fig. 1. When lowering the value of F+
from intermediate values towards 0, sensitivity λ seems to
suddenly drop to 0 from values larger than 1. In the simu-
lations, this is due to a sudden drop in persistent activity: All
activity dies out before the average sensitivity crosses through
one. Critical sensitivity here falls into the left (black) region
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(a)

(b)

FIG. 4. (a) Activity A, static node fraction NS, flips per node and
time step F/Nt , and sensitivity λ at h = 1 and (b) sensitivity λ for
different thresholds h as a function of F+ for k = 80, N = 104, and
WS-EIN networks with rewiring probability β = 10−2 (C ≈ 0.72).
The sensitivity for an equivalent ER network (C = 0.008) is also
shown in (a) for comparison.

of entirely inactive networks, whose sensitivity is not shown
(as only persisting activity is relevant and, therefore, plotted).

However, as a central observation of our study, we find
that networks can be kept from abruptly dying out for low
F+ by introducing two properties to the network: increasing
the networks’ clustering coefficient C and requiring that nodes
have either only excitatory or only inhibitory outgoing edges
(Dale’s principle). Both of these properties are prominent
features of brain networks [35–39]. Note that these properties
do not necessarily cause networks to show finite activity for
values of F+ in which the random network has zero activity,
but instead that the activity goes continuously towards zero
with lowering F+ instead of abruptly dropping to zero.

We believe the mechanism underlying the left flank’s sur-
vival to be as follows: If two excitatory nodes which are
connected to each other are active, then for high clustering
coefficients, they are likely to have shared neighbors and can
therefore combine their efforts to also activate these neighbors
more easily than in random networks and thereby create
islands of surviving activity. The contribution of nodes being
either excitatory or inhibitory is likely that if few random
nodes are active within a region, this property significantly
increases the variance of the relative number of activating
signals in that region and therefore increases the probability
of areas exhibiting high excitation by random chance.

We also see that the sensitivity in clustered graphs with
nodes either fully excitatory or inhibitory closely follows the
sensitivity of random graphs for high values of F+, but then
drops off for lower F+; see Fig. 4. This is likely due to
nodes in the center of activity islands receiving many more
excitatory connections than necessary for activation. This both
lowers the overall activity because these redundant excitatory
signals essentially lower the network’s total excitation and

FIG. 5. Sensitivity as a function of fraction of excitatory links
F+ and connectivity k in clustered EIN (Dale) neural networks
for threshold h = 2, clustering coefficient C = 0.65, and N = 104

nodes.

lowers the sensitivity because only nodes with an input sum
near the excitation threshold contribute to it.

Networks with only a high clustering coefficient, without
the second property of nodes having either only excitatory
or only inhibitory outgoing edges, can also show surviving
activity on the left flank for some initial configurations and
for exceedingly high clustering coefficients and thresholds,
but even then the left flank drops sharply towards zero. In
the following, let us denote networks obeying Dale’s princi-
ple [39], i.e., networks consisting of excitatory neurons and
inhibitory neurons as EIN networks, as opposed to networks
with excitatory-inhibitory edges which we will call EIE net-
works.

Since the network’s activity does not abruptly die out
on the left flank anymore for clustered EIN networks, a
second critical point can be found here, as shown in Fig. 5
and Fig. 4(a). Plotting the sensitivity in the F+-k plane in
Fig. 5, we now see that the left flank indeed exhibits critical
sensitivity λ = 1 (white color). Note that in contrast to the
first critical point at the right flank of the sensitive region, this
second critical point at the left flank exists in a low-activity
state, making it more interesting for real-life applications,
such as studying mechanisms underlying brain criticality.

To construct networks with different high clustering coef-
ficients, here we use directed Watts-Strogatz (WS) networks
[40,41]. The original WS model consists of a ring of N
neurons with periodic boundary conditions in which every
neuron is connected to its k nearest neighbors. Then, connec-
tions are randomly rewired with rewiring probability β. We
use an essentially equivalent implementation without explicit
rewiring from [41] in which the probability of a connection
from a node i to a node j existing is

pi j = βp0 + (1 − β )�[p0 − Di j/(N/2)]

+ 1
2 (1 − β )�[p0 + Di j/(N/2)]

×�[p0 − (Di j − 0.5)/(N/2)], (4)
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FIG. 6. Sensitivity λ and activity A for different network configurations. White denotes a critical sensitivity. (a) For EIE networks—except
for very high clustering coefficients and thresholds—the left flank dies out before reaching the critical point. (b) Switching to an EIN network
stabilizes the left flank; however, it still collapses for high average degrees k without a high clustering coefficient. Some white artifacts can
be seen because the left flank does not die out within 2 × 103 time steps; it does, however, die out after a larger number of time steps, and
therefore no second critical point exists here; see Supplemental Material [33] for more information. (c) A higher clustering coefficient C = 0.65
stabilizes the left flank even for higher average degrees k (this case is taken from Fig. 5). (d) With a higher threshold h = 10, even a lower
clustering coefficient C = 0.25 can have a stable left flank. The distance between the critical points shrinks for higher thresholds and both
critical points are also moved to higher F+. (e) For EIN networks, a higher clustering coefficient (C = 0.5) lowers the network’s average
sensitivity, leading this configuration to only barely pass above λ = 1 between the critical points. From the shape of the left critical line from
(b) to (d), it can also be seen that the left critical line is merely a continuation of the horizontal line from Fig. 1 folded upwards.

where p0 = k/(N − 1) and Di j is the distance between nodes
i and j on the ring, i.e., Di j = min(|i − j|, N − |i − j|). The
third term has been added to enable uneven values of k.
By manipulating the rewiring probability β, we can vary
a network’s clustering coefficient and average path length.
The Watts-Strogatz model’s strength is that when varying β,
there is a region in which the clustering coefficient is nearly
constant while the average path length changes drastically and
a second region in which the clustering coefficient changes
and the average path length is nearly constant, enabling us to
isolate these two parameters’ effects.

In our study of clustered EIN networks, we find that the
second critical point comes into existence in the region in
which the clustering coefficient changes, while it is unaffected
by changes within the region in which the clustering coeffi-
cient is constant. Therefore, a high clustering coefficient is
sufficient to enable the second critical point’s existence.

The influence of thresholds and clustering coefficients, as
well as the difference between EIE and EIN networks is
shown in Figs. 4(b) and 6.

So far, our networks had degree distributions centered
around an average value; however, random or Watts-Strogatz
models rarely describe real-life networks. Scale-free or simi-
lar networks with a broad degree distribution are significantly
more abundant in nature. In fact, for neuronal networks,
cumulative degree distributions ranging from power laws
[42–44] over exponentially truncated power laws [45–49]
to exponential laws [50–53] have been found, with the ob-
servation that distributions following exponentially truncated
power laws increasingly resemble true power laws for mea-
surements on finer scales [45].

In analogy to the brain, we focus on EIN networks with
a broad link distribution. For generating the topology, we
require an algorithm that (1) can produce a scale-free graph

in which low-degree nodes can exist, (2) can initialize large
networks fast, (3) can produce networks with variable clus-
tering coefficient, as we have already seen that this can
have a large impact on criticality, and, if possible, (4) can
also produce other degree distributions similar to scale-free
graphs.

For this purpose, we adapt the algorithm described by
Lo et al. [54], a particularly efficient implementation of
preferential attachment [55], to fit our criteria.

In our algorithm, we start with a single node and iteratively
add a connection between two nodes every two time steps, so
that the sum of in and out degrees in the network increases
by one per time step. The origins and targets of these added
nodes are chosen by preferential attachment, meaning that
the probability of a node being chosen is proportional to
the sum of its in and out degree plus an offset δ, which
ensures that the probability of previously unconnected nodes
receiving connections is nonzero. Further, every m time steps,
a new node is added to the network. One significant difference
between our algorithm and other algorithms creating scale-
free graphs is that the newly added edges need not connect to
the newly added node, but can instead connect any two nodes
in the system, allowing low-degree nodes to exist in the final
network.

This process is repeated multiple times and the connections
of every initialization are added together into one network
until the desired average degree is reached. Finally, we add
i random incoming and outgoing connections to every node,
where i is the first integer with i > h, so that all nodes have
the chance of being activated. For a detailed description of
this algorithm, see the Supplemental Material [33].

The two parameters δ and m control whether the resulting
degree distribution is scale free or an exponentially truncated
power law and also the clustering coefficient. In general,
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(a) (b) (c)

(d) (e) (f)

FIG. 7. (a)–(c) Sensitivity λ and (d)–(f) activity A as a function
of F+ for an exponentially truncated power law network with low
clustering coefficient (δ = 40, m = 2) (red) and a scale-free network
with high clustering coefficient, where the largest node is excitatory
(δ = 1, m = 10) (green) or inhibitory (blue) at k = 40, N = 104,
and (a), (d) h = 1, (b), (e) h = 7, (c), (f) h = 10. The sensitivity
and activity for the highly clustered network were measured as the
average within the network’s attractor.

lower δ and higher m lead to scale-free distributions with high
clustering, whereas high δ and low m lead to low clustering
truncated power law distributions.

Studying the dynamics of EIN networks with such a topol-
ogy, we find that for scale-free graphs, the right critical point
still exists (see Fig. 7), and that the sensitivity λ splits into
two paths on the right flank and is therefore no longer solely
dependent on F+. The two different paths are dependent on
whether the network’s largest node is excitatory or inhibitory
(in our algorithm, there is a clear hierarchy between nodes,
dictated by when they were introduced to the network, and
therefore the first node is always clearly larger than the rest, so
no multiple nodes are competing for the spot of largest node).
Similarly to the existence of the left flank in WS networks,
this split in the sensitivity is amplified by high clustering
coefficients and thresholds.

Figure 7 also shows the existence of the left flank’s second
critical point for high clustering coefficients C and thresholds
h; see Fig. 7. For low clustering coefficients, the left flank still
dies out. High clustering coefficients and thresholds lower the
sensitivity curve’s slope, so that for certain parameters, the
sensitivity, and therefore criticality, is almost constant over a
wide area of F+; see Fig. 7(b).

To summarize, in threshold neural networks, a phase transi-
tion between a chaotic and a quiescent regime has been found
for highly clustered networks with exclusively excitatory-
inhibitory nodes. This critical point exhibits a persisting, yet
low level of average activity (which in unclustered networks
would die out). Besides the requirement of a certain level
of clustering, it is robust both for random as well as broad
(scale-free) degree distributions.

This new critical point is of particular interest to neuro-
science because it is relatively independent of the degree k
and may, therefore, occur at the large average degree present
in brains. Furthermore, the main prerequisites for this critical
point’s existence are present in the brain: a highly clustered
architecture and nodes being either exclusively excitatory or
inhibitory (Dale’s principle).

It can only be speculated what role criticality may play in
nature. It has been discussed that it could optimize a network’s
information processing capabilities. Yet also, dynamical phase
transitions are a simple means that physics provides, allowing
a complex system to tune to an intermediate activity regime
with great ease.

Last, but not least, research has shown that the balance
between excitation and inhibition in the brain, which needs to
be a specific value for a network to be critical in our model, is
vital for a functioning brain [56–60] and that disturbing this
balance can negatively impact information processing [61].
Interestingly, the ratio of excitatory and inhibitory neurons in
brain networks is observed to be almost constant throughout
an organism’s development, and feedback algorithms that
regulate this ratio are currently discussed [62]. This supports
our hypothesis that the critical point described in this Rapid
Communication, resulting from the statistical mechanics of a
dynamical phase transition, may provide a natural target value
for mechanisms that regulate the excitation-inhibition balance
in the brain.
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