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Richardson diffusion in neurons
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The dynamics of an initial wave packet affected by random noise is considered in the framework of a comb
model. The model is relevant to a diffusion problem in neurons where the transport of ions can be accelerated by
an external random field due to synapse fluctuations. In the present specific case, it acts as boundary conditions,
which lead to a reaction transport equation with multiplicative noise. The temporal behavior of the mean squared
displacement is estimated analytically, and it is shown that the spreading of the initial wave packet corresponds
to Richardson diffusion.
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Introduction. Recent experimental investigations show that
transport of an initial wave packet can be accelerated inside
space-time disordered media [1,2]. In particular, hyperdiffu-
sion (as a quantum realization of Richardson diffusion [3])
has been observed, experimentally and numerically, and ex-
plained theoretically [4,5]. It is reasonable to believe that
this phenomenon has a generic nature and takes place not
only in the wave dynamics, and results from spatiotemporal
characteristics of random fields. Here, we show that be-
hind Richardson diffusion in the comb models, there is the
same mechanism based on a phenomenological statistical
approach, discussed in quantum mechanical observation of
Richardson diffusion [5]. Dating back to work by Kolmogorov
and Obukhov [6,7], it suggests this turbulent acceleration by
means of a Gaussian delta correlated noise [8], added to the
dynamical system ẍ + V (t ) = 0. In this case, due to the noise
term V (t ), Richardson diffusion [3] takes place with the mean
squared displacement (MSD) 〈x2(t )〉 ∼ t3, which is due to
the diffusive spread of the velocity profile 〈ẋ2(t )〉 ∼ t . We
consider a diffusion problem in neurons in the framework of a
comb model and show that the transport can be accelerated by
an external random field, which, in the present specific case,
acts as a boundary condition.

It has been shown in experimental and numerical studies
that the transport of inert particles along the dendrite struc-
ture of neurons corresponds to anomalous diffusion (namely,
subdiffusion), when the temporal behavior of the MSD is of
the power law tγ , where the transport exponent 0 < γ < 1
depends on the geometry and density of the dendritic spines
[9–11]. Dendritic spines are the basic functional units in pre-
and postsynaptic activity of neurons [12], and further studies
have shown that the comb model can be used to describe
the movement and binding dynamics of particles, including
reaction transport of Ca2+ ions inside the spines [13–15]. A
comb model has been suggested as a simplified toy model,
which reflects this property of anomalous diffusion, resulted
from the geometry, which mimics the geometry of spiny
dendrites, such that the backbone is the dendrite and the
fingers are the spines (see Fig. 1).

A special property of such geometry is reflected in trans-
port (diffusion) coefficients, such that transport along the x

coordinate is possible along the backbone at y = 0 only, while
diffusion along the y coordinate is homogeneous. Therefore,
the probability to find a particle at the position (x, y) at
time t is determined by the probability distribution function
(PDF) P = P(x, y, t ), which is controlled by the Fokker-
Planck equation [16]. The corresponding equation in the
dimensionless variables reads

∂t P = δ(y)∂2
x P + ∂2

y P. (1)

For infinite combs, there is subdiffusion along the backbone
with the MSD of the order of t1/2 [17]. This fractional
diffusion in the comb reflects a neuronal property of the
power law adaptation, which results in neuronal fractional
differentiation, observed experimentally [18], as well. For a
finite comb with finite length h of fingers, this subdiffusion
takes place at times t < h, and then it switches to normal
diffusion at t > h [19,20].

It should be admitted that this multiscale dynamics in the
finite combs depends also on boundary conditions at finite
fingers spines. These boundary conditions are determined
by unstable synapses [21], undergoing random fluctuations,1

and can be considered as a random nose at boundaries.
Eventually, we arrived at a simple model, the comb model,
whose geometry mimics the neuron spiny dendrite and the
boundary conditions mimic the synapse random fluctuations.
These boundary conditions are defined as follows:

∂yP(x, y, t )|y=h − ∂yP(x, y, t )|y=−h = W (x, t ). (2)

It is worth noting that the boundary conditions at y = ±h
correspond to the same spine (or synapse). Therefore, W (x, t )
consists of two identical fluxes with the opposite directions.

Stochastic Fokker-Planck equation. Therefore, the influ-
ence of the boundary fluctuations on the particle transport
(including reactions) in neurons is studied in the framework of
the comb model (1) with random boundary conditions for the
fingers described in Eq. (2). Here we consider a multiplicative
noise w(x, t ) in the form W (x, t ) = w(x, t )ρ(x, t ), where
ρ(x, t ) is a marginal PDF, which determines transport along

1See this discussion in Ref. [21], and references therein.
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FIG. 1. Mapping of a spine dendrite on a comb, where fingers
correspond to spines. There is an infinite number of y channels
continuously distributed along the x coordinates. In this case at each
x, the probability to enter to a finger is 1/2 (in either direction) and
the probability to move along the backbone is 1/2 as well. This
relation between the real three-dimensional Laplace operator and the
Laplace operator of the comb model (1) was established in Ref. [20].

the backbone. The distribution of w(x, t ) and its spatiotempo-
ral characteristics will be defined in the text in such a way that
it will be suitable for the MSD calculations.

The backbone transport is described by either marginal
PDF

ρ(x, t ) =
∫ h

−h
P(x, y, t )dy, (3)

or by the backbone PDF P(x, y = 0, t ). Here we consider a
diffusion process on the times t > h. In this case, there is a
simple relation between these PDFs P(x, y = 0, t ) ∼ hρ(x, t ),
which reduces to the equality at the asymptotically large time
scale, t � h. As follows from Ref. [15], this relation should
be also true for random finger’s length with the finite mean
length of the order of h.

Performing integration with respect to y, one arrives at the
stochastic Fokker-Planck equation (SFPE)

∂tρ(x, t ) = h∂2
x ρ(x, t ) + w(x, t )ρ(x, t ) (4)

with the initial condition ρ0(x) = ρ(x, t = 0) = δ(x). In the
case of additive noise, this equation is also known as an
Edwards-Wilkinson equation [22].

An important caution here is that to avoid an avalanche
[exponential increasing of the number of transporting particles
due to the random reaction term w(x, t )ρ(x, t )], we impose
the restriction condition, which controls the total number of
particles. In particular, we can consider a conservation rule of
the total number of particles at every realization of the random
noise w(x, t ). It reads2

∫
x
ρ(x, t )dx = 1. (5)

2Later, we shall suggest a more realistic Fisher-Kolmogorov-
Petrovskii-Piskunov mechanism of the reaction control. At this point
we do not specify a mechanism of such restriction. However, if for
every realization of w(x, t ) and for any random walk of a particle, the
probability to find it inside the boundaries is 1, then condition (5) is
fulfilled. It is worth noting that the implementation of this condition
supposes also free boundary conditions at the dendrite-axon connec-
tion x = xd-a ≡ X , which leads to a free nonzero current j(X, t ) from
the dendrite to the axon. Therefore, integration of the equation with
respect to x yields

∫
x w(x, t )ρ(x, t )dx = j(X, t ). In this case, there

are no restrictions of the random noise w(x, t ).

The solution of the SFPE (4) can be presented in the form
of the time-ordered exponentials as follows:

ρ(x, t ) = T̂ exp

{∫ t

0

[
h∂2

x + w(x, τ )
]
dτ

}
ρ0(x), (6)

where T̂ is the time-ordering operator, and under this sign
all values are commuted. Applying the Hubbard-Stratonovich
transformation for the second derivative, we present it as a
shift operator

eht∂2
x =

∫ ∏
τ

dλ(τ )√
4π/hdτ

e−h/4
∫ t

0 λ2(τ )dτ eh∂x
∫ t

0 λ(τ )dτ . (7)

This yields solution (6) in the form of the Feynman-Kac path
integral

ρ(x, t ) =
∫ ∏

τ

dλ(τ )√
4π/hdτ

× e−h/4
∫ t

0 λ2(τ )dτ e
∫ t

0 w(xτ (t ),τ )dτ δ(x(t )), (8)

where

xτ (t ) = x + h
∫ t

τ

λ(τ )dτ, x(t ) = x + h
∫ t

0
λ(τ )dτ. (9)

We substitute this solution in the restriction condition (5)
and take into account the delta function for the integration
with respect to x. The path integral is estimated by the
extremum principal Hamiltonian function, or action Se, which
yields Eq. (5) as follows:

F (t )e−Se (T ) = 1. (10)

Here, the prefactor F (T ) stands for the normalization condi-
tion and compensates the exponential proliferation of parti-
cles.3 The extremum action is determined from the condition
δS(T ) = 0, where

S(T ) =
∫ T

0
L(Ẋ , X, t )dt =

∫ T

0

[
1

4h
Ẋ 2 − w(−X, t )

]
dt .

Here the velocity and the coordinate are Ẋ = hλ(t ) and
X = x + h

∫ t
0 λ(τ )dτ , correspondingly. The extremum action

Se(T ) is determined by the Euler-Lagrange equation, which
corresponds to the velocity functional

λ(t ) = 2h
∫ t

0

∂w(−X, τ )

∂X
dτ. (11)

Richardson diffusion. Now the MSD 〈〈x2(t )〉〉w, averaged
over all possible realizations of the random force f (x, t ) =
∂w(−X,τ )

∂ (−X ) can be estimated. Taking into account Eq. (10), we
have

〈〈x2(t )〉〉w =
〈∫

x
x2ρ(x, t )dx

〉
w

= 4h2
∫ T

0
dt

∫ t

0
dτ

∫ T

0
dt′

∫ t ′

0
dτ ′〈 f (x, τ) f (x, τ ′)〉w.

(12)

3In fact, it is an unknown, complicated random function. However,
due to this restriction condition, the explicit form for this prefactor is
not important.
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Now we can suppose the correlation properties of the
random noise, in such a way that both w(x, t ) and f (x, t )
are Gaussian, translational invariant in time and space,
and delta correlated in time, and their correlation func-
tions CR(x, t ; x′t ′) = 〈R(x, t )R(x′, t ′)〉w with R = (

w

f

)
are de-

termined by a spectral density S(k) as follows:

Cw(x, t ; x′, t ′) = Cw(x − x′)δ(t − t ′)

=
∫

S(k) cos[k(x − x′)]dkδ(t − t ′), (13a)

Cf (x, t ; x′, t ′) = Cf (x − x′)δ(t − t ′)

=
∫

k2S(k) cos[k(x − x′)]dkδ(t − t ′).

(13b)

Taking into account correlation (13b) in Eq. (12), we arrive
at Richardson diffusion [8] with the MSD

〈〈x2(t )〉〉w = 2h2Dt3, (14)

where D = ∫
k2S(k)dk is a transport coefficient

Reaction front propagation. An important part of the anal-
ysis is the restriction, or control of the number particles. It is
a common statement for any mechanism of the control of the
number of diffusive particles, which prevents the uncontrolled
exponential increasing of the particle’s number due to the
random reaction term w(x, t )ρ(x, t ) in SFPE (4). However,
the number conservation condition (5) is too strong, as ad-
mitted above, and in a general case, the number of particles
cannot be conserved due to reactions. In this case, a more
reasonable and realistic mechanism of the reaction control
is due to a FKPP (Fisher-Kolmogorov-Petrovskii-Piskunov)
term, which should be inserted in SFPE (4). The latter now
reads

∂tρ = h∂2
x ρ + w(1 − ρ)ρ. (15)

This stochastic reaction-transport equation can be important
for the understanding of translocation waves of Ca2+ ions
in spiny dendrites, studied in the framework of the FKPP
scheme [14,23]. The stochastic FKKP term in Eq. (15)
is a random generalization of a standard FKPP reaction
term ρ(1 − ρ), which is widely used in reaction transport
equations [24].

In this nonlinear case, the exact analytical treatment is
not possible anymore, and we apply an analytical approxi-
mation to estimate the overall velocity of the reaction front
propagation without resolving the exact shape of the front.
The method is based on a hyperbolic scaling of space-
time variables (x, t ) by a small parameter ε. Following
Ref. [25], we introduce this parameter ε at the derivatives.
To this end, we rescale x → x/ε and t → t/ε, and for the
marginal PDF we have ρ(x, t ) → ρε(x, t ) = ρ( x

ε
, t

ε
). We

look for the asymptotic solution in the form of the Green’s
approximation

ρε(x, t ) = exp[−Sε(x, t )/ε]. (16)

The main strategy of the implication of this construction is
the limit ε → 0 that yields the asymptotic solution at finite
values of x and t , such that ρε(x, t ) is not vanishing only when

Sε(x, t ) = 0. Therefore, expression (16) is an extremum solu-
tion, which determines the position of the reaction spreading
front. Substituting solution (16) in Eq. (15), scaled by ε, and
taking limit ε → 0, we obtain that Sε(x, t ) is an extremum
solution: limε→0 Sε(x, t ) = Se(x, t ), which is the extremum
action, or the Hamilton’s principal function. It is determined
by the Hamilton-Jacobi equation

−∂t Se = h(∂xSe )2 + w(x, t ). (17)

Taking into account that −∂t Se = H is Hamiltonian and
∂xSe = p is the momentum, we arrive at the particle dy-
namics in a random noise potential with the Hamiltonian
H = hp2 + w(x, t ).

Further analysis differs from the standard approach of
Ref. [25], where a particle is free, but here it is in a random
potential. Eventually, we arrived at the same mechanism of
turbulent diffusion, considered above in Eq. (11). Therefore,
in the framework of the Hamiltonian approach, the overall
velocity of the reaction front reads

V = ẋ = 2hp = 2h
∫ t

0
f (x, τ )dτ. (18)

The correlation properties of the random force are de-
scribed by Eq. (13b), and we obtain the mean squared
velocity 〈V 2(t )〉w = 4h2Dt , which corresponds to Richard-
son diffusion with the MSD 〈x2(t )〉w = 2h2Dt3. It co-
incides exactly with the MSD in Eq. (14). Note that
in both cases, h is accounted as the particle inverse
mass.

Discussion. We obtained that the SFPE (4) with the re-
striction condition (5), or the FKPP mechanism controlling
the number of transporting particles, describes a reaction-
transport process in the presence of random boundary con-
ditions. The latter plays a role of accelerator mechanism
of reaction transport and leads to Richardson diffusion. An
important condition of the applicability of the SFPE (4) for
the transport inside the comb model considered as a toy model
of spiny dendrites, is the long-time asymptotics. In this case
the transport corresponds to normal diffusion. Eventually,
it corresponds to a kind of Edwards-Wilkinson equation,
where the random term is a multiplicative noise. However,
this equation does not describe the initial time dynamics,
which is important as well for the timescale t < h. In this
case the underlying kinetics inside the backbone dendrite is
subdiffusion, due to the relation in the Laplace space P̃(x, y =
0, s) = √

sρ̃(x, s). This case leads to essential difficulties
of the analysis and can be an important issue for future
studies.

In conclusion, it should be admitted that an important
motivation of the research is possible experimental studies
of transport inside neurons, including artificial neurons [26].
Another interesting possibility relates to experimental inves-
tigations of reaction transport in a microfluidic device of
the comb geometry [20,27] with the boundary control of
fingers.
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