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Why Lévy «a-stable distributions lack general closed-form expressions for arbitrary «
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The ubiquitous Lévy «-stable distributions lack general closed-form expressions in terms of elementary
functions—Gaussian and Cauchy cases being notable exceptions. To better understand this 80-year-old conun-
drum, we study the complex analytic continuation p,(z), z € C, of the symmetric Lévy a-stable distribution
family p, (x), x € R, parametrized by 0 < o < 2. We first extend known but obscure results, and give a new proof
that p,(z) is holomorphic on the entire complex plane for 1 < o < 2, whereas p,(z) is not even meromorphic
on C for 0 < @ < 1. Next, we unveil the complete complex analytic structure of p,(z) using domain coloring.
Finally, motivated by these insights, we argue that there cannot be closed-form expressions in terms of elementary

functions for p, (x) for general «.
DOI: 10.1103/PhysRevE.100.010103

The ubiquitous Gaussian and Cauchy distributions are
given by simple mathematical formulas and are special cases
of the Levy «-stable distribution [1], introduced more than
80 years ago. However, even now there is no known general
closed-form expression in terms of elementary functions for
the full family of Levy «-stable distributions. Here we explain
why and argue that there cannot be closed-form expressions
in terms of elementary functions for the symmetric Levy
a-stable distribution.

The Lévy «-stable distribution [1] plays an important role
in areas as distinct as biology (e.g., foraging [2]), chem-
istry [3], complex systems [4], econophysics [5,6], and social
sciences [7,8]. In physics, applications include superdiffusive
Lévy walks of particles kinetics [4,9,10], many-body quantum
systems [11], intensity distributions in random lasers [12,13],
the shape of spectral lines [14], and fluorescence intermittency
in colloidal nanocrystals and blinking time distribution of
quantum dots [15,16], to cite just a few.

The full family of Lévy «-stable distributions
(parametrized by the Lévy index «, the asymmetry 8, the
scale o, and the shift ) is generally defined as (¢ € (0, 2])

[o.¢]
pesia oo = o [ dr explglexpl-inl, (1)
21 J_ oo

for ¢@)=itpn —|ot|*(1 —iBsgn[t]sy), with s, =
—%ln[|t|] (s¢ =tan[Fa]) if @ =1 (a #1), sgn(t) = £l
being the sign function, g € [—1, 1], n € (—o0, +00), and
o > 0.

Only three special cases can be expressed in closed form,
i.e., in terms of a finite number of algebraic operations
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involving only elementary functions [7,17] (see also below):
the Gaussian (¢ = 2) and Cauchy (o¢ = 1) are symmetric
(B = 0) and the asymmetric 8 = 1 case has an analytic ex-
pression for the so-called Lévy distribution (o« = 1/2). For
other parameter values, in principle p(x;«, 8,0, i) can be
cast in terms of Fox-H functions [18-20], whose calculation
relies on complex integrals of the Mellin-Barnes type. A
number of works in the last two decades have addressed the
challenging problem of how to write Lévy a-stable distribu-
tions in terms of simpler expressions [17,20-23], generally
involving approximation schemes and series expansions [24]
for particular parameters values. For example, when g =0
and « =2/M (for M =1,2,3,...) p is given by an exact
finite sum of hypergeometric functions [25] (more generally,
for « = 1/M it can be represented by G functions [26,27]).

In fact, for this important 8 = 0 (symmetric) case, we
always can promote the rescaling (x — u)/o — xand o p —
p in Eq. (1). Then, for g = 0, without loss of generality we
canset 0 = 1 and u = 0, obtaining

Pu(x) = l /OO exp[—1*] cos[tx]dt. 2)
T Jo

For illustrative plots of p,(x), see Fig. S1 in the Supplemental
Material (SM) [28].

The ubiquity of the Lévy a-stable distributions in stochas-
tic phenomena is due to the generalized central limit theo-
rem (GCLT), a weak form of which states that the distri-
bution of the sum of independent and identically distributed
random variables (of possibly infinite variance) converges
to p(x;a, B,0,u) [29]. The standard CLT is the special
case o = 2 of the GCLT, for which p is a Gaussian. For
non-Gaussian cases, p(x;a <2, 8,0,u) is a “fat tailed”
distribution [29] such that for x > 1 one has an asymptotic
power law p ~ x|~ 1.

In many contexts, such as multifractality [19] or if inter-
preting x as step lengths instead of positions of a walker [2],
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one may have interest in A,(«) = f0+°° dxxp(x;a, B, o, 1),
which in the latter case can be thought of as the “single
displacement mean.” Because of the above-mentioned x —
oo behavior of p, we have a converging A,(x) for o > 1
and a diverging (marginally diverging; see below) A, («) for
o < 1 (¢ = 1). Hence, this “classification scheme” seems to
be uniquely related to Lévy «-state distributions asymptotics,
with no further “deeper” analytical feature of p playing any
role (but see the interesting « classification in [20]). However,
take p,(x)in Eq. (2). Itis well defined for any x in the real line.
Nevertheless, depending on «, p,(x) may diverge if one tries
to implement analytic continuation by simply substituting x
by z € C in Eq. (2). Actually, for « > 1 such direct procedure
works for any z. In contrast, for « = 1 the integral behaves
properly, yielding 7~1/(1 + z?), only if —1 < Re(z) < +1,
whereas for o < 1 the integral does not converge whenever
Im(z) # 0. Thus, these three regimes for p,(z) as a function
of o are akin to the convergence of A,(x) regarding the
o intervals. The above simple, yet apparently overlooked,
fact suggests that the analytic behavior of p, could unveil
relevant properties of the Lévy «-stable distributions, that
are otherwise hard to grasp from the usual Fourier transform
representation.

We thus examine the analytic continuation of p, into
the complex plane C. We show the p, properties become
explicitly manifested in C, with its full analytic prescription
strongly dependent on «. From the analytic structure of p,(z),
we then are able to discuss certain aspects of the mathematical
obstruction, rendering it impossible to find general closed-
form expressions for p in terms of elementary functions (e.g.,
as defined in [30,31]; see next).

We divide our analysis into two parts. First, we classify
and characterize the analytic continuation p,(z) of pu(x),
which can be found in fragmented (and incomplete) form
in the literature (see, e.g., [32-34]), but which we derive
here in a systematic way, with much simpler proofs. Sec-
ond, we use the numerical visualization method of domain
coloring (Fig. 1) to investigate the full analytic structure of
Pu(2), thereby obtaining insight into the notorious difficulty
of finding simple general expressions for the Lévy a-stable
distributions.

We first recall the following result [7], for which we
provide a straightforward proof.

Theorem 1 (The symmetric Lévy a-stable distribution
analytic classification). If p,(z) is the symmetric Lévy stable
distribution analytic continuation onto the complex plane C,
then

(1) py(z) is holomorphic on C for 1 < o < 2;

(ii) pe(2) is meromorphic on C for o = 1;

(iii) py(z) has an essential singularity at z = 0, not being
meromorphic on C for o < 1.

Proof. A function is holomorphic on an open disk centered
at zo if its Taylor series at zp converges on the disk. Thus, we
first calculate the radius of convergence of the Taylor series
for p,(z) at the origin. Differentiating n times Eq. (2) with
x — z and evaluating the result at z = 0 we get

dpe| _1+(1)
dz" |,_, 2w

/oo exp[—t*](it)" dt, 3)
0

from which we obtain the Taylor expansion at the origin
I (=1 _[1+4+2n] ,
w(2) = — E —TI|— 2" 4
Palt) = o 2 (2m)! [ o }Z @

The series in Eq. (4) is the complex generalization of a
classical result obtained in [33] (see also [35]). To find the
radius of convergence we apply the root test. From Stirling’s
approximation for large n, we obtain up to constant factors

| 2 r 1+2n ~ P22 /n42)/a) )
(2n)! o ’

The condition for infinite radius of convergence is thus o > 1.
For the case « > 1, p,(z) is an entire function (i.e., holomor-
phic on C), and claim / follows.

For o < 1, the series has zero radius of convergence. Note
that the radius of convergence of a power series extends to the
nearest singularity, hence there is a singularity at z = 0. Since
there are only three types of isolated singularities, claim (iii)
follows by showing that when o < 1, the singularity at z =
0 is neither removable nor a pole. Since p,(x) is continuous
on the real line, we rule out a removable singularity. Further,
it cannot be a pole of an arbitrary order k because from the
series, 7 p,(z) also has a zero radius of convergence.

Lastly, (ii) holds given that p,(z) = w~'/(1 + z?) is the
natural analytic continuation of the well-known Cauchy dis-
tribution 7w ~!/(1 + x?) (for details, see SM). So pi(z) is
meromorphic on C, with a single pair of poles of order 1 on
the imaginary axis (z = =£i). ]

The study of p,(z) for arbitrary & < 1 directly from Eq. (2)
is not possible. This issue can be overcome as follows.

Theorem 2 (Equivalent expressions to Eq. (2) when o < 1).
Fora < 1, let

P (x) = % /00 dt exp[Fxt]exp [_ cos (a%>ta]
0

X sin [sin (oc%)t“], 6)
where p*) (p(=)) is a convergent integral if x > 0 (x < 0) and
PP (x) = p(—x), then

(i) pax) = piP ) [pS (0] for x > O[x < O]

(ii) p§~(0) = T[1/al/(am) = pa(0).

Proof. The demonstration of (i) is given in the SM [28]
(see also [34] for a similar, but partial result). (ii) follows
from the exact integral fooo dtexp[—ct*]=c*I'[1 + 1/«a],
Re[c] > 0. |

Now pg<i(x)—through the representation in Eq. (6)—
is amenable to analytic continuation by just setting x — z.
However, we need to consider two separated situations, once
pfj)(z) converges only for sRe(z) > 0 [the exception is o =
1, since p(z) and p'~)(z) match perfectly at Re[z] = 0;
SM]. For o < 1 the whole z-imaginary axis is a branch cut,
separating the complex plane into two halves (for a much
more involving analytic continuation construction in terms
of distinct Riemann surfaces—depending on the explicit 0 <
o < l—see [32]). From our prescription, one finds that (i)
the real part of p,(z) across x = 0 is continuous, but with
a discontinuous derivative (see Fig. 2 and the illustrative
plots in the SM [28]) and (ii) the imaginary part of p,(z) is
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FIG. 1. Domain coloring plots of the analytic continuation p, (z)
of the symmetric Lévy stable distribution, calculated via Eq. (2) for
various «: (b) 1.2, (¢) 1.4, (d) 1.6, and (e) 1.8. Cases (a) 1.0 and
(f) 2.0 are the Cauchy and Gaussian, calculated directly from their
formulas. The upper cutoff in the Fourier integral was chosen to be
100 in Eq. (1), but we have verified that the results do not change
significantly if the cutoff is increased to 1000 or higher values. Note
how as « increases a “palm leaf” structure of zeros sprouts until ¢ =
2, where it extends to infinity.

discontinuous across x = 0. The magnitude of all these jumps
depends on y.

Based on Theorems 1 and 2 and the above analytic contin-
uation protocol for & < 1, we have the following.

Theorem 3 (Only py(z) has poles in the complex plane).
Assume the above analytic continuation prescription for the
case of ¢ < 1. There are no poles for p,(z) in C if & # 1.

Proof. For Re[z] >0 (Re[z] <0), straightforwardly
PP (2) [pU2,(2)] is always finite. This and (i) and (ii) of
Theorem 1 conclude the proof. ]

Theorems 1-3 give a full picture of p,(z). Equation (2)
yields an entire function pq-;(z), whereas p1(z) = 7w ~'/(1 +
7%) [see Fig. 1(a)] is meromorphic on C with two isolated
poles. For a < 1, the essential singularity at the origin z = 0
turns the imaginary axis into a branch cut, with two distinct
analytic continuations in each side.

a=0.2

-1.0

©

FIG. 2. Domain coloring plots of p,(z), calculated using Eq. (6)
for some values of «. For these values of «, Eq. (7) leads to the exact
same graphs.

To exemplify the complete characterization of p,(z) from
Theorems 1-3,letev =2/ M, M =3,4,5,...(soa < 1). The
exact p,(x) is given in terms of a finite sum of hypergeometric
functions [25]. From these formula with the substitution x —
z,weget(d; =1+ j/M)

MM 1= 1 T2V Tld: - dj)
pam(z) =T | — ——ZF - = =L .
2 |2n € & 2 | (MM 72472+
]:
dj —1/2) 4=1DM"-!
X 1Fy—2 |:( ]c(j)/ )’MTZZ ) @)
for C=[]Z)""Tld—1/2], 1Fy_» the generalized

hypergeometric functions (GHFs),F,, and ¢ = (d; — +.
dj— 2, ....dy — Lhdy— 2L d; — D20 dp - ML,
pFy(= w) with w in C and p < ¢ has an irregular singularity
at w = oo, otherwise being holomorphic (see, e.g., [36]).
Since in Eq. (7) we have for ;Fy_; that w o 1 /zz, from
Eq. (7) we directly identify an essential singularity at z = 0
and no poles for py—2/m<1(z). Also, plots of Eq. (7) in the
complex plane (see below) display discontinuities across the
imaginary axes. These facts are clearly in agreement with
some of our previous general results.

Now, we turn to numerical calculations so as to unveil the
complete analytic structure on C. We use domain coloring
(using Mathematica): (i) the colors show the argument of
Pa(2), with red being zero and cycling through rainbow colors
back to 2m; thus blue indicates negative p,(z) and green
and purple indicate positive and negative imaginary values,
respectively; (ii) shading shows the absolute value of p,(z),
with the gradient from lighter to darker signifying increasing
absolute values; (iii) discontinuities in shading indicate a
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doubling of absolute value; (iv) zeros (poles) of p,(z) appear
as points around which the color cycles through the rainbow
colors in counterclockwise (clockwise) direction. For further
details, see the SM. Importantly, essential singularities appear
as points in whose proximity the function becomes wildly
oscillatory (e.g., Fig. S7 in the SM for the function z
exp(l/z), with an essential singularity at z = 0). Picard’s
great theorem guarantees that in a punctured neighborhood of
the essential singularity the function assumes every complex
value except possibly one, infinitely often.

Figure 1 displays the domain coloring plot analysis of
Pa(z) (for some 1 < « < 2). Figures 1(a) and 1(f) show
the Cauchy (o = 1) and Gaussian («¢ = 2) distributions. The
Gaussian is a saddle on the complex plane, with a saddle point
at the origin. For the Cauchy, the pair of poles at z = =i can be
seen on the imaginary axis. Since pjy-2(z) is holomorphic
and closed-form expressions are known only for rational
o’s (see below), we have performed numerical integration
of Eq. (2). Figures 1(b)-1(e) show the representative cases
a=12,14,1.6,1.8. As o grows from 1 to 2, a series of
zeros (in the form of a “palm leaf” pattern) approaches the
real axis and begins to extend toward infinity in both x positive
and negative directions.

The behavior changes drastically for ¢ < 1. As previously
mentioned, instead of Eq. (2) we must use Eq. (6), observing
the distinct expressions for the two halves of C. In Fig. 2
we show plots for some values of @ < 1. Once the colors
represent the argument of p,(z), one can see that p,(z) display
discontinuities across Re[z] = 0 (the branch cuts are needed
because the true analytic continuation for ¢ < 1 is a Riemann
surface with multiple branches [32]). All the qualitative re-
sults in Fig. 2 corroborate Theorems 1-3.

Finally, we discuss the extreme difficulty of finding simple
exact expressions for p,(x). A nice overview about closed
solutions is presented in [22]. In particular, for 8 = 0 and
o = 2r/k (with r, k positive integers and either 0 < 2r/k < 1
or 1 <2r/k < 2), Ref. [22] shows that p,(x) is given as a
sum of N =max(2r, k) GHFs (Eq. (7) corresponds to r = 1
and k = M [25]). Certainly, to be able to write p,(x) in
terms of special functions is a great advantage. First, be-
cause p, (x) will naturally display the general properties—Ilike
symmetries, asymptotics, small argument behavior, etc.—of
the associated special functions. Second, because often there
exist efficient algorithms to numerically compute the special
functions series or integral representations. But why are there
solutions only for ¢ = 1, 2 in terms of elementary functions
and why only for rational o are there solutions in terms
of GHFs (or G functions [27])? To make clear what we
mean by elementary functions, we consider the following
definition [30,31]: an elementary function is a function of one
variable that can be expressed in terms of a finite number
of algebraic operations (of the real or complex field) and
a finite number of compositions of the following functions:
powers and roots, exponential and logarithmic functions,
trigonometric and hyperbolic functions, and their inverses.
For example, elliptic integrals are not elementary, whereas
the derivatives of elementary functions are themselves
elementary.

We start with 1 < o < 2. From the domain coloring plots,
o =1 and o =2 display a rather similar pattern in the

whole complex plane [Figs. 1(a) and 1(f)]. Nonetheless, this
contrasts with the plots for 1 < o < 2 [Figs. 1(b)-1(e)], in
which distinct structures qualitatively akin (but of course,
not quantitatively, as we have numerically tested) to either
Cauchy-like or Gaussian-like shapes, are developed in the
different regions of C. Hypothetically, if pj_.q<2(z) were to
be written as an elementary function in the full complex
plane, and furthermore in certain regions to have the form
of 1/(A + z*)” (away from the isolated points z# = —A) and
in others exp[—Bz"], this would require the exclusive series
derived from Eq. (2) to agree with these two expressions,
which cannot be the case due to their distinct series expan-
sions. To have a simple expression, in fact, we would need
a single function f,(z) interpolating between the Gaussian
and Cauchy expressions, moreover strongly depending on the
exact location of z in the complex plane—a requirement too
restrictive mathematically [37] and not met here.

We have already mentioned that for a rational 1 < @ =
2r/k < 2 [22], po(x) [and therefore p,(z)] can be written
as a sum of N = 2r GHFs. Thus, these N distinct power
series, each encoded in one of the GHFs [and in principle
obtained from proper series expansions of the integrand in
Eq. (2); see, e.g., the method in [25]], contrary to o = 1,2
could handle the different qualitative behavior of p,(z) seen
in C. Extending the analysis, for irrational «’s, successive
continued fraction approximations would lead to an infinite
N, obviously with no gain over the direct series equivalent
to Eq. (2), not constituting a bona fide closed solution. In
fact, we can understand such results for ¢ > 1 considering
x — z = |z] exp[if] in Eq. (2) (for convergence reasons, we
address the case of 0 < 6 < 7 /4, enough for our purposes
here). By properly deforming the integral Eq. (2) in the
complex plane, we find p,(z) = |, dt exp[—7*]cos[|z t|] for
C the line {p exp[—if]|0 < p < o0}. So, from the multivalued
function exp[—7“] in C, unless « is rational there is infinite
branching and hence conceivably no solutions, say, in terms
of a finite sum of GHFs. But for rational « = 2r/k > 1, each
one of the N = 2r GHFs resulting in the exact py—s/k=1(2)
[22] could be ascribed to distinct Riemann surfaces of our
2r-valued integrand in the complex plane.

For @ < 1, Eq. (4) nonconvergence is due to the stretched
exponential characteristic function ¢ in Eq. (1), which dis-
plays a strong singularity (a logarithmic branch point) at
the origin. This of course dictates the possibility of analytic
solutions for p,-1(z). The reasoning becomes more explicit
from Theorem 2 [and the standard analytic continuation of
setting x — z in Eq. (6)]. First, p,~;(z) as a straightforward
elementary function could not handle a branch cut comprising
the entire imaginary axis (e.g., arctan[z] has as branch cut
ly] = 1, but which is not the whole y axis). The integrand
involving « in Eq. (6) can be easily manipulated, yielding
terms of the form F = exp[—et™@/2t%], where 0 < t < 00,
or yet F = exp[—(e*"/?t)¥]. By deforming the integration
path into the complex plane through the variable change
T = e @/2¢ we get F =exp[—a In(7)]. Finally, the rest
of the analysis is quite similar to that already done for the
case of o > 1. The only difference is that now, for rational
a = 2r/k < 1, the sum of the N = k GHFs given py—o,/k<1(2)
[22] is associated with the Riemann surfaces of the k-valued
integrand in C.
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Note that the problem of when the Fourier transform of
an elementary function is itself elementary is more difficult
than may at first appear [38]. Although our general findings
bring new light to the study of Lévy «-stable distributions,
they are not entirely surprising. One can classify the p,’s
in terms of H functions [20] and even express the distribu-
tions in terms of specific integrals [39,40] related to frac-
tional differential equations (FDEs) [27,41]. These results
establish an important link between Lévy distributions and
FDEs.

Finally, observe that, intuitively, we expect an elementary
function to have power series coefficients that are themselves
elementary in the degree n of the monomials 7. Recall that
the gamma function I'(x) assumes simple values only for
positive integer and positive half-integer x. Although proofs
are lacking, it is not inconceivable that for other values of x,
the value of the gamma function I'(x) cannot be expressed
in terms of elementary functions of x. Now observe that the

coefficients in the formal power series z” in Eq. (4) are gamma
functions of quantities that have a factor (1 + 2n)/«. Hence,
excepting o = 2 and the finite number of cases « = 1/m for
positive integer m, the Taylor coefficients of p,(x) are not
elementary functions of the degree n of the monomials z". For
the countable number of cases « = 1/m where m = 2,3, ...,
let M = 2m and z = x in Eq. (7), then py,,,(x) is represented
by GHFs, and hence is nonelementary. Note that although
the formal power series Eq. (4) converges for z # 0 only for
o > 1, the quantity I'(1/«) appears also in Eq. (7), which has
a positive radius of convergence. We thus conclude with the
following.

Conjecture 1 (Nonexistence of closed-form expressions
for py(x)). Except for o = 1,2, p,(x) cannot be given by
a general closed-form expression in terms of elementary
functions.
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