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Anomalous diffusion occurs in many physical and biological phenomena, when the growth of the mean
squared displacement (MSD) with time has an exponent different from one. We show that recurrent neural
networks (RNNs) can efficiently characterize anomalous diffusion by determining the exponent from a single
short trajectory, outperforming the standard estimation based on the MSD when the available data points are
limited, as is often the case in experiments. Furthermore, the RNNs can handle more complex tasks where there
are no standard approaches, such as determining the anomalous diffusion exponent from a trajectory sampled at
irregular times, and estimating the switching time and anomalous diffusion exponents of an intermittent system
that switches between different kinds of anomalous diffusion. We validate our method on experimental data
obtained from subdiffusive colloids trapped in speckle light fields and superdiffusive microswimmers.
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Anomalous diffusion underlies various physical and bio-
logical systems, such as the motion of microscopic particles in
a crowded subcellular environment and the active dynamics of
biomolecules in the cytoplasm [1–3]. While normal diffusion
is characterized by a linear growth of the mean squared
displacement (MSD) with time, anomalous diffusion features
a nonlinear, power-law growth. If we consider a microscopic
particle whose position is X (t ), its MSD is, in the stationary
case,

E [(X (t + τ ) − X (t ))2] = Kατα, (1)

where α is the exponent characterizing the anomalous diffu-
sion and Kα is a generalized diffusion coefficient with dimen-
sion [length2 time−α]. The exponent α contains crucial infor-
mation regarding the nature of these systems distinguishing
standard diffusion (α = 1) from anomalous diffusion (α < 1
for subdiffusion and α > 1 for superdiffusion). Therefore, it
is crucial to be able to determine its value from experimental
data. When large datasets are available, the exponent can be
straightforwardly fitted from the empirical MSD [4–8], or
using alternative techniques [9–15]. Most of these methods
work under the assumption that the exponent does not change
abruptly over the duration of the measurement, and require
the particles’ trajectory to be sufficiently long and to be
sampled at regular time intervals (unless several trajectories
are available for each case).

However, especially in single-molecule studies and in
nonequilibrium experiments, the dynamic and unsteady char-
acter of the process under study and the variability of the
environment restrict the possibility to collect large amounts
of data under the exact same conditions [16]. Therefore, often
one has only access to trajectories that are short (e.g., limited
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measurement time [11,15,17]), that are sampled at irregular
times (e.g., due to fluorophore blinking [17]), or whose diffu-
sion properties change over time (e.g., intermittent anomalous
diffusion [18–20]). In these cases, the standard approaches
based on the MSD cannot be straightforwardly employed.
Instead, suitable approaches need to be developed on a case-
by-case basis—a process that is often time-consuming and
subject to user bias.

Recently, data-driven approaches have emerged as an al-
ternative paradigm to analyze experimental data in several
branches of physics and biology [21,22]. While standard
algorithms require the user to explicitly give rules to process
the input data in order to obtain the sought-after result, data-
driven algorithms are trained through a large series of input
data and the corresponding desired outputs from which they
autonomously determine the rules for recognizing patterns.
In this way, data-driven approaches can make very efficient
use of all the information contained in the available data.
Neural networks are one of the most successful data-driven
approaches in estimation and regression tasks due to their
great ability to automatically learn from data [23,24]. This
feature has been successfully employed in a number of tasks
ranging from handwritten digits and image recognition to
natural language translation [25]. Therefore, neural networks
ideally complement standard techniques to perform inference
in cases for which no standard algorithmic procedures are
available. In fact, some seminal works have already applied
machine-learning techniques to determine the properties of
anomalous diffusion with a focus on identifying its underly-
ing mechanisms [26–28]. We remark that, similarly to other
advanced machine-learning techniques, neural networks of-
ten operate as black boxes and therefore should be applied
carefully to new experimental data and situations, always test-
ing and benchmarking their performance against established
techniques.

In this Rapid Communication, we show that recurrent
neural networks (RNNs) can successfully be employed to
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characterize anomalous diffusion. While RNNs perform
equally well as MSD approaches when characterizing the
anomalous diffusion from sufficiently long, regularly sampled
and stationary time series, RNNs marginally outperform MSD
approaches when the available data points are limited, as
is often the case in experiments. More importantly, RNNs
can also straightforwardly deal with more complex cases for
which there are no standard approaches: when trajectories are
sampled at irregular sampling times, and when the system
features an intermittent behavior. We validate the use of RNNs
on experimental data obtained from colloids subdiffusing in a
speckle light field [29,30] and microswimmers superdiffusing
when illuminated [31].

Figures 1(a)–1(c) show some examples of experimental
trajectories (128 measurement points each; see Supplemen-
tal Material [32]) corresponding to a colloidal microsphere
(SiO2, radius R = 2.5 μm) undergoing subdiffusion in a
speckle light field [29] [Fig. 1(a)], the same colloid without
the speckle light field normally diffusing [Fig. 1(b)], and a
microswimmer (SiO2 microsphere with iron-oxide inclusions,
R = 0.49 μm) in a critical mixture that superdiffuses when
illuminated by light [31] [Fig. 1(c)]. The time-averaged MSD
is calculated from each of these trajectories as

MSD(τ ) = 1

T/δt − j + 1

T/δt− j∑

i=0

(Xi+ j − Xi )
2, (2)

where the discrete measurements Xi = X (iδt ) are taken at
intervals δt , and the time lag is given by τ = jδt . The cor-
responding MSDs are plotted by colored lines in log-log scale
in Figs. 1(d)–1(f) and the value of the exponent is obtained
from linear interpolation. Clearly, for these short trajectories
a precise estimation of the exponent is challenging [16]: there
is some arbitrariness in what segments of the trajectories or of
the MSD plots to use for the fitting; and the choice depends
on the specific α, on the measurement noise, and on the length
of the trajectory, so that additional a priori knowledge about
the system is required [33–35].

We propose a method based on RNNs to determine α di-
rectly from the single trajectories. RNNs are ideal to deal with
time sequences because they process the input data sequence
iteratively and, therefore, explicitly model the sequentiality of
the input data [24,36]. In fact, differently from other neural
network architectures that process the input data at once (e.g.,
dense and convolutional neural networks), RNNs loop over
the input data sequence, keeping an internal model of the
information they are processing, built from past information
and constantly updated as new information arrives [24,36].
Thanks to their recurrent nature, RNNs typically require fewer
layers to perform a given task than alternative neural network
architectures; for example, the neural network that currently
powers the Google Translate algorithm is a stack of just seven
large “long short-term memory” (LSTM) layers [25]. We
employ a RNN constituted of two LSTM layers with states of
dimension 64 and 16, respectively, and a densely connected
output layer, which provides the estimate of the exponent
α̂ [32]. We have implemented this neural network using the
Python-based Keras library [37] with a TensorFlow backend
[38] because of their broad adoption in research and industry;

FIG. 1. Measurement of anomalous diffusion with recurrent neu-
ral networks (RNNs). (a)–(c) Experimental trajectories of a particle
undergoing (a) subdiffusion (motion in a speckle light field), (b) nor-
mal diffusion, and (c) superdiffusion (light-activated microswim-
mer). (d)–(f) Corresponding MSDs. (g) Mean absolute error (MAE)
of the exponent inferred using the standard time-averaged MSD
(gray squares) and the RNNs (orange circles) as a function of the
trajectory length. The performances are tested on 185 000 simulated
trajectories undergoing fractional Brownian motion with α uniformly
sampled between [0.5, 1.5]. (h) Exponents estimated by the RNNs
vs those estimated by the MSD. The gray background represents a
density plot of exponents obtained from simulated trajectories and
the colored points represent exponents obtained from experimental
data: orange circles for the subdiffusive colloids in a speckle light
field, green “x” symbols for the same colloids freely diffusing,
purple triangles for the superdiffusive microswimmers, and red plus
symbols for the inactive microswimmers that diffuse normally.

nevertheless, we remark that the approach we propose is
independent of the framework used for its implementation.

Once the network architecture is defined, we need to
train it on a set of single trajectories for which we know
the ground-truth values of α. For each trajectory containing
T measurement points, the input data to the network is a
2 × T -dimensional array containing position and time for
each measurement point [(x1, t1), (x2, t2), . . . , (xT , tT )] (suit-
ably normalized so that the position’s average and standard
deviation of a trajectory are, respectively, 0 and 1 and the
rescaled measurement times are between 0 and 1, as discussed
in the Supplemental Material [32]). In each training step,

010102-2



MEASUREMENT OF ANOMALOUS DIFFUSION USING … PHYSICAL REVIEW E 100, 010102(R) (2019)

the neural network is tasked with predicting the exponent
corresponding to each trajectory from a batch of the training
set; its predictions are then compared to the ground-truth
values of the exponents; and the prediction errors are finally
used to adjust the trainable parameters of the neural network
using a back-propagation algorithm [24,36]. The training of a
neural network is notoriously data intensive, requiring in our
case several hundreds of thousand to millions of trajectories.
In order to have enough trajectories and to accurately know
the ground-truth values of the corresponding exponents, we
simulate the trajectories. There are several models and mech-
anisms that can give rise to anomalous diffusion dynamics [3]
and several methods to identify such models from data (e.g.,
[11,28,39–41]). We choose to train using fractional Brownian
motion (fBm) [42], which is defined as a continuous-time
Gaussian process [Bα (t )] with zero mean and correlated in-
crements that give rise to the covariance function

E[Bα (t )Bα (s)] = 1
2 (|t |α + |s|α − |t − s|α ), (3)

where α is the exponent with which the mean squared dis-
placement grows [Eq. (3)]. We simulate the trajectories using
the Davies-Harte and the Hosking algorithm [43] imple-
mented in a Python library [44].

To assess the performance of the RNN, we test it on
independently simulated trajectories with α uniformly sam-
pled in [0.5, 1.5] against the MSD, because this is the most
widespread and easy-to-use method in soft-matter and bio-
physics experiments. We linearly fit the time-averaged MSD
for τ = 1, . . . , 5, which delivers a good performance for frac-
tional Brownian motion in cases without measurement noise.
In the case of the RNN, we train a different network for each
of the different trajectories’ lengths we consider. Figure 1(g)
shows the mean absolute error (MAE) for the two methods
as a function of the trajectory’s length. For long trajectories,
both methods perform similarly well with MAE for RNNs
(MSD) 0.038 (0.035), 0.047 (0.049), and 0.066 (0.069) for
trajectories with 1024, 512, and 256 samples, respectively.
For shorter trajectories, which are known to be problematic
for MSD-based methods [7,34], the RNN performs slightly
better, achieving MAE 0.092 (vs 0.098 for the MSD), 0.127
(vs 0.141), and 0.182 (vs 0.207) for 128, 64, and 32 sam-
ples, respectively. This demonstrates that the RNN is able to
extract information from the trajectories that is not used by
the MSD. We remark that there is some variability in the
performance of the networks across different trainings and
that, focusing on a specific trajectory length, it is possible to
further improve the predictions by fine-tuning the training and
by pooling the predictions of different networks. In any case,
the predictions made with the RNN and the MSD are strongly
correlated, as can be seen in Fig. 1(h) where the estimations
made using the RNN are plotted against the ones for the
MSD for simulated trajectories of length 128. Importantly,
even though the RNN is trained on a specific model for
anomalous diffusion (fBM), it is able to generalize and to
correctly analyze also experimental data for which we do
not know the precise mechanism underlying the anomalous
diffusion behavior. The colored points in Fig. 1(g) represent
the estimations made using the RNN plotted against the ones
for the MSD for the experimental data corresponding to

FIG. 2. Measurement of anomalous diffusion in irregularly sam-
pled trajectories. Often a trajectory is sampled irregularly, either
(a) because some data points are missing (“missing data,” here 12.5%
data points are missing), or (b) because data points are sampled
at random times (“uneven data,” here according to a geometric
distribution). For each case, two trajectories with different α are
shown. (c),(d) Estimated exponent α̂ as a function of the actual
exponent α for the two cases using simulated trajectories with 128
frames. The lower panels show the MAE as a function of α. The
MAE averaged over all α is 0.091 in (c) and 0.101 in (d). There
exists a systematic bias in the more challenging “uneven data” case,
visible in (d) for large α.

subdiffusive particles moving in a speckle light field (orange
circles), to diffusive Brownian particles (green “x” and red
“+” symbols), and to superdiffusive microswimmers (purple
triangles). The RNN and MSD estimations are correlated in a
similar way as for the data generated from simulations using
a fBM model, providing strong evidence for the experimental
reliability of the RNN method even when the underlying mi-
croscopic dynamics for the anomalous diffusion are other than
fBM.

In the next step, we show that RNNs can be used to
determine α in two cases where a straightforward computation
of the MSD becomes challenging: trajectories are sampled
at irregular times, and a system featuring an intermittent
behavior.

The first situation is motivated by the fact that, in sev-
eral experimental settings, it is not possible to record the
trajectories at equally spaced time intervals. For example,
the fluorescent biomarkers commonly employed for tracking
biomolecules are subject to blinking so that some portion
of a trajectory might be missing [17]. In general, tracking
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algorithms might miss some frames, especially in noisy and
challenging experimental conditions, leading to trajectories
with missing data points. No standard technique exists to
deal with these cases for single trajectories. Here, we test
the RNNs, trained in Fig. 1 on trajectories sampled at regular
times, on trajectories sampled at irregular times. We consider
two scenarios: (a) a fraction of the regularly recorded data
is missing [“missing data” scenario, Fig. 2(a)]; (b) the data
points are sampled at random times [“uneven data” scenario,
Fig. 2(b)]. As shown in Figs. 2(c) and 2(d), the RNN is in
fact able to generalize to these cases. In particular, for the
“missing data” scenario with 12.5% data points randomly
missing, the performance of the network is unaffected as long
as the same number of data points as in the training set (in
this case 128) is fed into the RNN [Fig. 2(c)]. For case (b),
with measurement times geometrically distributed so that on
average one frame every eight contains a signal, the RNN
provides reasonable predictions, which however are slightly
biased and tend to underestimate large exponents [Fig. 2(d)].
For more accurate predictions, one can retrain the RNN on ir-
regularly sampled simulated data and significantly improve its
performance [32].

As the second situation, we consider systems featuring
intermittent behavior, where the particle diffusion switches
between different behaviors characterized by different α.
Such behavior occurs, for instance, when particles are tran-
siently trapped such as in sodium channels [18] or when
self-propulsion is switched on and off [31]. Relying on tra-
ditional MSD measurements, one would first need to detect
the change in behavior (e.g., using change-point analysis
techniques [45]) and successively to estimate the exponents of
the two sutrajectories. This is a challenging procedure, which
has been attempted only recently for trajectories switching

FIG. 3. Measurement of the switch between two anomalous
diffusion behaviors. (a) Simulated trajectory of a particle whose
exponent switches from α1 = 1.50 to α2 = 0.75 at time ts = 108.
Estimation by a RNN of (b) α̂1, (c) α̂2, and (d) t̂s/T as a function of
the respective ground-truth values, for a test data set where |�α| >

0.25, ts ∈ [0.25T, 0.75T ], and T = 256.

FIG. 4. Determination of anomalous diffusion exponents and
switching time in an experimental time series by sliding a window
containing 256 measurement points (T = 38.3 s). (a) Trajectory of
a microswimmer activated by light (α � 1.4); at t = 51.3 s the light
is switched off and the microswimmer becomes a passive Brownian
particle (α = 1.0). (b) Orange solid curve: exponent α̂ estimated by
averaging the predictions of the RNN for each sliding window. For
reference, the gray dashed curve reports the exponent α̂ estimated by
averaging the predictions of the MSD for the same sliding windows.
(c) Histogram of the switching times t̂s estimated by the RNN.
Each prediction is obtained from a different starting point of the
sliding window and the histogram is built from reliable windows
where |�α̂| > 0.25 and the estimated change point is far from the
boundaries of the window t̂s ∈ [0.25T, 0.75T ].

between subdiffusive and superdiffusive dynamics [19,46].
We employ a modified version of the RNN discussed above
to determine simultaneously the exponent before switching
α̂1, the exponent after switching α̂2, and the switching time t̂s
from the acquired trajectory. Specifically, we use a network
with the same architecture as before but with five output
neurons that estimate α̂1, α̂2, �α̂ = α̂2 − α̂1, sin (2π t̂s/T ),
and cos (2π t̂s/T ) (see [32]). We train this RNN on a set of
1.6-million simulated trajectories where a change in exponent
occurs randomly with a uniform distribution at time ts (see
[32]). Figures 3(b)–3(d) show the performance of the esti-
mations of α̂1 [Fig. 3(b)], α̂2 [Fig. 3(c)], and t̂s [Fig. 3(d)],
when the change in α is not too small (|�α| > 0.25) and
the switch occurs around the middle of the trajectory (ts ∈
[0.25T, 0.75T ] = [64, 192]). Under these conditions, the per-
formance in estimating α̂1 [Fig. 3(b), MAE 0.116] and α̂2

[Fig. 3(c), MAE 0.112] is comparable to the case of constant
α reported in Fig. 1. The switching-time estimation can be
challenging when the change of the exponent is small or
occurs very early or late. For t̂s/T we have a MAE 0.148 as
illustrated in Fig. 3(d).

In Fig. 4, we illustrate the power of the neural-network
approach using an experimental trajectory. We consider a
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microswimmer, which undergoes superdiffusion (α � 1.4)
when illuminated by light [31], and becomes diffusive when
the light is turned off (α = 1.0). Figure 4(a) shows the corre-
sponding trajectory with a switching time at t = 51.3 s. We
measure this switch using the RNN with a sliding window
containing 256 measurement points (38.3 s). The estimated
exponent (averaged over the various sliding windows) is
shown in Fig. 4(b), where one can see that there is a clear shift
from α̂ � 1.4 to α̂ = 1.0 around t = 50 s. As a reference, we
show the prediction from the MSD [gray curve in Fig. 4(b)]
obtained by averaging the exponents inferred by a sliding
window. One can see that, in this case, the transition between
the high and low exponent is smoothed out and takes place
in a longer time interval. One could try to alleviate the issue
by choosing shorter window sizes but this would come at the
cost of a noisier estimation. The histogram of the switching
times predicted by the RNN in the different windows is shown
in Fig. 4(c), where it can be seen that the network correctly
determines the switching time.

In conclusion, we introduced an alternative method for
the estimation of the exponent from single trajectories in
anomalous diffusion systems based on RNNs. We have shown
that it can be straightforwardly applied to more complex sit-
uations, where standard approaches are lacking. Our method
then emerges as a promising tool for the analysis of single
trajectories with irregular measurements and intermittent be-
haviors. We remark that our analysis has been limited to the
case in which the observed time series can be described by
a single exponent on the observation timescales (or a distinct
switch between two exponents). In several systems, the MSD
smoothly interpolates between different linear (in the log-log
plot) regimes on different timescales (see, e.g., [5,7]). The
approach we propose here should not be directly applied to

analyze such time series on timescales where the transition
between different diffusive regimes occurs, but has to be sepa-
rately applied to the different linear regimes. In general, when
dealing with completely unseen data, before proceeding to a
deeper analysis, it is advisable to benchmark the preliminary
predictions of the RNN against the ones of the MSD. As future
work, it will be interesting to test the inference of the RNN
method trained on fBM simulated data on data obtained from
different anomalous diffusion models, such as, for instance,
continuous-time random walks. It would also be possible to
train the RNN using simulated data not generated from fBM.
Along these lines, it would be interesting to consider higher-
order moments, which are sensitive to the specific kind of
anomalous diffusion model; however, this will likely require a
more extensive training. Another interesting extension would
be to train a network on data of the type mentioned above
which is characterized by different exponents on different
timescales to infer the whole profile of the MSD as a function
of time instead of separately considering its distinct diffusive
regimes. This extension may not be completely trivial since
one would have to learn more parameters that can be used to
parametrize more general curves.
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