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Universal scaling of the thermalization time in one-dimensional lattices
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We show that, in the thermodynamic limit, a one-dimensional (1D) nonlinear lattice can always be thermalized
for arbitrarily small nonlinearity, thus proving the equipartition theorem for a class of systems. Particularly,
we find that in the lattices with nearest-neighbor interaction potential V (x) = x2/2 + λxn/n with n � 4, the
thermalization time, Teq, follows a universal scaling law; i.e., Teq ∝ λ−2ε−(n−2), where ε is the energy per particle.
Numerical simulations confirm that it is accurate for an even n, while a certain degree of deviation occurs for
an odd n, which is attributed to the extra vibration modes excited by the asymmetric interaction potential. This
finding suggests that although the symmetry of interactions will not affect the system reaching equipartition
eventually, it affects the process toward equipartition. Based on the scaling law found here, a unified formula for
the thermalization time of a 1D general nonlinear lattice is obtained.
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Introduction. The equipartition theorem assumes that ar-
bitrarily small nonlinearity is enough to thermalize a macro-
scopic thermodynamic system, i.e., the energy will be equally
distributed among the Fourier modes. It is the foundation
of statistical physics. The pioneering numerical experiments
by Fermi, Pasta, Ulam, and Tsingou (FPUT) [1,2], showed
very little tendency toward equipartition of energy among the
modes, known as the FPUT paradox [1]. Their seminal work
has stimulated a huge amount of research (see Refs. [3–13],
and references therein). Extensive numerical simulations have
shown clear evidence that there is an energy threshold above
which the FPUT system reaches a fast thermalized state
[14–17]. However, whether a system can be generally ther-
malized for arbitrarily small nonlinearity has not been set-
tled clearly due to the difficulty of rigorous mathematical
proof [3].

Recently, the wave turbulence (WT) theory [18–23] has
been applied to attack this problem [24–26] and opens a new
path toward a rigorous proof of the outstanding equipartition
hypothesis. This theory [24] assumes that, in the weakly non-
linear regime, the long-time dynamics of a one-dimensional
(1D) lattice is determined by exact multiwave resonances, and
the thermalization is governed by the nontrivial resonances.
The umklapp process is a key nontrivial resonance, since it
causes the irreversible transfer of energy due to the flipover
of wave vectors over the edge of the Brillouin zone. When all
the normal modes are interconnected by the nontrivial reso-
nances, the equipartition may be expected. Finally, it predicts
that the thermalization time Teq is inversely proportional to the
square of the coupling coefficient of the dominant nontrivial
resonances. Based on this theory, landmark progress has been
made for the lattices with Hamiltonian

H =
∑

j

p2
j

2
+ (q j+1 − q j )2

2
+ λ

n
(q j+1 − q j )

n (1)
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for the special cases of n = 3 (FPUT-α model) [24] and n = 4
(FPUT-β model) [25], where p j and q j are, respectively,
the momentum and the displacement from the equilibrium
position of the jth particle, and λ is a positive constant. In
these two models with small finite size, it has been found that
the first nontrivial resonances correspond to six-wave inter-
actions, which lead to Teq ∝ λ−8ε−4 [24] and Teq ∝ λ−4ε−4

[25], respectively, where ε is the energy density (i.e., the
energy per particle). The power-law behavior implies that the
equipartition state can always be reached for arbitrarily small
nonlinearity.

However, some essential problems are still open; e.g.,
whether this conclusion can be extended to a general 1D
lattice in the thermodynamic limit and whether there is a
universal scaling law for the equipartition time. The first
issue has been discussed in Refs. [24,25], where the authors
have conjectured that the four-wave resonances will dominate
thermalization in the thermodynamic limit for the FPUT-α
and FPUT-β models, which results in Teq ∝ λ−4ε−2 [24]
and Teq ∝ λ−2ε−2 [25], respectively. In a more recent work
[27], numerical evidence has been provided. Meanwhile, for
the discrete Klein-Gordon model, it has been shown with
the WT theory that the equipartition can be achieved in the
thermodynamic limit [26]. Note that the Klein-Gordon model
is subject to an on-site potential and thus does not belong
to the FPUT class. The second issue has not been studied
systematically, though various scaling laws of equipartition
time have been proposed previously for different scenarios
[28–31].

In this Rapid Communication, based on the WT theory, we
show that there is a universal scaling law of the thermalization
time for the models given by Eq. (1) in the thermodynamic
limit, i.e., Teq ∝ λ−2ε−(n−2) for n � 4. Our key finding is that
the lowest order resonances, i.e., the n-wave resonances for
the model with a power-law potential of power n, survive in
the thermodynamic limit and are responsible for thermaliza-
tion, except when n = 3. Our extensive numerical simulations
confirm that this scaling is accurate for an even n, but is
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smaller for an odd n. The deviation decreases with the increase
of n. This deviation is attributed to the extra vibration modes
excited by the asymmetric interaction potential, thus the WT
theory fails to capture them.

Theoretical analysis. We consider a lattice of N + 1 parti-
cles with fixed ends (q0 = qN = 0) such that there are N − 1
moving particles in between. The displacement of the jth
particle can be written in terms of normal modes as

q j = i
N∑

k=−N

Qk

ωk
e−i jkπ/N , (2)

where ωk = 2
∣∣sin

(
kπ
2N

)∣∣ is the dispersion relation, and Qk is
the amplitude of the kth normal mode [32]. The boundary
conditions, along with the reality of qj , i.e., q j = q∗

j , impose
the constraint to the modes that Qk = Q−k = Q∗

k , and QN =
Q−N = Q0 = 0. It is convenient to introduce the dimension-
less complex amplitude of the kth normal mode

ak =
√

NQk + iωkPk/
√

N

ε1/2
√

2ωk
, (3)

where Pk = ∂H/∂Q̇k is the canonically conjugate momentum.
Then, the Hamiltonian (1) can be rewritten in the dimension-
less form (H̃ = H/ε):

H̃ =
∑

k

ωkaka∗
k + λε (n−2)/2

n

∑
k1,...,kn

	
kn
k1
δ(k1,n)

n∏
l=1

(
akl + a∗

kl

)
,

(4)

where 	
kn
k1

= N
(2N )n/2

√∏n
l=1 ωkl

sgn(
∏n

l=1 kl ) is an interaction tensor coef-

ficient, and δ(k1,n) gives the n-wave resonant condition for
the wave vectors [22], i.e., k1 ± k2 ± · · · ± kn = 0. Whether
the function sign takes +1 or −1 depends on the type of the
n-wave process. Then, the equation of motion for the k1th
complex normal mode reduces to

i
∂ak1

∂t
= ωk1 ak1 + λε (n−2)/2

∑
k2,...,kn

	
kn
k1
δ(k1,n)

n∏
l=2

(
akl + a∗

kl

)
.

(5)

From this equation we see that the nonlinear interactions
are manifested as an n-wave scattering process. To evaluate
the equipartition time, we introduce the wave action spec-
tral density Aiδ

j
i = 〈aki a

∗
k j
〉 following the WT theory [24,25],

where the brackets indicate the ensemble average and δ
j
i is the

Kronecker delta. Based on the WT theory [22], one can derive
the n-wave kinetic equation

Ȧ1 = 4πλ2εn−2
∫ π

−π

∣∣	kn
k1

∣∣2
F (A1,n)δ(k1,n)δ(ω1,n)dk2 · · · dkn,

(6)

where F (A1,n) is a function of A1, A2, . . . , An, and δ(ω1,n)
gives the n-wave resonant condition for the frequencies, i.e.,
ωk1 ± ωk2 ± · · · ± ωkn = 0 (see the Supplemental Material
[33] and Ref. [22] for details). The summation of the wave
vector from −N to N is replaced by an integral from −π

to π on the reduced wave vector because the wave numbers
in the Fourier space become dense and continuous in the
thermodynamic limit.

Based on the evolution equation (6), Teq ∝ λ−2ε−(n−2)

holds when the nontrivial n-wave resonances exist and dom-
inate thermalization. In the thermodynamic limit, the wave
vectors become dense and the resonant conditions are not
forbidden by the dispersion relation for n � 4; therefore,
the n-wave resonant solutions may exist [19]. In addition,
considering the fact that any frequency will broaden due to
the nonlinearity, the resonant n tuplets are interconnected.

For n = 3, i.e., the FPUT-α model, the three-wave reso-
nances are forbidden because of the shape of the dispersion
relation [19,24]. Hence, for this model one has to introduce
a new canonical transformation to consider higher order in-
teractions. We agree with the argument in Ref. [24] that
the four-wave resonances dominate the thermalization in the
thermodynamic limit, which leads to Teq ∝ λ−4ε−2.

Such an approach can be extended to more general sym-
metric potentials, V (x) = |x|d/d , with d = m1/m2 > 2 and
m1 and m2 are coprimes. This is because the potential can be
rewritten in terms of normal modes,

∑
j

|q j − q j−1|m1/m2

=
∑

j

⎡
⎣ ∑

k1,...,k2m1

Qk1 Qk2 · · ·Qk2m1

sgn
(
k1k2· · ·k2m1

)eiπ ( 1
2 − j)(k1+···+k2m1 )/N

⎤
⎦

1/2m2

,

(7)

and the equation of motion can be obtained similarly.
Equation (7) indicates that the lowest number of waves par-
ticipating in the scattering process is 2m1 in a model with ex-
ponent d , and 2m1 � 4 since m2 � 1. Thus, the thermalization
time Teq ∝ λ−2ε−(d−2) for such symmetric models only if the
2m1-wave resonances exist and dominate thermalization in the
thermodynamic limit.

Numerical experiments. Any numerical simulation is per-
formed with a finite system, and therefore, the wave numbers
are discrete in principle. However, because of the nonlinearity,
each frequency corresponds to a spectral peak of a nonzero
width. Thus near-resonance interactions [34] can occur. This
allows us to observe the predictions of the WT theory as
long as the system is large enough. In practical simulations,
once the results no longer change with the further increase of
the size, the thermodynamic limit is considered to have been
approached.

We adopt the method presented in Ref. [30] to calculate
equipartition time. The normal modes of a 1D lattice of
N + 1 particles are Qk = √

2/N
∑N

j=1 q j sin ( jkπ/N ), Pk =√
2/N

∑N
j=1 p j sin ( jkπ/N ). The energy of the kth

normal mode is Ek = (P2
k + ω2

k Q2
k )/2. The indicator

of thermalization, ξ (t ) = ξ̃ (t ) eη(t )

N/2 , is adopted, where

η(t ) = −∑N
k=N/2 wk (t ) log[wk (t )] is the spectral entropy,

in which wk (t ) = Ēk (t )∑N
l=N/2 Ēl (t )

, ξ̃ (t ) =
∑N

k=N/2 Ēk (t )
1
2

∑
1�k�N Ēk (t )

, and

Ēk (T ) = 1
(1−μ)T

∫ T
μT Ek[P(t ), Q(t )]dt is the average energy of

the kth mode. Here, μ is a free parameter that controls the size
of the time window for averaging. The thermalization time is
defined by ξ (Teq) = C with C = 1/2 as in Refs. [6,30], and it

010101-2



UNIVERSAL SCALING OF THE THERMALIZATION TIME … PHYSICAL REVIEW E 100, 010101(R) (2019)

10-2

T
eq

105

107

−1

−1.5

−2

−2.5

−3 −4 −5 −6
(a)

10-5 10-4 10-3

105

107

slope:−1

1024 : −1.364 ± 0.006
2048 : −1.263 ± 0.006
4096 : −1.195 ± 0.030
8192 : −1.171 ± 0.009

(b)

10-3

105

106

107

108

slope:−2.308±
0.002

slope:−
3.426±

0.022

1024
2048
4096
8192

(c)

FIG. 1. The equipartition time Teq as a function of energy density ε in log-log scale. (a) For symmetric models V (x) = |x|d/d with
d = 3, 7/2, 4, 9/2, 5, 6, 7, 8 from bottom to top, and dashed lines with slope 2 − d are drawn for reference, fixed N = 2048. (b) For the
symmetric model d = 3 with different size N = 1024, 2048, 4096, 8192 from top to bottom. The slopes of best linear fit are listed in the plot,
and a dashed line is drawn for reference. (c) For asymmetric models n = 3 (bottom) and n = 5 (top) with different size, and dashed lines are
the best linear fit corresponding to N = 8192.

has been verified that the scaling exponent does not depend
on the specific value of C.

For the numerical integration of Hamilton’s canonical
equations, we used the eighth-order Yoshida method [35].
To suppress fluctuations, the average is done over 60 phases
uniformly distributed in [0, 2π ].

Note that H ′ = εH under the scaling transformation q′ =
qε1/2 for the power-potential models (1); hence, the nonlinear
parameter λ and the energy density ε has a rigid scaling
relation λ′ = λε (n−2)/2. Therefore, it is equivalent to study
the scaling of λ by fixing ε or that of ε by fixing λ. Here,
we perform the latter with fixed λ = 1. Figure 1(a) shows
the results for several symmetric power potentials with N =
2048. It shows that the scaling Teq ∝ ε−(d−2) agrees with the
data very well, although a slight deviation can be recognized
which has been confirmed to be a finite-size effect. This
finite-size effect is shown in Fig. 1(b) by taking the case of
d = 3 as an example, where we can see that the larger the
system size, the smaller the deviation; meanwhile, the lower
the energy density, the larger the size must be for converging
to the theoretical scaling. This plot also indicates that, in
the thermodynamic limit, the theoretical prediction applies to
arbitrarily small nonlinearity.

Figure 1(c) presents the results for models with n = 3
and n = 5. Best fitting gives Teq ∝ ε−2.31 and Teq ∝ ε−3.43,
respectively. The finite-size effect is negligible compared to
that of symmetric potentials. The result for n = 3 approaches
the four-wave resonance prediction of Teq ∝ ε−2, while that
for n = 5 is close to the five-wave resonance prediction, i.e.,
Teq ∝ ε−3.

Why the symmetry of interactions makes a difference. To
reveal why there is a deviation from the WT theory for models
with an odd n, we study the power spectrum of the time series
of momentum of a particle using the fast Fourier transform
(the result does not depend on the specific choice of the parti-
cle). Figures 2(a)–2(c) show the results for the FPUT-α model
with three sizes, N = 17, 65, and 1025, respectively, at the
fixed energy density ε = 3×10−3. For the sake of clarity, only

the first two lowest frequency modes are plotted. Figures 2(a)
and 2(b) show that there are many regularly distributed small
peaks between two neighboring normal modes in the asym-
metric case (n = 3), but they are absent in the symmetric
case (d = 3). With the further increase of the lattice size, the
small peaks disappear. However, the difference is still obvious
between the symmetric and asymmetric models: the phonon
peaks remain symmetric for the former while they become
asymmetric for the latter. Obviously, it is the symmetry of the
interaction potential that makes the difference.

By calculating the power spectrum of the normal modes,
i.e., taking the Fourier transform of ak (t ) to obtain ak (ω), we
find that the number of small peaks is governed by the system
size. Figures 3(a) and 3(b) show the results of a1(ω) with
N = 6 and 10 for n = 3, 5, 7, respectively. Figure 3(c) shows
the height of the first small peak as a function of the energy
density. These figures indicate that, on one hand, the height of
small peaks decrease in a power-law manner with the decrease
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FIG. 2. Power spectra of the time series of momentum normal-
ized by mean squared amplitude (MSA). (a)–(c) for asymmetric
model (n = 3). (d)–(f) for symmetric model (d = 3). Figures from
left to rihgt correspond to the lattice size N = 17, 65, and 1025,
respectively. ε = 0.003 is fixed.
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FIG. 3. (a) and (b) 〈|a1(ω)|2〉 vs ω for asymmetric power poten-
tial with n = 3 (red line), n = 5 (green line), and n = 7 (blue line),
respectively. (c) The height of the first small peak vs energy density.
Solid lines are drawn for reference.

of the energy density, implying that they exist in arbitrarily
small nonlinearity; on the other hand, we find that at the same
energy density, the peaks for different n can be enormously
different in amplitude. For this reason, in Figs. 3(a) and 3(b)
we plot the results for different n with different energy density
instead. We see that there are two types of small peaks.
The first type is independent of n. They appear at the fixed
positions, and their number, N − 2, increases as N . Another
type appears occasionally at different positions for different
n [Fig. 3(a)]. This type of peaks disappear eventually at big
N [Fig. 3(b)]. On the other hand, since ω1 decreases with the
increase of N as ω1 = 2 sin π

2N , the average distance between
two adjacent peaks decreases as 
ω1 = 2

N−2 sin π
2N . For suf-

ficiently large N, 
ω1 ∼ π/N2. This number is contributed
just by the first normal mode. Thus, the density of the extra
peaks in Fig. 2 is much bigger due to the contribution of other
normal modes.

As a result, neighboring small peaks can be infinitely
close to each other with the increase of N . In addition, due
to the nonlinearity, each peak must have a nonzero width.
Following the dynamics theory [36,37], the resonances among
near peaks must occur in this case. The resonances may lead
to the peaks merging with each other, and one can expect that
at sufficiently large N the left-hand side line of the phonon
peak will develop into the envelope of the merged peaks.

To check this prediction, in Fig. 4(a) we show the
power spectrum for several low-frequency normal modes,
a1(ω), a2(ω), and a3(ω), respectively, for both the symmetric
and asymmetric models with N = 1025. We see that the
symmetric model keeps the usual symmetric Lorentzian line
shape for the phonon peaks, while in the asymmetric model
the phonon peak has an asymmetric line shape—it is the
merge of the extra small peaks that leads to such a result. The
shadow area is an indication of the deviation of phonon peaks
from the Lorentzian line shape.

With the above analysis we can explain the simulation
results. First, the normal modes can well capture the dynamics
of the system with a symmetric interaction potential in the
thermodynamic limit since they are the unique energy carriers.
Therefore, the WT theory works for such a system. Second,
for a sufficiently small lattice with asymmetric power function
potential, the small peaks are sparse and isolated. Despite
their existence, their influence on the thermalization time is
negligible; this is why the simulation results still agree with
the theoretical prediction for a FPUT-α model [24]. Third,
as the system size increases, the small peaks become closer

FIG. 4. 〈|ak (ω)|2〉 vs ω for k = 1 (red line), k = 2 (green line),
and k = 3 (blue line). (a) For the symmetric power potential with
d = 3. (b) For the asymmetric power potential with n = 3. In order
to show the asymmetry of a peak, the mirror image of its right profile
line with respect to the vertical dashed line passing through the
summit is drawn (black dashed line); the area (shadowed) between
which, and the left profile line, thus visualizes the asymmetry.
ε = 10−3 is fixed.

to each other. For large N , the spectrum becomes continuous
due to the overlap; it appears in effect as the envelope of the
dense small peaks and the normal mode peaks. In this way,
an additional transport channel opens, and one can expect
that it contributes to the irreversible energy mixing, which
results in the deviations. Finally, the amplitudes of small peaks
are smaller at the fixed energy density for models with large
power of n. Therefore, as n increases, the deviation decreases
accordingly.

General formula. A general interaction potential can be
expanded in the Taylor series with respect to its equilibrium
position, i.e., V (x) = ∑∞

2 V (n)(0)xn/n! (note that the linear
term vanishes at the equilibrium point and the constant term
is futile). The corresponding equation of motion is similar to
Eq. (5), with an expanding series of n-wave coupling terms.
In the thermodynamic limit, four-wave resonances will be
excited by the term of n = 3, and other n-wave resonances
will be excited by other terms of n existing simultaneously.
According to the condensed matter physics theory, if multiple
independent scattering processes coexist, one can apply the
Matthiessens rule [38] to integrate their contributions. For
example, when the scattering induced by lattice phonons and
by impurities can be considered independent, the true aver-
age relaxation time τ can be estimated as 1/τ = 1/τlattice +
1/τimpurities, where τlattice and τimpurities represent the relaxation
times if there is only the lattice scattering or only the impurity
scattering. In our case here, in the weakly nonlinear region,
the scattering sources should be multiwave resonances. If we
assume that the scatterings of different n-wave resonances
are independent, the combined relaxation time Teq can be
estimated following the Matthiessen’s rule as

1

Teq
= 1

T (3)
eq

+ 1

T (4)
eq

+ · · · , (8)

where T (n)
eq represents the relaxation time contributed by the

potential term with power exponent n.
We check this formula with two examples. The first one

is for V (x) = 1
2 x2 + α

3 x3 + 1
6 x6, where α is used to adjust

the relative weights of the two anharmonic terms. Here we
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FIG. 5. The equipartition time Teq as a function of energy density
ε in log-log scale for (a) the cubic plus six-power potential model
with different α, and (b) the LJ model with different M. Solid lines
are best fitting with Eq. (8), and n = 3, 6 for (a); n = 3, 4, 5, 6 for
(b). Dashed lines are drawn for reference.

introduce the sixth-order nonlinearity instead of the fourth
since the scaling exponents for n = 3 and n = 4 are too close
(T (3)

eq ∝ ε−2.31 and T (4)
eq ∝ ε−2, respectively), which makes it

difficult to observe an obvious variation of the scaling expo-
nent in simulations. Figure 5(a) shows the numerical results
for α = 0.1, 0.5, and 1.0, respectively. We see that the four-
wave and six-wave resonances dominate the thermalization
process in the two extremes of α = 1 and 0.1, respectively.
For a moderate cubic potential there appears a crossover. In
all three cases, Eq. (8) can well fit the numerical results when
we input T (3)

eq = c3ε
−2.31 and T (6)

eq = c6ε
−4 with proper weight

parameters c3 and c6.
Our second example is the Lennard-Jones (LJ) model [39]

with V (x) = 1
2M2 [ 1

(1+x)2M − 2
(1+x)M + 1], which is frequently

adopted for modeling a real lattice system. Here M is an
integer, and M = 6 is the case considered the most often.
Note that the Taylor series expansion of the LJ potential
involves various power-potential terms. The numerical results
are presented in Fig. 5(b). It shows that Eq. (8) fits the
numerical results well for all values of M we have ever tried.

Conclusion. In summary, in models with interaction poten-
tial V (x) = x2/2 + λxn/n, the n-wave nontrivial resonances
dominate thermalization in the thermodynamic limit and lead
to the universal scaling law of Teq ∝ λ−2ε−(n−2) for n � 4.
Such a scaling law also exists in symmetric models with
V (x) = x2/2 + λ|x|d/d , where d is rational and d > 2. Only
for n = 3 does one need a further canonical transformation
to find higher-order resonances. Extensive numerical simula-
tions confirm that this scaling holds perfectly in the symmetric
models. It holds approximately for the asymmetric power
potentials, but the deviation is slight.

Our study covers the most general class of 1D systems
without on-site potential since any interaction potential can
be expanded in terms of power potentials. Moreover, based on
our scaling law and inspired by Matthiessen’s rule, we have
derived a formula of Teq for a general interaction potential.

In seeking the underlying mechanism of deviation from
the universal scaling law in asymmetric models, we find
that a large number of extra vibration modes can be excited
by the asymmetric interaction potential, and resonances may
take place between them in a large system, which leads to
the deviation. Furthermore, the extra vibration modes make
phonon peaks asymmetrically broadened. This finding pro-
vides a new explanation for the asymmetric line shape of
phonon spectra that has been widely reported in various
condensed matter studies [40–47]. It is possible that more
than one mechanism is responsible for this phenomenon
[43–47]. The resonance between the extra vibration modes
generated by the asymmetric interaction potential may be a
microscopic mechanism for the widely observed asymmetric
line shape of phonon peaks. Namely, it is the asymmetric
interparticle interaction that leads to the asymmetric line
shape of the phonon peaks. As asymmetric interactions are
ubiquitous in real materials, this mechanism could be very
fundamental.
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