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We consider k-deformed relativistic quantum phase space and possible implementations of the Lorentz
algebra. There are two ways of performing such implementations. One is a simple extension where the
Poincaré algebra is unaltered, while the other is a general extension where the Poincaré algebra is
deformed. As an example we fix the Jordanian twist and the corresponding realization of noncommutative
coordinates, coproduct of momenta, and addition of momenta. An extension with a one-parameter family
of realizations of the Lorentz generators, dilatation and momenta closing the Poincaré-Weyl algebra is
considered. The corresponding physical interpretation depends on the way the Lorentz algebra is
implemented in phase space. We show how the spectrum of the relativistic hydrogen atom depends on
the realization of the generators of the Poincaré-Weyl algebra.
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I. INTRODUCTION

A major open problem in modern theoretical physics is
the incompatibility of quantum mechanics and general
relativity. In the search of a successful theory of quantum
gravity, the nonrenormalizability of perturbative general
relativity suggests that it might be necessary to abandon the
assumption of a continuous spacetime and introduce a
minimal length /, which is expected to be of the order of the
Planck length, namely 1,6 x 1073 m, with an associated
momentum cutoff of the order of the Planck mass.

In order for the minimal length and the momentum cutoff
to be compatible with Lorentz invariance, the correspond-
ing deformation scale should be included into the commu-
tation relations, implying a deformation of the Lorentz
symmetry and of the dispersion relations of particles. These
considerations lead to the introduction of noncommutative
spacetimes and of their associated symmetry algebras,
which are deformations of the classical symmetries of
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general relativity [1-4]. A suitable mathematical frame-
work for investigating their properties is that of Hopf
algebras [5-7].

Among noncommutative spacetimes, one of the most
extensively studied is the k-Minkowski spacetime, with its
symmetry algebra, the x-Poincaré Hopf algebra [8,9].
The x-Minkowski spacetime is a Lie algebra-type defor-
mation of ordinary Minkowski space and is symmetric
under a x-deformation of the Poincaré algebra, which can
be endowed with a Hopf algebra structure. The x-Poincaré
algebra has a well-defined meaning with 10 generators,
without dilatation, defined modulo choice of basis. It is
known that x-deformed phase space is obtained with a so-
called Heisenberg double construction from dual pair of
quantum k-Poincaré algebra and quantum x-Poincaré group
[10-14]. This construction is a kind of reference point for
construction of k-deformed phase spaces.

In spite of the fact that the Planck scale is not directly
accessible, it might nevertheless be possible to indirectly
study the physical effects of the previous assumptions.
Phenomenological investigations of this kind are usually
carried out in the framework of doubly special relativity
(DSR) [15,16], which is strictly related to the x-Poincaré
formalism, in particular to the deformation of the Lorentz
symmetry. DSR theories mainly investigate the conse-
quences of the deformation of the dispersion relations
for particles. In particular, in the case of photons, the defor-
mation may imply an energy-dependent speed of light.
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Some proposals have been advanced based on the cumu-
lative effect of the energy-dependent velocity of photons
traveling in quantum spacetime across cosmological dis-
tances, that could cause a measurable delay in the arrival
time of gamma-ray bursts from distant galaxies [17]. Other
proposals for the detection of quantum-gravity effects rely
on ground-based experiments like holometer in Fermilab
[18] and various quantum optics experiments [19,20].

Different potentially observable effects have also been
discussed, like modifications of the uncertainty relations,
corrections to the energy spectrum of the harmonic oscil-
lator or of the hydrogen atom, etc. [21], but their detection
is presently out of reach for experiments, and hence they
have only a theoretical interest.

Noncommutative spaces can be described as deformed
phase spaces generated by noncommutative coordinates %,
and commutative momenta p, obeying [p,, p,] = 0, as, for
example, the above mentioned x-Minkowski space, which
is discussed in Sec. II. For given commutation relations
[*#,%"], there is freedom in the choice of the remaining
commutation relations, [p,, 3] = —ig,"(p), with ¢, func-
tions of p, such that ¢,, goes to the Minkowskian metric
1, When the deformation parameter, the Planck mass, goes
to infinity. Once these are fixed, there is a unique realization
of noncommutative coordinates of type 3 = x%¢,*(p),
where x* and p, generate the ordinary Heisenberg algebra.
Moreover, for a given realization of X, there exists a unique
star product f(x)*g(x) and a corresponding twist operator
F, up to a freedom in the ideal related to the star product.
The coproduct Ap, and the addition of momenta are also
fixed. In general, the realization of noncommutative coor-
dinates %,, the twist F, the coproduct Ap, and the star
product f(x)xg(x) are uniquely interrelated [22,23].

In order to extend the deformed phase space generated
by coordinates %, and p, to include the action of a Lorentz
algebra there are two possibilities. One is the simple
extension in which the momenta p, transform as vectors
under Lorentz transformations generated by M. The other
is a more general extension in which the momenta trans-
form in a deformed way [22]. In fact, we can define new
canonical coordinates P, and X, and Lorentz generators
M, such that

P,=Sp,S7" X, =Sx,57",
M,, = S(x,p, —x,p,)S™ =X, P, - X,P,. (1)
where
S = eiaZilp), 2)
Then,

P, = ef(p,).
X, = e™ha¥a(x,). (3)

We note that M,, and p, generate a deformed Poincaré
algebra, while M, and P, generate the standard Poincaré
algebra, since P,, transforms as a vector under the action
of M,,. The wave equations are essentially determined by
writing P?(p) in terms of p? and v - p, where v, is defined
in Sec. II, see Secs. III-V.

It is important to remark that the implementation of the
Poincaré algebra generated by M,, and P, into the
deformed phase space is arbitrary. There is no physical
principle that fixes P,(p), i.e., Z(p). The theory of Hopf
algebras, the Drinfeld twist, and quantum Lie algebras are
inspirational for physics, but without implementing physi-
cal principles they cannot predict physical results.
However, there are claims that a given twist uniquely
determines observables and dispersion relations [24], but
the corresponding construction seems rather ad hoc.

One simple family of possible implementations of the
Poincaré-Weyl algebra is given in Sec. IVA. Another
interesting implementation related to the natural realization
of the x-Poincaré algebra is discussed in Sec. IV B.

In the present paper we fix a specific realization X*, with
associated Jordanian twist, star product and coproduct, and
show that the physical results depend on the implementa-
tion of the Lorentz algebra, labelled by a parameter u,
leading to a family of Poincaré-Weyl algebras. A different
example of implementation of the Poincaré algebra is the
k-Poincaré algebra [8]. Therefore, we show that there exists
freedom in the implementation of the Lorentz algebra in
xk-Minkowski space.

The plan of the paper is as follows: in Sec. II we describe
k-deformed relativistic quantum phase space. A simple
extension with Lorentz algebra is given in Sec. III, together
with some explicit examples. In Sec. IV we present a general
extension with Lorentz algebra leading to a deformed
Poincaré algebra. It includes examples of interpolation
between left- and right-covariant realizations corresponding
to the Poincaré-Weyl algebra, as well as the natural
realization of x-Poincaré algebra. Dispersion relations and
physical consequences are discussed in Sec. V, where it is
shown how the spectrum of the relativistic hydrogen atom
depends on the representation of the Lorentz algebra.
Conclusions are presented in Sec. VI.

II. x-DEFORMED RELATIVISTIC
QUANTUM PHASE SPACE

The x-Minkowski spacetime [8] is generated by non-
commutative coordinates )%M, with u=0,1,...,n—1,
which satisfy Lie-algebra type commutation relations

[561"551'] =0, [550,351'] = iapX;, (4)
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where ag « 1/k is a deformation parameter assumed to be
of the order Planck length. These commutation relations
can be written in a covariant way

[R4.3] = iC 34 = i(a"3" — a*3"), (5)

1
K
and o* is a vector with v* =v#v'p,, € {-1,0,1},
where 7, = diag(—1,1,...,1) is the metric of the
Minkowski space.

The momenta p, are commutative and satisfy

where C*; = a*8% — a*§, is a structure constant, a* = L v#

[Py pU] =0, [P ¥ = —ig,* (p). (6)

The noncommutative coordinates X* can then be realized
as' [22,25-29]

M= xa(paﬂ(p)7 (7)

where x* is the canonical coordinate conjugate to the
momentum p, and x* and p, satisfy the undeformed
Heisenberg algebra

[x#,x*] =0, [Py P =0, [Py, X ==is,.  (8)

From (5), it follows that the functions ¢,,(p) satisfy
Iep,* :
Opa

, 09,
OPa

o P = C" 5%, (9)
where C*, = a8, — a*8y. The differential equation (9)
has infinitely many solutions, which are connected by
similarity transformations. For a given solution ¢,"(p)
there exists a unique star product f(x)*g(x) which is
noncommutative and associative. The star product can be
written using the corresponding twist operator JF

mF~ (> @ &) (f(x) ® g(x))].
f(x).9(x) € A, (10)

gy
~—
=
~—
*
<
~—
=
~—
I

where m is the multiplication map and A is the algebra
generated by x,. Moreover, >:H ® A — A is the action

defined by f(x)>g(x) = f(x)g(x) and p,>g(x) =

—iaagiff). A twist F is an invertible bidifferential operator

that satisfies the cocycle and normalization conditions

(FOD(A)®id)F =(1Q F)(id® Ag)F., (11)

m(id @ €)F =m(e @ id)F =1, (12)

'One can consider a more general realization of the form
= x%,"(p) + x"(p), but in this paper, only the cases with
7"(p) = 0 will be considered.

where € is the counit and A is the undeformed coproduct.
The twist can be constructed from ¢, (p) in the Hopf
algebroid approach [30-34], and can be transformed to a
twist in the Hopf algebra approach.

Let us consider a few examples. Realizations related to a
simple interpolation between Jordanian twists [23] are

&, = (0 = (1= wa,(x® - p))(1 = ud®),  (13)

where A = —a"p((,”) =—a-pW,

Drinfeld twists are given by

The corresponding

]_-(—1) — o= DouDWAM) In(14+A)@DW Lu(DWAW@1+1@AMDM)
u bl
(14)
where D) = x(). p() is the dilatation operator. The
superscripts (#) appearing in the previous formulas are
explained in Sec. IV. They essentially refer to the fact that
different values of u correspond to different parametriza-
tions of the canonical phase space. The commutation

relations involving the noncommutative coordinates (13)
are

(3, %] = i(a’3Y — a*3),
[P ] = =i(8 — (1 —u)p,)(1 —uA).  (15)
The left covariant realization [26], for u = 1, is given by
R, =xk(1-AY) =x,(1+a-p")=x,2"", (16)

where AL = —a-pt and Z7' =1+ a- p*. The corre-
sponding Jordanian twist is given by

]:ZI — b'en(1-A") (17)

The right covariant realization [26], for u = 0, is given
by

%, = xfk —a,(x®- pR), (18)

and in the case of timelike a, reduces to the well-
known Magueijo-Smolin model [16]. The corresponding
Jordanian twist is given by

fI_QI — In(1+AR)@DF (19)

For the natural realization [26,27] (classical basis), the
realization of noncommutative coordinates is given by

3, =xNZ7" = (a-xN)pl, (20)

where Z is the shift operator, defined by
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Z.3] = ia"Z. (21)

that takes the explicit form

Z7'=\/14+a*(p")? +a- pN. (22)

The corresponding twist does not satisfy the cocycle
condition in the Hopf algebra sense, but it does in the Hopf
algebroid sense [31,35-37]. Generally, for noncommuta-
tive coordinates (7), the corresponding twist in the Hopf
algebroid approach is given by [23,38]

. a inWeih
Fl = 7@ Py &Y (23)

where pZV is related to the Weyl realization and is
defined by

)= =i =) (24)

where C*, = C**,p¥. There is a one-to-one correspon-
dence between e/** and ¢**" . The relation between p, and
py is given in [22,23,32].

For k-Minkowski space, C*, = a*p, — (a - p)&,, and the
commutator [p), %] is given by [26,29,32]

W o) LW
[Py %] = _léftﬁ_ ia’py (eAW _

III. SIMPLE EXTENSION WITH
LORENTZ ALGEBRA

The Lorentz algebra is given by the commutation
relations

[Myw Mpa] = i(’/lﬂpMua - ’/thup + nupM;w - ”uaMyp)'
(26)

If one includes also the generators of translation p, and the
dilatation operator D, the resulting algebra is the Poincaré-
Weyl algebra with the remaining commutation relations
given by

[D,M,,] =0, (27)
[P P] =0, (28)
[My. p3] = im0 = 10Ds)- (29)
[D. pul = ipy (30)

Requiring that the commutation relations of the Poincaré-
Weyl algebra (26)—(30) remain undeformed, M, and D can
be realized in terms of the ordinary phase space variables in
the usual way

M, = x,py =X, Py D=x-p=x"p, (31)
The commutation relations between the Lorentz generators
M,, and dilatation D with noncommutative coordinates

Y172
XH are

8§0a/1 ag”ai )

[anxi] = _i(xﬂ(pvﬂ - wiy/l) + ixa(apﬂ Py — ap Pu

= —iX (03, u; — 07 Pua)

: 0@y, 0y
S —1\ra a. a
+ ZXy((p )y (817” Py — apy pﬂ ’ (32)
a(paﬂ
D.%)] = —ik -
D, 3] iX) + ix“pg op)
% 9N —1\ya 8(pa/1 33
xX); + zxy(€0 ) Pﬂ—apﬁ . ( )

The commutation relations (32) and (33) depend on the
realization 3 = x%@,*(p) and all Jacobi identities are
satisfied.

The coalgebra sector can be obtained using the twist
operator

Ag:.FAogF_l, ge {pﬂaMﬂIJ’D}’ (34)

where Agg =g ® 1+ 1 ® g and the antipodes are

S(g) = xSo(9)x™". (35)

where y = m[(Sy ® 1)F].
For the left covariant realization, we find [26,27,29]

[Mleb"%l] = _i(x/enwl _le/n/M)(l _AL) - ix%(aﬂpf - auPﬁ)

L L
TS A o AuDy —aypy
= —l(x,ﬂm —XJI,M) - lxx—l “AL

(36)
and from the corresponding Jordanian twist [39,40],
the coalgebra structure of the x-deformed Poincaré-Weyl
algebra is

Apt=pl® (1 -AL) +1® pL, (37)
L L L L aﬂpé—abp,’;
AM/AU:M/U/®1+1®M/AD_D ®T, (38)
1
AD' =DF® —— + 1 ® D*, (39)

1-A
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while the antipodes are

1-AL"

S(pr) = (40)

S(M/ev> = _M/eb - DL(%API% - avp/e)v (41)

S(DL) = —DL(l —AL). (42)
For the right covariant realization, we find [26,27,29]
[ME,. %] = —i(xffn,, — x5n,)

= =L XMy — Xl

1

Trar] 4

+ (a//]vi - au’h&)(ﬁ ’ pR)

and from the corresponding Jordanian twist, the coalgebra
structure of the x-deformed Poincaré-Weyl algebra is

App =pp ® 1+ (1 +A%) ® py, (44)

R R
a,pPy —aypy

AME,=MJ, @1+ 1@Mf, + QDR (45)

1+ AR
ADR =DR @1 DR, 46
©l+y + AR ® (46)
The antipodes are
R
-p
S(pR) = L 47
(Pf) = 1 (47)
S(Mjlfv) = _M;Ifu + ((1/41711/e - aupllf)DR’ (48)
S(D®) = —(1 + AR)DR. (49)

For the natural realization [26,27,29,37,41], we get the
k-Poincaré algebra [8]. The coproducts are given by

ApN =pV @Z7'+1® p —a,pkZ® (pV)*, (50)

AM/]:L :M/IXJ RI+I® M;]XJ —aﬂ(pL)“Z @ MY,
+a,(p")Z ® My, (51)

and the antipodes are
S(py) = (=py —a,p™ - PY)Z, (52)

S(M/IXI) = _M;ZYI/ - a/4<pL)aM]o\:/y =+ al/<pL)aMé\t/ﬂ‘ (53)

IV. GENERAL EXTENSIONS WITH
LORENTZ ALGEBRA

In general, for a given twist, it is possible to leave the
Lorentz sector (26) undeformed but allow a deformation of
the commutators (29) and (30)

[M/HJ? pl] - F/u//l(p)’ (54)

D, p;] = o:(p). (55)

such that all Jacobi identities are satisfied. Hence, the
physical consequences for observables and dispersion
relations are not uniquely determined by a given twist or
star product, but also depend on the implementation of the
Lorentz algebra. In other words, a given twist does not fix
the implementation of the Lorentz algebra [22,37,41,42].
Here we demonstrate this observation.

A. Interpolation between the left
and right covariant realization

Let us start with the left covariant realization (16) and the
corresponding twist (17) and consider the following one-
parameter similarity transformations related to x*, p’. In
the following, we shall omit the label L for simplicity.
The coordinates x,@ characterized by the parameter u
can be written in terms of coordinates x, (u = 1) as
) _ o—(1-u)iDA iDA

x x,ell=w

= (x, + (I =u)a,(x-p))(1 = (1=u)A). (56)
The corresponding momenta are

u —(1-u)i —u)i P
) = e(1-0iDA ) o1 >DA:m. (57)

The left covariant realization is reproduced for # = 1 and
the right one for u = 0.

The generators M ,(fL) and D™ can also be expressed in
terms of the ones corresponding to the left covariant

realization

M,(fﬁ) _ e—(l—u)iDAMWe(l—u)iDA

:M;w+(1 _M)D(aﬂpl/_al/pﬂ)’ (58)

D(u) — e—(l—u)iDADﬂe(l—u)iDA — D(l _ (1 _ M)A) (59)

The transformed momenta pf,”), Lorentz generators M ,<f,’,>,
and dilatation D) generate the Poincaré-Weyl algebra
Egs. (26)~(30). However, the algebra generated by p,,

M ,(fé), and D" is a deformed Poincaré-Weyl algebra
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[M;(Z)a pll] = i(rlﬂﬂpu - nvlpy) + l(l - u)pi(aﬂpu - aup/,t)’
(60)
(D™, p,) = ip,(1=(1=u)A). (61)

The inverse relations to (56)—(59) are given by
y= () = (1=w)a,(x- p@)(1+(1-u)AW),  (62)

()

P = 0 — A

M/w - M/(JI;/) - (1 - M)D(u)(aﬂpl(/u) - aupl(lu))’ (64)
D = DW(1 + (1 — u)AW). (65)

The shift operator can also be written in terms of the
interpolating variables

14+ (1 —u)A®

7 =
1 —uA®

(66)

The noncommutative coordinates written in terms of the
interpolating variables are given by (13). Using relations
(57)—(65), the homomorphism property of the coproduct
and the known coproducts [23], one can then find the

coproducts of p,(,"), M,(f;), and D),

Apl = i ® (1= uA) + (1 + (1 - wA") @ pjt’
g 1Q1+u(l—u)AW @ AW ’

(67)

AMY =MY @ 1+1@ MW —uD®(1 + (1 —u)AW)
W _ (W)

aupy’ = a,pu
1 —uA®
arl = api o (w
1—u) 22 2@ DU (1 — uAl
(68)
1 1
ADW = | — = @ pWw L p 7>
<1 + (1 — u)A® ® ® 1 —uA®
x (1@ 1+ u(l—u)A @ AW), (69)

The antipodes of p.", M,(f,f), and D) are given by

(u)

(u) —Pu
S =, 70
(Pu”) 1+ (1 = 2u)A® (70)

S(M,(,'f)) =-M,, - uD(aﬂp,(,“) - aﬂpy))
a#p,(,") - aﬂpﬁu)

S S DM (1 - uA),

+ (1 —u)

(71)

14 (1 —2u)A®

S(DW) = — O

DW (1 —uA™),  (72)

Equations (67)—(72) for coproducts Ap,(,"), AM,(J;), AD®
and antipodes S(p™)), S(M,(f,’,)), S(D®) define a one-
parameter family of k-deformed Poincaré-Weyl Hopf
algebras.

Starting from the right covariant realization, instead of

the left one, one arrives at the same results. One can also
define a Hopf algebroid structure [14,38,43].

B. Relation between natural and
left covariant realizations

The so-called natural realization [25-27,29] of the
k-Minkowski spacetime is defined by (20) It does not
belong to the family of realizations parametrized by u, but it
can nevertheless be related to the left covariant realization

— 27
xﬁ’:xﬂ—i-a-x%, (73)
1 +%p°Z
where
ZlV'=1+a-p=/1+d(p")* +a-p". (74)

The relations between the generators of the Poincaré
algebra are given by

Pl = pu= PZ, (75)

M%,:M

1
7 5 (L/mau - Lvaaﬂ)paz' (76)

where L,, = x,p,.
The coproducts of p) and M}, are known from the
literature [8,9]

ApY =pV @ Z'+1® pl —a,phZ ® (pV)*
+“—2*‘DZ®a-pN, (77)
AMY, =M}, @ 1+1Q M},

= (a,(p")"Z ® Mg, — a,(p*)"Z ® Mg,). (78)

where [0 = —p?Z = %(1 — 1+ a*(p")?).
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As in the previous subsection, it is easily shown that
using the relations between the two realizations and the
homomorphism property of the coproduct, one obtains the
same expressions. However, a crucial point in showing this
for the coproduct of M,’}L are the so-called tensor identities
[31,35-37]. They can be calculated from the undeformed
ones, Ry = X, ® 1-1Q X, = 0, using the twist operator.
For the left covariant realization, (17) gives

FRF'=0=x,02Z-1Qx,+D®a,Z. (719

The way to show that one obtains the same result is to first
calculate the coproduct of M IZ)’D starting from (76), using the
homomorphism property [31,35-37]. On the other hand,
the known coproduct (78) is written in terms of the left
covariant realization variables using (75) and (76). Finally,
using the tensor identities (79), one finds that the expres-
sions agree.

V. DISPERSION RELATIONS AND PHYSICAL
CONSEQUENCES

In this section we consider some physical consequences
of the deformations of the phase space discussed in the
previous sections. It must be noted that the physics depends
on both the realization of the noncommutative coordinates
X, (in our case labelled with the parameter u) and on the
specific representation chosen for the Poincaré algebra.
As discussed in Sec. IV, one may adopt a representation in
which the algebra is unaltered, or one in which it is
deformed. In the following, we consider the latter possibil-
ity.2 Here we start with a Jordanian twist F, Eq. (17), (the
same twist as in Ref. [24]), the corresponding realization of
noncommutative coordinates, %, = x,(1+a-p) (16),
coproduct Ap,, (37) and addition of momenta (k & q), =
k,(14a - q) + g, and we consider a one-parameter family
of realizations of the Lorentz generators M, ,(,'Z) (58)
and dilatation D™ (59), M,(f,f) =x,p, — X, P, + (1 —u)x-
pla,p,—a,p,), D" =x-p(1+ (1 —u)a- p). They sat-
isfy commutation relations (60)—(61) with the momentum
p,. The corresponding Casimir operator is C = P’=

F2

u)\2 _
(P) = e

A. Classical mechanics

We start by studying the classical motion determined by
the Hamilton equations with the deformed Poisson brackets
corresponding to the classical limit of the commutation
relations (15). We shall limit our considerations to the case
where v* = (1,0,0,0), because this choice does not break

’In the literature on DSR this is the usual assumption; notice
however that in [24] a different interpretation of the formalism
has been given.

the rotational invariance and is the most interesting phe-
nomenologically. For u = 0 it corresponds to the well-
known model introduced by Magueijo and Smolin in [16],
in the realization originally proposed by Granik [44] and
then investigated in several papers [45-47].

With the timelike choice of v considered in this section,
the nonvanishing Poisson brackets derived from the com-
mutators (15) are

(i3} = —5{(1 —u@) (80)

We choose a deformed relation between Lorentz gen-

erators M ,(f,ﬂ)

invariant,

and momenta p,, as in (60). Its Casimir

CCh-(-wa

can be chosen as the Hamiltonian for a free particle. In our
case, we have

1 —p3+p? m?
H=-—r—""—->=——, 82
21— (1 —u)kop? 2 (82)

where m is the Casimir mass. From this expression follows
that the rest energy of the classical particle is not m, but
rather

m

Tr—we (83)

my =

From the Poisson brackets (80) and the Hamiltonian (82),
one obtains the Hamilton equations

Py =0. (84)

It follows that for this class of models the classical 3-velocity
of a free particle of arbitrary mass, defined as the phase

velocity vK = i— is equal to the relativistic one, v; = ﬁ—o as
0

was already noticed for the Magueijo-Smolin case in
[44,45]. In the interacting case, instead, the motion can
differ from that of special relativity.
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B. Quantum mechanics

We pass now to investigate the quantum theory. In this
case, the velocity is usually identified with the group
velocity for wave propagation with dispersion relation (82),

H _ 8p0 Pi
! . (85
Y n  pe—(—wEi-(-wmm

For massive particles the group velocity differs from the
phase velocity. The contrast between the classical and
quantum definition of velocity is a well-known problem in
DSR theories [48]. It has been shown however that, at least
under some assumptions, the physical predictions coincide
for both choices, if one takes into account the deformation
of translations and the effects of the relative locality of
observers [49].

In any case, since massless particles have both phase and
group velocity equal to ¢, no effects of time delay in the
detection of cosmological photons, like those discussed
in [17], are predicted in the present models.

However, some nontrivial consequences follow from the
lack of invariance of the Hamiltonian for py — —p,. For
example the Klein-Gordon (KG) equation for a free particle
can be written in the form

et ee(1-0-02) =0, o

Adopting the Hilbert space realization of the operators
following from (13) and the discussion in Sec. IV,
e
Py = —i5—, Xi—=x(1-

lu 0
ox,’ K Oxy)’
; i-w) ON()_iud
Xog — <X0 + X X aXl 1 X axo s (87)

the Klein-Gordon equation takes the form

<1 + i(ll:”)(;zo)z}qs —0. (88)

Its plane wave solutions are given by

o2 a2 "

[82 0?

W= e—i(mixo—k;x"), (89)

where

o (/e I 4w’ = (L= u)Pkm’ )
) 1= (1—u)*m?/c*

(90)

The two values of ™ correspond to positive and negative
energy states and can be interpreted as belonging to

particles and antiparticles [50]. They have different abso-
lute value because the invariance of the Klein-Gordon
equation for py — —p, is broken. In particular, it follows
that the rest mass mg of antiparticles differs from that of
particles, m , namely,

+
R L— 91
ClF (- oy

Of course, a more rigorous treatment of this nontrivial
property should be undertaken in the context of QFT.

Further physical effects may arise in more complex
systems, where some interaction is present. Since the
theories studied in this paper are intrinsically relativistic,
such effects must be sought in non-Newtonian systems:
a relevant example is the relativistic hydrogen atom.
Therefore, we analyze the first-quantized Klein-Gordon
equation for a particle of Casimir mass m and unit charge in
a central electric field. This can be considered as a first
approximation to the relativistic hydrogen atom, when the
fermionic nature of the electron is neglected.

We write the KG equation in the form

{—(po—g> +p+m? <1—(1—M) )]‘/’ 0, (92)

where «a is proportional to the central electric charge and

r=+/ fclz and make the substitutions (87). We pass then to
spherical coordinates, imposing the ansatz

¢(x0’ xl) = Ze_iEXO Ylm (97 §0)l//1m(1"), (93)
ml

where Y, (0, @) are spherical harmonics. Expanding to first

order in 1, we obtain from (92),

e (e
<1 u;)za—E+E2 <1 2(1—u)E)]l//1m—0
(94)

The regular solutions of this equation can be written as

Win = AL AP, (95)
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and L% are generalized Laguerre polynomials. Moreover, n
is an integer given by

(97)

To zeroth order in 1/k, we obtain the energy eigenvalues
of the relativistic hydrogen atom as [51]

mN

:ii,
Nt @

(98)

where 2 = /(I +1)* — o?,

sign refers to the negative energy states (antiparticles). The
energy includes the rest mass.

Expanding (97) around (98), one can obtain the correc-
tions to the spectrum due to the quantum geometry,

1 E}
EM Enl |:1—|— ( ()<1—2M+M(02)>
m

x"(m —E) a4+ 1) = )]
2
am 1+ -

N =n—-1-21, and the minus

A mN | —2a

= — |l u———

o' T a\ TV
ua? I(1+1)—a? }

(N? +a?) (l+%)2— 2|’

F (99)

In particular, for the Magueijo-Smolin model [16], u = 0,

mN

mN 1
+— | ). 100
\/N2+a2< KvN2+a2) (100)

From (99) it follows that the leading corrections to the
relativistic spectrum are of order m/kx ~ 10723 As for
the free KG equation, one can observe a breaking of the
particle/antiparticle symmetry, but even the spectrum of the
positive energy states is deformed.

Enl —

C. Left covariant realization and x-Poincaré algebra

We consider now the same problem for the left covariant
realization corresponding to the x-Poincaré algebra [8.,9],
see Sec. IV B, using a representation of the Lorentz algebra
generated by M, in (76). As before we make the choice
at = (% ,0,0,0). From (73), (74), and (75) or (16) and (20)
it follows that

1
,=x <1+p0) zxﬁ'Z‘l—;xf,vpfy, (101)

and the nonvanishing Poisson brackets in the classical limit
become

ol

~ Al X ~U p v
{xO’x}:—;, {pﬂ,x}:—<l+?0)5ﬂ. (102)

The free particle Hamiltonian can be chosen proportional
to the Casimir operator corresponding to the Lorentz
realization (76), which is [26]

L-po+p; _ _m

2 2 142 (103)

with m the Casimir mass. It follows that the rest energy

2
- m).

The Hamilton equations then read

is my = m(—5-+ /1

1’0
A Pot3 +5 2 .
b= - ——ﬁT% fi=pn bu=0. (104
1+ £
The classical 3-velocity is therefore given by
;*‘ (1 + Po
%=?=—ﬁL—Ja (105)
*o Po + + 2K
and coincides with v/ = g—’;?.
We consider now quantum mechanics. The Klein-

Gordon equation for a free particle can be written in the

form
+@)}¢ —0.
K

From (101) follows that one can adopt the Hilbert space
realization of the operators

[—pg + p? +m2<1 (106)

0 R i 0
p}t - —laT Xﬂ <1 —;8—x0> . (107)

The KG equation then becomes
? 0
-——+= 1——— 0. (108
[ 6x%+8x%+m ( K8x0>]¢ (108)

Its plane wave solution has the general form (89), where

now
4
i:__:l: 2 2 _
@ 2\ -

from which it follows that also in this case positive and
negative energy states have different masses, mgz

my =
m(—5 4 /1 -

(109)

2
i)
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In the case of the relativistic hydrogen atom, the KG
equation becomes

{—(po—g>2+p%+m2<l +@>]¢=o,
r K

In spherical coordinates, using the ansatz (93), to first order
in 1/k the equation reduces to

»* E\20 ENI(I+1)—a?

{WJF (1_E>?5_ <1_2¥)T

+(1—E>M+E2—m2<1+E>]wlm=0, (111)
K r K

which has still solutions of the form (95), where A and n
are the same as in (96)—(97) but A is now

A=/m*—E*+m*E
One can again expand around the unperturbed value E
of the energy (98), obtaining finally

(110)

gl [N () 2N

) KV N? + a? N? +o?
o’ I(1+1)—a? }

(N2 + a?) (1) —a '

F (112)

The characteristics of the spectrum are similar to those
found in the previous case.

VI. OUTLOOK AND DISCUSSION

In this paper, we have considered x-deformed relativistic
quantum phase space and the possible implementations of
the Lorentz algebra. A first one is a simple extension of the

phase space with Lorentz algebra that leaves the Poincaré
algebra unaltered. Some explicit examples of this imple-
mentation have been presented. Another one is a general
extension with Lorentz algebra, where the Poincaré
algebra is deformed. Examples of interpolation between
left- and right-covariant realizations corresponding to
Poincaré-Weyl algebra as well as to the natural realization
of the x-Poincaré algebra have been given.

In Sec. IV, we have fixed the Jordanian twist F (17),
the corresponding realization of noncommutative coordi-
nates X, (16), the coproduct of momenta Ap, (37) and the
addition of momenta (k @ ¢), = (1 + a - q)k, + g,. Then
extensions with one-parameter families of realizations of

Lorentz generators Mff;) (58), dilatations D™ (59) and
momentum p, (57) have been considered. They close
the Poincaré-Weyl algebra. The commutation relations

between Mf;,f) and D™ and the momentum p, are given
in (60)—(61). The corresponding Casimir operator is
C=P = (p“)?=p*/(1+(1-ua-p)

The dispersion relations and their physical consequences
have been discussed in the next section, where we have
shown how the spectrum of the relativistic hydrogen atom
depends on the representation chosen for the Lorentz
algebra. The deviations from special relativity are very
small, but are important in principle. An interesting
property is the breakdown of the symmetry between
positive and negative energy states, due to the peculiar
form of the dispesion relations.
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